

รองศาสตราจารย์ ดำรงค์ ทิพย์ใยธา ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เหมาะสมกับนิสิต นักศึกษาและทุกท่านที่ต้องการวิเคราะห์ข้อมูลสถิติ

เน้นการใช้งาน SPSS ได้โดยง่าย มีภาพและคำอธิบายประกอบคำสั่ง เสริมการคำนวณด้วย MATHCAD ประยุกต์ใช้ได้กับ SPSS V. 7-9

ความหมายของ Significant (Sig.) ของค่าสถิติ

ความหมายของ Sig. (2-tailed) ของค่าสถิติที

จากค่าสถิติ t และ องศาความอิสระ df = v ที่คำนวณได้จากตัวอย่าง

P(t > | t |) = พื้นที่ใต้โค้งของการแจกแจงที

ทางหางด้านขวาที่ระยะ t

$$= \int_{t}^{\infty} \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx$$

Sig. (1-tailed) ของค่าสถิติ t มีค่าเท่ากับ P(t > | t |)
 Sig. (2-tailed) ของค่าสถิติ t มีค่าเท่ากับ 2 P(t > | t |)

ความหมายของ Sig. ของค่าสถิติไคสแควร์

จากค่าสถิติ χ^2 และ องศาความอิสระ df = v ที่คำนวณได้จากตัวอย่าง $P(x > \chi^2) = พื้นที่ใต้โค้งของการแจกแจง$ ไคสแควร์ทางหางด้านขวาที่ระยะ χ^2

$$= \int_{\chi^2}^{\infty} \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}} dx$$

Sig. ของค่าสถิติไคสแควร์มีค่าเท่ากับ P(x > χ^2)

ความหมายของ Sig. ของค่าสถิติเอฟ

จากค่าสถิติ f และ องศาความอิสระ v_1, v_2 ที่คำนวณได้จากตัวอย่าง

P(F > f) = พื้นที่ใต้โค้งของการแจกแจงเอฟ ทางหางด้านขวาที่ระยะ f

ทางหางด้านขวาทระยะ f

$$= \int_{f}^{\infty} \frac{\Gamma(\frac{v_{1}+v_{2}}{2})(\frac{v_{1}}{v_{2}})^{\frac{v_{1}}{2}}f^{\frac{v_{1}}{2}-1}}{\Gamma(\frac{v_{1}}{2})\Gamma(\frac{v_{2}}{2})(1+\frac{v_{1}}{v_{2}}f)^{\frac{v_{1}+v_{2}}{2}}} df$$

Sig. ของค่าสถิติ f มีค่าเท่ากับ P(F > f)

การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows Version 10

รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 10 ผู้เขียน รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา

พิมพ์ครั้งที่ 1 พฤษภาคม พ.ศ. 2545 สงวนลิขสิทธิ์ตามพระราชบัญญัติลิขสิทธิ์

ข้อมูลทางบรรณานุกรมของหอสมุดแห่งชาติ ดำรงค์ ทิพย์โยธา การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 10 . -- กรุงเทพฯ : จุฬาลงกรณ์มหาวิทยาลัย, 2545 280 หน้า 1. ความน่าจะเป็น. -- 2. คณิตศาสตร์ . I . ชื่อเรื่อง 519.2 ISBN 974

จัดจำหน่ายโดย	ศูนย์หนังสือจุฬาลงกรณ์มหาวิทยาลัย ถนนพญาไท กรุงเทพฯ 10330				
	ศาลาพระเกี้ยว โทร. 0–2255–4433, 0–2218–7000 โทรสาร. 0–2255–4441				
	สยามสแควร์ โทร. 0–2251–6141, 0–2218–9888 โทรสาร. 0–2254–9495				
	CALL CENTER 0-2225-4433				
	http://www.chulabook.com				
	e-mail : order@chulabook.com				
พิมพ์ที่	โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย โทร. 0–2218–3563–4, 0–2215–3612				
	http://www.cuprint.chula.ac.th				

คำนำ

หนังสือ การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 10 เป็นคู่มือในการใช้งาน โปรแกรม SPSS for Windows version 10 เนื้อหาภายในเล่มประกอบด้วย การสร้างแฟ้มข้อมูล การแก้ไข แฟ้มข้อมูล การวิเคราะห์ข้อมูลทางสถิติ การคำนวณค่าสถิติเบื้องต้น เช่น การหาค่าเฉลี่ย ค่ามัธยฐาน ค่าความ แปรปรวน ส่วนเบี่ยงเบนมาตรฐาน ฯลฯ การนำเสนอข้อมูลในรูปแบบการแจกแจงความถี่แบบ 1 ทาง และการ แจกแจงความถี่แบบ 2 ทาง การนำเสนอข้อมูลในรูปแบบตารางที่สวยงาม การนำเสนอในรูปแบบกราฟ

ในส่วนของการวิเคราะห์ข้อมูลโปรแกรม SPSS for Windows version 10 สามารถคำนวณค่าช่วงความ เชื่อมั่นของค่าพารามิเตอร์ สามารถทำการทดสอบสมมติฐานแบบต่าง ๆ เช่น การทดสอบสมมติฐานว่า $\mu = \mu_0$, $\mu_1 = \mu_2$, $\sigma^2 = \sigma_0^2$, $\sigma_1^2 = \sigma_2^2$ การทดสอบภาวะสารูปสนิทดี การทดสอบว่าข้อมูลมีการแจกแจงปกติจริงหรือ ไม่ การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกัน การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว และ สหสัมพันธ์ การหาสมการเส้นถดถอยแบบไม่เป็นเส้นตรง เช่นการหาความสัมพันธ์ในรูปแบบสมการ log exponential การ คำนวณค่าสัมประสิทธิ์สหสัมพันธ์และสมการถดถอยพหุคูณ การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว การวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง การทดสอบสมมติฐานแบบนอนพาราเมตริก

เนื้อหาภายในเล่มจะแสดงขั้นตอนการสั่งงานอย่างละเอียดพร้อม คำอธิบายและภาพประกอบทุกขั้น ตอน มีเหตุผลทางทฤษฎีความน่าจะเป็นและสถิติประกอบการทำงาน และแสดงสูตรทางคณิตศาสตร์ซึ่งเป็นที่ มาของค่าสถิติที่ SPSS คำนวณมาให้ สรุปผล วิเคราะห์และแปลความหมายทางสถิติเพื่อนำไปสรุปผลของข้อ มูลได้ นอกจากนั้นเพื่อสะดวกในการเชื่อมโยงข้อมูลกับ Microsoft Word และ Excel จึงได้เพิ่มภาคผนวกเรื่อง การเชื่อมโยงข้อมูล SPSS for Windows กับ Microsoft Word และ การเชื่อมโยงข้อมูล SPSS for Windows กับ Excel นอกจากนั้นยังมีเนื้อเกี่ยวกับโปรแกรมภาษาของ SPSS ชนิดที่เป็น Syntax ในภาคผนวกที่ 4 ซึ่งจะ เป็นประโยชน์ในการวิเคราะห์ข้อมูลมากขึ้น

ผู้เขียนหวังว่าหนังสือเล่มนี้จะช่วยให้ผู้อ่านทุกท่านสามารถนำไปใช้วิเคราะห์ข้อมูลได้เป็นอย่างดี และขอ ขอบคุณผู้อ่านทุกท่านที่ได้ติดตามผลงานของผู้เขียนมาโดยตลอด

รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา

การทดสอบสมมติฐาน

หมายเหตุ ในขั้นที่ 4 ค่าสถิติที่เหมาะสมและนิยมใช้กันมากคือค่า Z, t, F และ χ² ในขั้นที่ 7 การสรุปผลทำได้ 2 แบบคือ นำค่าสถิติจากตัวอย่างเปรียบเทียบกับค่าวิกฤตและบริเวณวิกฤต หรือ เปรียบเทียบค่า Sinificant ที่คำนวณได้จากตัวอย่าง กับค่านัยสำคัญของการทดสอบ α

สารบัญ

		หน้าที่
บทที่ 1	ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows	1 - 22
1.1	คอมพิวเตอร์ที่สามารถทำงานกับโปรแกรม SPSS for Windows	2
1.2	ความสามารถของโปรแกรม SPSS for Windows	2
1.3	การเข้าสู่การทำงานของโปรแกรม SPSS for Windows	4
1.4	WINDOW ของการทำงานแบบต่าง ๆ ของ SPSS for Windows	6
1.5	สรุปเนื้อหาของคำสั่งและขั้นตอนการทำงานโดยย่อของ SPSS for Windows	9
1.6	Icon บนเมนูบาร์กับการทำงานของ SPSS for Windows	19
บทที่ 2	การสร้างแฟ้มข้อมูล	21 - 40
2.1	การสร้างแฟ้มข้อมูลใน SPSS Data Editor	25
2.2	การบันทึกแฟ้มข้อมูล	34
2.3	การเปิดแฟ้มข้อมูล	35
2.4	การดูรายละเอียดตัวแปร	36
2.5	การสั่งให้ SPSS Data Editor แสดง Value Labels	37
2.6	การแสดงรายละเอียดเกี่ยวกับตัวแปรของแฟ้มข้อมูล	39
บทที่ 3	การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics	41 -
62		
3.1	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptives	41
3.2	การเปลี่ยนรูปแบบของตารางในการแสดงผลของ SPSS Viewer	42
3.3	การกำหนดตำแหน่งทศนิยมของการคำนวณในตารางของ SPSS Viewer	44
3.4	การคำนวณค่าสถิติอื่น ๆ ด้วยคำสั่ง Descriptives	45
3.5	สูตรของค่าสถิติและเปรียบเทียบการคำนวณ MATHCAD กับ SPSS	47
3.6	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Frequencies	51
3.7	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Explore	56
3.8	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Crosstabs	60
บทที่ 4	การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports และ Custom Tables	63 -
76		
4.1	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Reports / OLAP Cubes	63
4.2	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Reports / Case Summaries	66
4.3	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Reports / Report Summaries in Ro	ws
	Analyze / Reports / Report Summaries in Columns	69

4.4	การนำเสนอข้อมูลด้วยคำสั่ง Analyze / Custom Tables	73
บทที่ 5	ร การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform	77 - 94
5.1	การเพิ่มตัวแปร การลดตัวแปร การแทรกตัวแปร	78
5.2	การลบค่าสังเกต	81
5.3	การรวมแฟ้มข้อมูลแบบเพิ่มตัวแปร	81
5.4	การรวมแฟ้มข้อมูลแบบเพิ่มค่าสังเกต	82
5.5	การเรียงลำดับข้อมูล	84
5.6	การกำหนดตัวแปรน้ำหนัก	85
5.7	การนำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่	86
5.8	การปรับเปลี่ยนค่าของตัวแปรด้วยคำสั่ง Transform / Recode	89
บทที่ 6	3 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์	95 - 122
6.1	การหาช่วงความเชื่อมั่น (1–α)100% ของค่าเฉลี่ย μ	96
6.2	การหาช่วงความเชื่อมั่น (1–α)100% ของผลต่างค่าเฉลี่ย μ ₁ –μ ₂	
	กรณีประชากร 2 ชุดเป็นอิสระต่อกัน	102
6.3	การหาช่วงความเชื่อมั่น (1–α)100% ของผลต่างค่าเฉลี่ย μ ₁ –μ ₂	
	กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน	111
6.4	การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Compare Means / Means	116
6.5	การหาช่วงความเชื่อมั่น (1–α)100% ของค่าเฉลี่ย μ	
	ด้วยคำสั่ง Analyze / Compare Means / One-Way ANOVA	120
บทที่ 7	⁷ การทดสอบสมมติฐาน	123 - 164
7.1	การทดสอบสมมติฐาน H_0 : $\mu=\mu_0$	124
7.2	การทดสอบสมมติฐาน $ m H_0$: μ_1 = μ_2 กรณีประชากร 2 ชุดเป็นอิสระต่อกัน	128
7.3	การทดสอบสมมติฐาน $ m H_0$: μ_1 = μ_2 กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน	138
7.4	การทดสอบสมมติฐาน H_0 : σ^2 = σ_0^2	145
7.5	การทดสอบสมมติฐาน H_0 : $\sigma_1^2=\sigma_2^2$	146
7.6	การทดสอบภาวะสารูปสนิทดี	150
7.7	การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกันหรือไม่	155
7.7	การทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงปกติจริงหรือไม่	161
บทที่ ย	3 สหสัมพันธ์และการถดถอยเชิงเส้น	165 - 200
8.1	การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว(Simple Linear Regression)	
	และ สหสัมพันธ์ (Correlation)	166
8.2	การหาช่วงความเชื่อมั่น (1–α)100% ของสัมประสิทธิ์การถดถอย β และระยะตัด	แกนα 178

8.3 การทดสอบสมมติฐาน H_{0} : $ ho$ = 0	182
8.4 การทดสอบสมมติฐาน H_{0} : eta = eta_{0}	184
8.5 การเลือกรูปแบบความสัมพันธ์ที่เหมาะสมกับข้อมูล	190
8.6 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์และสมการถดถอยพหุคูณ	196
บทที่ 9 การวิเคราะห์ความแปรปรวน	201 - 228
9.1 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว	201
9.2 การวิเคราะห์ความแปรปรวนแบบที่มีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม	209
บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก	229 - 250
10.1 การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่	229
10.2 การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่	233
10.3 การทดสอบว่าประชากร 2 กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่	235
10.4 การทดสอบว่าประชากร k กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่	242
10.5 การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่(Rank Correlation Coefficient)	248
ภาคผนวกที่ 1 การคำนวณค่า Significant ของค่าสถิติ	251 - 254
ภาคผนวกที่ 2 การเชื่อมโยงข้อมูล SPSS for Windows กับ Microsoft Word	255 - 260
ภาคผนวกที่ 3 การเชื่อมโยงข้อมูล SPSS for Windows กับ Excel	261 - 266
ภาคผนวกที่ 4 SPSS Syntax Editor กับ โปรแกรมภาษา SPSS	267 - 271
บรรณานุกรม	272

การทำงานเกี่ยวกับแฟ้มข้อมูล และ การวิเคราะห์ข้อมูล	หน้า
การสร้างแฟ้มข้อมูล	25
การบันทึกแฟ้มข้อมูล	34
การเปิดแฟ้มข้อมูล	35
การดูรายละเอียดตัวแปร	36
การเพิ่มตัวแปร การลดตัวแปร การแทรกตัวแปร	78
การลบค่าสังเกต	81
การรวมแฟ้มข้อมูลแบบเพิ่มตัวแปร และ การรวมแฟ้มข้อมูลแบบเพิ่มค่าสังเกต	81
การเรียงลำดับข้อมูล	84
การนำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่	86
การปรับเปลี่ยนค่าของตัวแปรด้วยคำสั่ง Transform / Recode	89
การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptive	41
การเปลี่ยนรูปแบบของตารางในการแสดงผลของ SPSS Viewer	42
การกำหนดตำแหน่งทศนิยมของการคำนวณในตารางของ SPSS Viewer	44
การแจกแจงความถี่ของข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics / Frequencies	51
การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Explore	56
การแจกแจงความถี่ของข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics / Crosstabs	60
การนำเสนอข้อมูลด้วยคำสั่ง Analyze / Custom Tables	73
การหาช่วงความเชื่อมั่นของค่าเฉลี่ย µ	96
การหาช่วงความเชื่อมั่นของผลต่างค่าเฉลี่ย _{µ1} – µ2 กรณีประชากร 2 ชุดเป็นอิสระต่อกัน	102
การหาช่วงความเชื่อมั่นของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน	111
การทดสอบสมมติฐาน H_{0} : $\mu = \mu_{0}$	124
การทดสอบสมมติฐาน $ m H_0$: $\mu_1=\mu_2$ กรณีประชากร 2 ชุดเป็นอิสระต่อกัน	128
การทดสอบสมมติฐาน $ m H_0$: $\mu_1=\mu_2$ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน	138
การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกันหรือไม่	155
การทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงปกติจริงหรือไม่	161
การหาสัมประสิทธิ์การถดถอยและสหสัมพันธ์	166
การเลือกรูปแบบความสัมพันธ์ที่เหมาะสมกับข้อมูล	190
การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว	201
การวิเคราะห์ความแปรปรวนแบบที่มีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม	209

สารบัญของการทำงานพื้นฐานในการวิเคราะห์ข้อมูลทางสถิติ

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

โปรแกรมสำเร็จรูปที่มีความสามารถในการวิเคราะห์ข้อมูลทางสถิติในปัจจุบันมีหลายโปรแกรมเช่น SAS, MINITAB, SPSS for Windows แต่โปรแกรมที่นิยมใช้กันมากคงจะเป็นโปรแกรม SPSS for Windows โปรแกรม SPSS (Statistical Package for the Social Sciences) มีการใช้งานมานาน เริ่มตั้งแต่การใช้งานบน เครื่องคอมพิวเตอร์ขนาดใหญ่ (Main Frame) ต่อมาเมื่อเครื่องไมโครคอมพิวเตอร์มีการใช้งานกันมาก โปรแกรม SPSS มีรุ่นที่ใช้กับเครื่องไมโครคอมพิวเตอร์ได้เช่น

SPSS/PC version 3.0	สำหรับระบบปฏิบัติการ DOS
SPSS for Windows version 6.0	สำหรับระบบปฏิบัติการ Windows 3.0
SPSS for Windows version 7.5, 8.0, 9.0	สำหรับระบบปฏิบัติการ Windows 95, 98
SPSS for Windows version 10	สำหรับระบบปฏิบัติการ Windows 2000

โปรแกรม SPSS for Windows version 10 สามารถนำข้อมูล SPSS หรือ ข้อมูลโปรแกรมเดิมที่สร้างมาจาก SPSS version 3.0 – 9.0 ทั้งในระบบ DOS และ ระบบปฏิบัติการ Windows กลับมาใช้ได้ และสามารถรับข้อ มูลที่สร้างจากโปรแกรมประเภทต่าง ๆ ได้เช่น Excel MATHCAD Microsoft Word ฯลฯ นอกจากนี้ โปรแกรม SPSS for Windows ยังสามารถบันทึกคำสั่งที่เกิดจากขั้นตอนการทำงานตามลำดับต่าง ๆ จากการใช้เมาส์เลือก เมนูของโปรแกรมที่มีอยู่มาบันทึกเป็น ชุดคำสั่ง (Command Language) เพื่อประโยชน์ในการเรียกคำสั่งเหล่า นี้มาใช้ได้อีกในครั้งต่อ ๆ ไปภายหลัง ผู้ที่เคยใช้โปรแกรมอื่น ๆ ที่ทำงานบน Window สามารถเรียนรู้การใช้งาน โปรแกรม SPSS for Windows version 10 ได้อย่างรวดเร็ว และสามารถนำคุณสมบัติของ Window มาใช้ได้ อย่างเต็มที่ เช่น copy cut paste การย้าย การคัดลอก การพิมพ์ การแลกเปลี่ยนข้อมูลระหว่างโปรแกรม ฯลฯ

1.1 คอมพิวเตอร์ที่สามารถทำงานกับโปรแกรม SPSS for Windows

ความต้องการของเครื่องคอมพิวเตอร์ฮาร์ดแวร์และซอฟท์แวร์ที่สามารถนำโปรแกรม SPSS for Windows ไป ใช้ได้ควรมีคุณสมบัติอย่างต่ำดังต่อไปนี้

- 🗅 เครื่องคอมพิวเตอร์ IBM PC หรือ IBM Compatible ที่ใช้ Windows 95, 98, 2000
- หน่วยความจำRAM อย่างน้อย 16 Megabyte
- Hard disk มีที่ว่างอย่างน้อย 55 Mb
- 🛛 จอภาพ (Monitor) ต้องสามารถแสดงผลทางด้านกราฟฟิกได้
- โปรแกรมระบบปฏิบัติการ Microsoft Windows 95, 98 หรือ Windows 2000
- โปรแกรม SPSS for Windows version 10

เพื่อความสะดวกในการทำงานและการเชื่อมโยงข้อมูลควรจะต้องมี Excel, Microsoft Word, Mathcad

1.2 ความสามารถของโปรแกรม SPSS for Windows

1.2.1 ความสามารถในการวิเคราะห์ข้อมูล

้เป็นความสามารถที่จะทำการวิเคราะห์ข้อมูลด้วยวิธีการทางสถิติดังต่อไปนี้

1. การคำนวณค่าสถิติเบื้องต้น (Descriptive Statistics) สามารถคำนวณค่าสถิติพื้นฐานทั่วๆ ไป เช่น ค่า เฉลี่ย(Mean) มัธยฐาน(Median) ฐานนิยม(Mode) พิสัย(Range) ความแปรปรวน(Variance) ส่วนเบี่ยงเบน มาตรฐาน(Standard deviation) ๆลๆ

2. การแจกแจงความถี่ (Frequency Distributions) สามารถแจกแจงค่าของตัวแปรตามจำนวนที่นับได้ทั้ง แบบทางเดียวและแบบหลายทาง (Crosstabs) พร้อมทั้งแสดงค่าสถิติที่เกี่ยวข้อง เช่น ค่าเฉลี่ย(Mean) มัธย ฐาน(Median) ฐานนิยม(Mode) พิสัย(Range) ความแปรปรวน(Variance) ส่วนเบี่ยงเบนมาตรฐาน(Standard deviation) เปอร์เซ็นต์ไทล์ (Percentiles) กราฟแท่งหรือค่าสถิติที่เกี่ยวข้องกับการทดสอบทางสถิติ เช่น Chi-Squares, Phi

 3. การเปรียบเทียบค่าเฉลี่ย (Mean Groups Comparison) สามารถเปรียบเทียบและทดสอบค่าเฉลี่ย ระหว่างกลุ่ม 2 กลุ่มตัวอย่างโดยค่าสถิติ t (Student't) และสำหรับหลายกลุ่มตัวอย่างโดยค่าสถิติ F ด้วยการ วิเคราะห์ความแปรปรวน (Analysis of Variance : ANOVA) ทั้งแบบทางเดียวและแบบหลายทาง

4. การหาความสัมพันธ์ระหว่างตัวแปร (Correlation) สามารถคำนวณหาค่าสัมประสิทธิ์สหสัมพันธ์ระหว่าง ตัวแปรแบบต่าง ๆ เช่น Pearson, Kendall, Spearman

5. การวิเคราะห์การถดถอย (Regression Analysis) สามารถหาความสัมพันธ์เพื่อการพยากรณ์แบบการถด ถอยเชิงเส้น (Linear Regression Analysis) ทั้งชนิด 1 ตัวแปรอิสระ และ ตัวแปรอิสระมากกว่า 1 ตัว และ สามารถดูรูปแบบความสัมพันธ์ในลักษณะอื่นที่ไม่ใช่เส้นตรง เช่น Linear, Quadratic, Logarithmic ฯลฯ

6. การทดสอบแบบนอนพาราเมตริก (Nonparametric Test) สามารถวิเคราะห์ข้อมูลโดยวิธีของนอนพารา เมตริกสำหรับการทดสอบแบบต่าง ๆ เช่น Sign Test, Wilcoxon, Friedman, Kolmokorov – Smirnov ฯลฯ

7. การวิเคราะห์ข้อมูลสำหรับคำตอบแบบหลายคำตอบ (Multiple Response Analysis) สามารถวิเคราะห์ ข้อมูลจากแบบสอบถามที่มีตัวเลือกมาให้และผู้ตอบสามารถตอบได้มากกว่า 1 คำตอบ

1.2.2 ความสามารถในการนำเสนอข้อมูลด้วยกราฟ

โปรแกรม SPSS for Windows สามารถนำเสนอข้อมูลในรูปของกราฟหรือตารางแบบต่างๆ เช่น กราฟแท่ง (Bar, Histogram) กราฟเส้น (Line) กราฟวงกลม (Pie) และกราฟชนิดอื่นๆ

1.2.3 ความสามารถในการทำงานด้านอื่น ๆ

ในการใช้งานโปรแกรม SPSS นอกจากจะทำการวิเคราะห์ข้อมูลด้วยวิธีการทางสถิติแล้วผู้ใช้อาจจะมีการดำเนิน การกับข้อมูลในลักษณะต่างๆ เช่น สร้างตัวแปรเพิ่ม เรียงลำดับข้อมูล คัดเลือกข้อมูลมาทำการวิเคราะห์ ฯลฯ ซึ่งสามารถแบ่งเป็นประเภทต่างๆ ได้ดังนี้

1. การเปลี่ยนรูปแบบข้อมูล (Data Transformation) โดยการเปลี่ยนค่าใหม่ จัดค่าใหม่ หรือสร้างตัวแปร ใหม่ด้วยฟังก์ชันพิเศษต่าง ๆ ทางคณิตศาสตร์ที่มีในโปรแกรม SPSS

2. การจัดกลุ่มตัวแปร (Define Set of Variables) โดยการเลือกตัวแปร หรือจัดกลุ่มตัวแปรไว้เป็นชุดต่างๆ เพื่อนำมาวิเคราะห์เป็นชุดๆ ในภายหลัง

3. การเลือกข้อมูล (Select Case) โดยการกำหนดเงื่อนไขต่าง ๆ หรือการเลือกข้อมูลแบบสุ่มตัวอย่าง

4. การสร้างข้อมูลแบบอนุกรมเวลา (Create Time Series) โดยการสร้างข้อมูลที่เกิดขึ้นตามเวลา เช่น วัน เดือน ไตรมาส ฯลฯ สำหรับการวิเคราะห์แบบอนุกรมเวลา

5. การดำเนินการกับข้อมูลในลักษณะอื่น ๆ โดยการเรียงลำดับข้อมูล การให้น้ำหนักหรือความสำคัญแก่ชุด ข้อมูล การสลับที่ข้อมูลระหว่างแถวและคอลัมน์

6. การจัดการกับแฟ้มข้อมูล โดยการรวมแฟ้มข้อมูลตั้งแต่ 2 แฟ้มเช่น รวมตัวแปร รวมชุดข้อมูล ฯลฯ

1.2.4. ความสามารถในการเชื่อมโยงข้อมูลกับโปรแกรมอื่น ๆ

การทำงานของโปรแกรม SPSS for Windows version 10 เป็นการทำงานภายใต้ระบบปฏิบัติ การ Windows ดังนั้นเราสามารถใช้ความสามารถ ขั้นพื้นฐาน เช่น การเลือกบริเวณเพื่อ copy cut paste าลา แล้วนำข้อมูลนั้นไปใช้กับโปรแกรม อื่น ๆ เช่น Excel, Microsoft Word, Mathcad หรือนำข้อมูลจาก Excel, Microsoft Word, Mathcad มาใช้กับ SPSS for Windows ตัวอย่างเช่น ข้อมูลในรูปแบบ column สามารถ นำมาเป็นข้อมูลในรูปแบบตัวแปรของ SPSS for Windows ได้ หรือข้อมูลที่วิเคราะห์ได้จาก SPSS for Windows สามารถ copy รูปแบบตารางไป เป็นตารางของ Microsoft Word ได้ทันที

หมายเหตุ การคัดลอกข้อมูล ตารางแสดงผล และอื่น ๆ ระหว่าง SPSS, Excel, Microsoft Word ดูได้ที่ ภาคผนวก 2. และ ภาคผนวก 3.

1.3 การเข้าสู่การทำงานของโปรแกรม SPSS for Windows

สำหรับคอมพิวเตอร์ที่ติดตั้งโปรแกรม SPSS for Windows เสร็จเรียบร้อยแล้ว การเข้าสู่การทำงานมี ขั้นตอนดังนี้

ขั้นที่ 4. คลิกที่ SPSS 10.0 for Windows จะได้ Logo ของ SPSS 10.0 for Windows

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

ต่อจากภาพของ LOGO จะมีเมนูเริ่มต้นให้เราเลือกทำงานตามความเหมาะสมเช่น Run the tutorial เปิดแฟ้ม ตามที่กำหนด พิมพ์ข้อมูล ฯลฯ ขณะนี้เพื่อความสะดวกและเข้าใจได้โดยง่ายขอให้คลิก Cancel

SPSS for V	Vindows X
_ What wo	uld you like to do?
LESSON 1	C Run the t <u>u</u> torial
	⊂ <u>T</u> ype in data
	C <u>B</u> un an existing query
)*	C Create new guery using Database Wizard
SPSS L	Open an existing data source
	More Files C:\Spss10\data for spss\example4.sav C:\data for book spss90\example4.sav
srss stal	C Open <u>another type of file</u>
	More Files
 	now this dialog in the future
	OK Cancel

จะเข้าสู่การทำงานของ SPSS Data Editor

🎬 Untitled - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	<u>inalyze G</u> raph	ns <u>U</u> tilities <u>W</u>	(indow <u>H</u> elp				
2	ビー								
21 :									
	var	var	var	var	var	var	var		
1									
2									
3									
4									
5									
Data View / Variable View /									
	SPSS Processor is ready								

ขณะนี้เราพร้อมที่จะทำงานกับ SPSS 10.0 for Windows แล้ว

1.4 WINDOW ของการทำงานแบบต่าง ๆ ของ SPSS for Windows

การทำงานของโปรแกรม SPSS มีการจำแนกส่วนของ WINDOW ที่สำคัญดังนี้

1. SPSS Data Editor

SPSS Data Editor เป็น Window สำหรับเก็บแฟ้มข้อมูลที่จะนำมาวิเคราะห์ด้วยโปรแกรม SPSS ซึ่งผู้ใช้ อาจจะสร้างแฟ้มข้อมูลใหม่ หรือนำข้อมูลที่สร้างจากโปรแกรมอื่นๆ เรียกเข้ามาไว้ใน Data Editor แล้วใช้งาน ต่อไป Data Editor จะเปิดได้ครั้งละ 1 Window เท่านั้น และมีการแสดงลักษณะของแฟ้มข้อมูล 2 แบบคือ Data View และ Variable View

ข้อควรทราบเกี่ยวกับ SPSS Data Editor ในส่วนการทำงานของ Data View

	4 4		จ	ਸ਼ੁੱਧ			
หมายเลข 1	ช้อชนัดของ	Window	lน SPSS	ขณะนคอ	SPSS	Data	Editor

- หมายเลข 2 ชื่อแฟ้มข้อมูลที่กำลังใช้งาน หากยังไม่ได้ตั้งชื่อ SPSS จะใช้ชื่อว่า Untitled
- หมายเลข 3 แถบเมนูของ SPSS Data Editor
- หมายเลข 4 ชื่อตัวแปร x ของข้อมูล
- หมายเลข 5 ลำดับที่ของค่าสังเกตในแฟ้มข้อมูล
- หมายเลข 6 ค่าของข้อมูล ค่าสังเกตตัวที่ 3 ของตัวแปร x
- หมายเลข 7 เป็นการเลือกทำงานในส่วนของ Data View

Data View เป็นส่วนทำงานเกี่ยวกับข้อมูลเช่นการวิเคราะห์ข้อมูลเช่น การใส่ค่าของข้อมูล

หมายเลข 8 เป็นการเลือกทำงานในส่วนของ Variable View

Variable View เป็น Window ที่ทำงานเกี่ยวกับการกำหนดค่าต่าง ๆ ให้กับตัวแปร

หมายเลข 9 แสดงตำแหน่งของ ค่าสังเกต และ ตัวแปรที่ cell pointer กำลังทำงาน

ข้อควรทราบเกี่ยวกับ SPSS Data Editor ในส่วนของการทำงาน Variable View

🛗 L	🛗 Untitled - SPSS Data Editor										
<u>F</u> ile	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
Ē	2611 · 162 · 161										
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
	1	х	Numeric	8	2		None	None	8	Right	Scale
	2										
€]	Variable View Variable View										
	SPSS Processor is ready										

Variable Type

ความหมายของแต่ละ colume

- Name กำหนดชื่อตัวแปร
- Type กำหนดค่าตัวแปรเป็น Numeric, String
- Width กำหนดจำนวนหลักของตัวเลข
 - หรือจำนวน character ในการแสดงผล
- Decimals กำหนดตำแหน่งทศนิยม
- Label กำหนดคำอธิบายค่าตัวแปร
- Values กำหนดค่าให้กับ Value Label

<u>Numeric</u> <u>Comma</u> <u>Dot</u> <u>Scientific notation</u> Date Dollar Custom currency String	<u>W</u> idth: <mark>8</mark> Decimal <u>P</u> laces: 2	OK Cancel Help
Value Labels Value Labels Value: 2.00 Value Label Female Add Change Remove		CK Cancel Help

Missing	กำหนดค่าสำหรับข้อมูลที่ไม่สมบูรณ์	
Columns	กำหนดความกว้างของ columns ในการแสดงผลของ Data View	Alig Right
Align	กำหนดการแสดงค่าว่าต้องการ ชิดซ้าย ชิดขวา หรือ กึ่งกลาง	Left Right Center
Measure	กำหนดลักษณะข้อมูลว่าเป็นข้อมูลเชิงปริมาณ(Scale) หรือ ข้อมูลเชิงคุณภาพ(Ordinal)
ข้อควรจำ	การเลือกทำกับ Data View หรือ Variable View ให้คลิกที่มุมล่างด้านซ้าย	Measure Scale -
	a View A Variable View	📶 Ordina 💦 Nomin

SPSS Processor is ready

? ×

2. SPSS Viewer

SPSS Viewer เป็น Window สำหรับเก็บบันทึกผลลัพธ์ของการวิเคราะห์ข้อมูล ที่เกิดขึ้นจากการใช้งาน โปรแกรม SPSS โดยจะบันทึกผลลัพธ์ที่เกิดขึ้นทุกครั้งที่มีการวิเคราะห์ข้อมูล และผลลัพธ์จะถูกบันทึกอย่างต่อ เนื่องจนกว่าจะมีการสั่งให้บันทึกผลลัพธ์ใน Window Viewer อื่น ผู้ใช้สามารถเปิด Window Viewer ได้มาก กว่า 1 Window Viewer ถ้ามีการเปิด Window Viewer มากกว่า 1 Window จะต้องมีการกำหนด Window Viewer ให้ทำหน้าที่เก็บผลลัพธ์ที่เกิดจากการประมวลผล

ข้อควรทราบเกี่ยวกับ SPSS Viewer

- หมายเลข 1 ชื่อชนิดของ Window ใน SPSS ขณะนี้คือ SPSS Viewer
- หมายเลข 2 ชื่อแฟ้ม Output File ที่กำลังใช้งาน หากยังไม่ได้ตั้งชื่อจะใช้ชื่อว่า Output1
- หมายเลข 3 แถบเมนูของ SPSS Viewer
- หมายเลข 4 แผนภูมิต้นไม้แสดงลำดับและตำแหน่งของการแสดงผล
- หมายเลข 5 ผลของการวิเคราะห์ข้อมูล
- 3. SPSS Syntax Editor

SPSS Syntax Editor เป็น Window สำหรับเก็บบันทึกคำสั่งที่ได้จากการใช้งานโปรแกรม SPSS ตามขั้น ตอนต่าง ๆ ที่ทำของผู้ใช้ขณะนั้น (โดยการคลิกที่ Paste) ให้ผู้ใช้นำคำสั่งที่เกิดขึ้นนี้มาใช้ได้อีกโดยไม่ต้องสั่ง การทำงานแบบเก่าซ้ำอีก หรือผู้ใช้สามารถเปลี่ยนแปลงแก้ไขใหม่ได้

หมายเหตุ อ่านเนื้อหาเพิ่มเติมเกี่ยวกับ SPSS Syntax ได้ที่ภาคผนวกที่ 4.

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

4. SPSS Chart Editor

SPSS Chart Editor เป็น Window ของการสร้าง หรือแก้ไขกราฟ เพื่อให้ผู้ใช้เปลี่ยนแปลง แก้ไข กราฟที่ สร้างขึ้นมา เช่น เปลี่ยนรูปแบบตัวอักษร เปลี่ยนสี ฯลฯ

1.5 สรุปเนื้อหาของคำสั่งและขั้นตอนการทำงานโดยย่อของ SPSS for Windows

1. ประเภทของ Windows ในโปรแกรม SPSS for Windows

1.1 SPSS Data Editor

เป็น Window ที่เก็บแฟ้มข้อมูลที่จะนำมาวิเคราะห์ด้วยโปรแกรม SPSS

1.2 SPSS Viewer

เป็น Window ที่เก็บบันทึกรวบรวมผลลัพธ์ที่เกิดขึ้นจากการใช้งานโปรแกรม SPSS สามารถเปิดได้ครั้งละ หลาย ๆ Window พร้อม ๆ กัน

1.3 SPSS Syntax Editor

เป็น Window ที่เก็บบันทึกคำสั่งที่ได้จากการใช้งานโปรแกรม SPSS ตามขั้นตอนต่างๆ มารวบรวมไว้ เพื่อ ประโยชน์ในการนำคำสั่งมาใช้ภายหลัง

1.4 SPSS Chart Editor

เป็น Window ที่เก็บบันทึกรวบรวมกราฟ ต่างๆ ทั้งหมดที่เกิดขึ้นจากการโปรแกรม SPSS และเป็น Window ของกราฟ มีเมนูสำหรับให้ผู้ใช้เปลี่ยนแปลง แก้ไขรายละเอียดต่างๆ

1.5 Help Window

เป็น Window ที่เก็บข้อมูลรายละเอียด คำสั่ง คำอธิบาย ตัวอย่างการใช้งานต่าง ๆ ของโปรแกรม SPSS

🛅 Untitled - SPSS Data Editor <u>F</u>ile <u>E</u>dit View Data Transform Analyze Graphs Utilities Window Help File Edit View Transform Data <u>N</u>ew . Ctrl+Z Undo Status Bar D<u>e</u>fine Dates. Compute.. Oper . <u>T</u>oolbars. Insert <u>V</u>ariable Random Number Seed... Open Data<u>b</u>ase Ctrl+X Cut Insert Case C<u>o</u>unt.. <u>R</u>ead Text Data Fonts.. <u>С</u>ору Ctrl+C <u>R</u>ecode Go to Case. J Grid Lines Ctrl+S <u>P</u>aste Ctrl+V Save Categorize Variables... Value Labels Sort Cases... Save <u>A</u>s. aste Rank Cases.. Transpose... Clear Del Variables Ctrl+T Automatic Recode.. Display Data Info... Merge Files Create Time Series.. Apply Data Dictionary. <u>F</u>ind.. Ctrl+F Aggregate.. Replace Missing <u>V</u>alues. <u>C</u>ache Data.. Ort<u>h</u>ogonal Design Optio<u>n</u>s. Run Pending <u>T</u>ransforms Print. Ctrl+P Split File Print Pre<u>v</u>iew Select Cases. Weight Cases. Switch Server... Recently Used Data Recently Used Files . ใช้เปิดแฟ้มข้อมูล บันทึกข้อมูล พิมพ์ข้อมูล าลา File Exit ใช้ย้ายข้อมูล คัดลอกข้อมูล ค้นหาข้อมูล ลบข้อมูล Edit

View ปรับรูปแบบและขนาดตัวอักษร แสดง Value Labels, Toolbars, เลือก Data View, Variable View
 Data ใช้จัดการกับข้อมูลเช่น สร้างตัวแปร แก้ไข เรียงลำดับข้อมูล รวมแฟ้ม แทรกตัวแปร
 Transformใช้สร้างตัวแปรเพิ่ม หรือ จัดค่าตัวแปรใหม่ สร้างตัวแปรใหม่จากตัวแปรเก่า

Window ใช้จัดเรียง Windows หรือเลือก Window ของ SPSS ขึ้นมาใช้งาน

Help ใช้ขอคำอธิบายการใช้โปรแกรม SPSS for Windows

10

2. Menu ของโปรแกรม SPSS Data Editor

3. การจัดเตรียมข้อมูลโดย SPSS Data Editor

3.1 กำหนดชื่อตัวแปรและรายละเอียดของตัวแปร

• เลือก SPSS Data Editor และ คลิกที่ Variable View หรือเลือกคำสั่ง View / Variables

~	I 🕘 🛒	50		- <u> </u>		▦∣◍ ҄҄҄҄҄	<u></u>			
	Name	Туре	Wiđth	Decimals	Label	Values	Missing	Columns	Align	Measure
1	iđ	Numeric	3	0		None	None	8	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Ordinal
3	age	Numeric	2	0		None	99	8	Right	Scale

<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u>elp

- กำหนดชื่อตัวแปรในช่อง Name
- ถ้าต้องการเปลี่ยนแปลงรายละเอียดต่าง ๆ ของตัวแปรให้กำหนดในแต่ละช่อง ซึ่งมีความหมายดังนี้
 - Type กำหนดค่าตัวแปรเป็น Numeric, String
 - Width กำหนดจำนวนหลักของตัวเลข หรือจำนวน character ในการแสดงผล
 - Decimals กำหนดตำแหน่งทศนิยม
 - Label กำหนดคำอธิบายค่าตัวแปร
 - Values กำหนดค่าให้กับ Value Label
 - Missing กำหนดค่าสำหรับข้อมูลที่ไม่สมบูรณ์
 - Columns กำหนดความกว้างของ columns ในการแสดงผลของ Data View
 - Align กำหนดการแสดงค่าว่าต้องการ ชิดซ้าย ชิดขวา หรือ กึ่งกลาง
 - Measure กำหนดลักษณะข้อมูลว่าเป็นข้อมูลเชิงปริมาณ(Scale) หรือข้อมูลเชิงคุณภาพ(Ordinal)

3.2 การพิมพ์ข้อมูล

- ใช้แป้น Enter สำหรับการพิมพ์ข้อมูลครั้งละ 1 ตัวแปร
- ใช้แป้น ightarrow
 ightarro
- ใช้แป้น Tab สำหรับการพิมพ์ข้อมูลครั้งละ 1 ชุด (แถว)

3.3 การบันทึกข้อมูล

- File / Save Data สำหรับการบันทึกภายใต้ชื่อเดิม
- File / Save As สำหรับการบันทึกภายใต้ชื่อใหม่
- 3.4 การเรียกใช้ข้อมูลที่บันทึกไว้แล้ว
 - File / Open / Data เลือกหรือพิมพ์ชื่อแฟ้มที่ต้องการ
- 3.5 การพิมพ์ ข้อมูล คำสั่ง หรือ ผลลัพธ์ออกเครื่องพิมพ์
 - เลือก Window ที่ต้องการ (Data Editor, SPSS Viewer, SPSS Syntax)
 - File / Print / OK

- 4. การทำงานที่สำคัญใน SPSS Data Editor
- 4.1 การค้นหาชุดข้อมูลและตัวแปร
- 4.1.1 การค้นหาชุดข้อมูล
 - Data / Go to Case เสร็จแล้วพิมพ์ตำแหน่งของชุดข้อมูลที่ต้องการค้นหา
- 4.1.2 การค้นหาตัวแปร
 - Utilities / Variables และ เลือกตัวแปรที่ต้องการ
- 4.2 การคัดลอก หรือ ย้ายข้อมูล
 - เลือกข้อมูลที่ต้องการคัดลอก หรือ ย้ายข้อมูล เสร็จแล้วเลือกเมนู Edit / Copy หรือ Edit / Cut
 - เลือกเซลล์ซึ่งเป็นตำแหน่งที่ต้องการคัดลอกข้อมูลมาไว้
 - Edit / Paste
- 4.3 การแทรก หรือ ลบชุดข้อมูล
 - 4.3.1 การแทรกชุดข้อมูล
 - คลิกที่หัวแถวที่ต้องการแทรกไว้ (จะแทรกไว้เหนือแถวที่เลือก)
 - Data / Insert Case
 - 4.3.2 การลบชุดข้อมูล
 - คลิกที่หัวแถวหรือกลุ่มของหัวแถว (drag ตามแถว)
 - กด Delete
- 4.4 การแทรก หรือ ลบตัวแปร
 - 4.4.1 การแทรกตัวแปร
 - คลิกที่ชื่อตัวแปรที่ต้องการแทรก (จะแทรกไว้ข้างหน้าตัวแปรที่เลือก)
 - Data / Insert Variable
 - 4.4.2 การลบตัวแปร
 - คลิกที่ชื่อตัวแปร หรือกลุ่มของตัวแปร
 - Edit / Clear (หรือกดแป้น Del)
- 5. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Descriptive Statistics
- 5.1 การแจกแจงความถี่แบบทางเดียว
 - Analyze / Descriptive Statistics / Frequencies
 - เลือกตัวแปรไว้ในกรอบของ Variable(s)
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics, Chart หรือ Format
 - คลิกปุ่ม OK
- 5.2 การคำนวณค่าสถิติเบื้องต้น
 - Analyze / Descriptive Statistics / Descriptives
 - เลือกตัวแปรไว้ในกรอบของ Variable(s)
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options เสร็จแล้วคลิก OK

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

- 5.3 การตรวจสอบข้อมูล
 - Analyze / Descriptive Statistics / Explore
 - เลือกตัวแปรมาไว้ในกรอบของ Dependent List
 - กำหนดรายละเอียดเพิ่มเติมที่ Statistics, Plots, Options
 - คลิกปุ่ม OK
- 5.4 การแจกแจงความถี่ตั้งแต่ 2 ทาง
 - Analyze / Descriptive Statistics / Crosstabs
 - เลือกตัวแปรอย่างน้อย 1 ตัว ที่ต้องการ
 ให้อยู่ด้านแถวไว้ในกรอบของ Row[s]
 - เลือกตัวแปรอย่างน้อย 1 ตัว ที่ต้องการ
 ให้อยู่ด้านหลักไว้ในกรอบของ Column[s]
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics, Cell หรือ Format เสร็จแล้วคลิกปุ่ม OK
- 6. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Compare Means
- 6.1 การคำนวณค่าสถิติเบื้องต้นจำแนกตามกลุ่ม
 - Analyze / Compare Means / Means
 - เลือกตัวแปรไว้ในกรอบของ Dependent List และ Independent List
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options
 - คลิกปุ่ม OK

6.2 การทดสอบค่าเฉลี่ย 1 กลุ่ม

- Analyze / Compare Means / One-Sample T Test
- เลือกตัวแปรไว้ในกรอบของ Test Variable[s]
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options
- คลิกปุ่ม OK
- 6.3 การทดสอบค่าเฉลี่ย 2 กลุ่มที่เป็นอิสระต่อกัน
 - Analyze / Compare Means / Independent-Samples T Test
 - เลือกตัวแปรไว้ในกรอบของ Test Variable[s] และ Grouping Variables
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options
 - คลิกปุ่ม OK
- 6.4 การทดสอบค่าเฉลี่ย 2 กลุ่มที่มีความสัมพันธ์กัน
 - Analyze / Compare Means / Paired-Samples T Test
 - เลือกตัวแปรมาไว้ในกรอบของ Paired Variables
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options เสร็จแล้วคลิกปุ่ม OK

Means.

One-<u>S</u>ample

r 😵 🔊

One-Sample T Test.

Paired-Samples T Test...

ndependent-Samples <u>T</u>Test.

Means

Independent-Samples <u>T</u> Test.,

nalyze <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

<u>Analyze G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

Reports

Correlate

Reports

<u>C</u>orrelate

D<u>e</u>scriptive Statistics Compare <u>M</u>eans

General Linear Model

<u>Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

Correlate

Reports

Descriptive Statistics

<u>G</u>eneral Linear Model Correlate

Compare <u>M</u>eans

Regression

Descriptive Stat

Compare Means

General Linear Model

Descriptive Sta

Compare <u>M</u>eans <u>G</u>eneral Linear Model • 🗖 🖬 🖬

Frequencies..

Descriptives..

Explore

🕨 🗖 🖬 🖬

Explore.

Crosstab

<u>C</u>rosstabs.

Frequencies...

Descriptives...

Analyze Graphs Utilities Window Help

ଞାଦ୍ଧ

<u>M</u>ultivariate.

Benorts

D<u>e</u>scriptive Statistics Compare <u>M</u>eans

<u>G</u>eneral Linear M Correlate

<u>Analyze</u> <u>Graphs</u> <u>Utilities</u>

Descriptive Statistics

Analyze Graphs Utilities Window Help

Compare <u>M</u>eans <u>G</u>eneral Linear Mode

Reports

<u>C</u>orrelate

Reports

Correlate

<u>R</u>egressio

Loglinea

Regression

Descriptive Statistics

General Linear Model

Compare Means

6.5 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

- Analyze / Compare Means / One-Way ANOVA
- เลือกตัวแปรอย่างน้อย 2 ตัวไว้ในกรอบของ Dependent List และ Factor(s)
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Contrasts, Options
- การทดสอบหาคู่ที่ค่าเฉลี่ยต่างกัน Post Hoc เสร็จแล้วคลิก OK
- 6.6 การวิเคราะห์ความแปรปรวนแบบจำแนกหลายทาง
 - Analyze / General Linear Model / Univariate
 - เลือกตัวแปรอย่างน้อย 2 ตัวไว้ในกรอบของ Dependent Variables และ Fixed Factor
 - กำหนดรายละเอียดเพิ่มเติมที่กรอบของ Model, Covariate[s] หรือ Options
 - กำหนดการทดสอบหาคู่ที่ค่าเฉลี่ยต่างกัน Post Hoc เสร็จแล้วคลิกปุ่ม OK
- 7. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Correlate หรือ Regression

7.1 การหาความสัมพันธ์ของข้อมูลเชิงปริมาณ

- Analyze / Correlate / Bivariate
- เลือกตัวแปรไว้ในกรอบของ Variables
- เลือกวิธีการวิเคราะห์ทางสถิติที่จะใช้ในส่วนของ Correlation Coefficients
- เลือกวิธีการทดสอบในส่วนของ Test of Significance
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options เสร็จแล้วคลิกปุ่ม OK

7.2 การหาความสัมพันธ์บางส่วนของข้อมูลเชิงปริมาณ

- Analyze / Correlate / Partial
- เลือกตัวแปรไว้ในกรอบของ Variables และ Controlling for
- เลือกวิธีการทดสอบในส่วนของ Test of Significance
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options
- คลิกปุ่ม OK
- 7.3 การพยากรณ์โดยวิธีวิเคราะห์การถดถอย
 - Analyze / Regression / Linear
 - เลือกตัวแปรตามไว้ในกรอบของ Dependent
 - เลือกตัวแปรอิสระอย่างน้อย 1 ตัวไว้ในกรอบของ Independent[s]
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม WLS, Statistics, Plot, Save, Options
 - เสร็จแล้วคลิกปุ่ม OK
- 7.4 การเลือกรูปแบบของการพยากรณ์
 - Analyze / Regression / Curve Estimation
 - เลือกตัวแปรตามไว้ในกรอบของ Dependent
 - เลือกตัวแปรอิสระไว้ในกรอบของ Independent
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม WLS, Statistics, Plot, Save, Options เสร็จแล้วคลิกปุ่ม OK

Window Help

⊗|⊘

Bivariate.

Partial.

ୖୖୖୖୖୄୄୄ୲୰

bonus

Curve Estimation.

rade

•

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

8. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Nonparametric Tests

การทดสอบอัตราส่วน 8.1

- Analyze / Nonparametric Tests / Chi–Square
- เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variable List
- กำหนดค่าความถี่ใหม่ที่ต้องการไว้ในส่วนของ Expected Values •
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options •
- คลิกปุ่ม OK •
- การทดสอบสัดส่วน 8.2
 - Analyze / Nonparametric Tests / Binomial •
 - เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variables List
 - กำหนดค่าสัดส่วนใหม่ที่ต้องการไว้ในส่วนของ Test Proportion •
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options •
 - คลิกปุ่ม OK •
- การทดสอบความเป็นตัวอย่างสุ่ม 8.3
 - Analyze / Nonparametric Tests / Runs •
 - เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variable List •
 - เลือกวิธีการแบ่งกลุ่มข้อมูลเพิ่มอีกในส่วนของ Cut Point •
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options •
 - คลิกปุ่ม OK •

8.4 การทดสอบรูปแบบการแจกแจงของข้อมูล

- Analyze / Nonparametric Tests / 1-Sample K-S
- เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variable List
- เลือกวิธีการแบ่งกลุ่มข้อมูลเพิ่มอีกในส่วนของ Cut Point •
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options •
- คลิกปุ่ม OK •
- การทดสอบสำหรับข้อมูล 2 กลุ่มที่เป็นอิสระต่อกัน 8.5
 - Analyze / Nonparametric Tests / 2 Independents Samples •
 - เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variable List •
 - เลือกตัวแปรที่ต้องการเป็นตัวแบ่งกล่มไว้ในกรอบของ Grouping Variable •
 - เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type •
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options •
 - คลิกปุ่ม OK •
- การทดสอบสำหรับข้อมูล k กลุ่มที่เป็นอิสระต่อกัน 8.6
 - Analyze / Nonparametric Tests / K Independent Samples •

<u>N</u> onparametric Tests	Þ	<u>C</u> hi-Square
Tjme Series	•	<u>B</u> inomial
<u>S</u> urvival	۲	<u> R</u> uns
Multiple Response	۲	<u>1</u> -Sample K-S
Missing <u>V</u> alue Analysis		2 Independent Samples
	-	K Independent Samples

<u>N</u>on

<u>N</u> onparametric Tests	Þ	<u>C</u> hi-Square
Time Series	•	<u>B</u> inomial
<u>S</u> urvival	►	<u> R</u> uns
Multiple Response	⊁	<u>1</u> -Sample K-S
Missing <u>V</u> alue Analysis		2 Independent Samples
•	-	K Independent Samples

- เลือกตัวแปรที่ต้องการทดสอบไว้ในกรอบของ Test Variables List
- เลือกตัวแปรที่ต้องการเป็นตัวแบ่งกลุ่มไว้ในกรอบของ Grouping Variable
- เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options
- คลิกปุ่ม OK
- 8.7 การทดสอบสำหรับข้อมูล 2 กลุ่มที่มีความสัมพันธ์
 - Analyze / Nonparametric Tests / 2 Related Samples
 - เลือกตัวแปรที่ต้องการทดสอบ 2 ตัวไว้ในกรอบของ Test Variable List
 - เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options เสร็จแล้วคลิกปุ่ม OK
- 8.8 การทดสอบสำหรับข้อมูล k กลุ่มที่มีความสัมพันธ์
 - Analyze / Nonparametric Tests / K Related Samples
 - เลือกตัวแปรอย่างน้อย 2 ตัวแปรไว้ในกรอบของ Test Variable List
 - เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics
 - คลิกปุ่ม OK
- 9. การปรับปรุงข้อมูลด้วยเมนู Transform
- 9.1 การเปลี่ยนค่าตัวแปรไว้ในตัวแปรเดิม
 - Transform / Recode / Into Same Variables
 - เลือกตัวแปรที่ต้องการเปลี่ยนค่าไว้ในกรอบของ Variables
 - คลิกปุ่ม Old and New Values
 - ♦ กำหนดค่าที่ต้องการเปลี่ยนในกรอบของ Old Value
 - ♦ กำหนดค่าใหม่ที่จะแทนค่าเดิมในกรอบของ New Value
 - คลิกปุ่ม Continue
 - ถ้าต้องเปลี่ยนข้อมูลบางชุดให้เลือกที่ปุ่ม If
 - คลิกปุ่ม OK
- 9.2 การเปลี่ยนค่าตัวแปรไว้ในตัวแปรใหม่
 - Transform / Recode / Into Different Variables
 - เลือกตัวแปรที่ต้องการเปลี่ยนค่าไว้ในกรอบของ Variables
 - กำหนดชื่อตัวแปรใหม่ในกรอบของ Output Variable
 - กำหนดข้อความขยายชื่อตัวแปรไว้ในกรอบของ Label / เลือก Change
 - คลิกปุ่ม Old and New Values
 - ♦ กำหนดค่าที่ต้องการเปลี่ยนในกรอบของ Old Value

<u>T</u> ransform <u>A</u> nalyze <u>G</u> rap	hs <u>U</u> tilities <u>W</u> indow <u>H</u> elp
<u>C</u> ompute	
Random Number Seed.	
C <u>o</u> unt	1
<u>R</u> ecode	 Into <u>S</u>ame Variables
Categorize Variables	Into Different Variables

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

- ♦ กำหนดค่าใหม่ที่จะแทนค่าเดิมในกรอบของ New Value
- คลิกปุ่ม Continue
- ถ้าต้องเปลี่ยนข้อมูลบางชุดให้เลือกที่ปุ่ม If
- คลิกปุ่ม OK
- 9.3 การสร้างตัวแปรใหม่จากการคำนวณและเงื่อนไข
 - Transform / Compute
 - กำหนดชื่อตัวแปรใหม่ในกรอบของ Target Variable

10. การเปิด Windows หลายแบบพร้อมกัน

เมื่อเริ่มใช้โปรแกรม SPSS ครั้งแรกของการเรียกโปรแกรมขึ้นมาจะปรากฏ Window SPSS Data Editor เมื่อทำการวิเคราะห์ข้อมูลจะเกิด Window SPSS Viewer ถ้าต้องการเปิด Window อื่นๆ เพิ่มเติม สามารถทำได้ดังนี้

คลิกที่เมนู File และเลือกรายการ New หรือ Open จะมีชนิดของ Window ให้เลือก 5 ชนิดคือ

- ♦ Data สำหรับเปิดแฟ้มข้อมูลของ SPSS Data Editor
- Syntax สำหรับเปิดโปรแกรม Syntax ของ SPSS Syntax Editor
- ♦ Output สำหรับเปิดผลการวิเคราะห์ข้อมูลของ SPSS Viewer
- ♦ Draft Output สำหรับเปิด SPSS Viewer ที่เป็นข้อความ
- ♦ Script สำหรับเปิด SPSS for Windows ที่จัดการเกี่ยวกับโปรแกรม
- คลิกที่ชนิดที่ต้องการ

<u>Transform A</u>nalyze <u>G</u>raphs <u>U</u>

Random Number Seed..

ompute

11. การบันทึกข้อมูลใน Windows

ผู้ใช้สามารถบันทึกข้อมูลใน Window ที่ถูกเปิดขึ้นมาใช้งาน โดยบันทึกไว้ในรูปของแฟ้ม ซึ่งโปรแกรม SPSS ได้จัดแบ่งประเภทของแฟ้มดังนี้

ชนิดแฟ้มของ Window	ส่วนขยายของแฟ้ม
SPSS Data Editor	*.SAV
SPSS Viewer	*.SPO
SPSS Syntax Editor	*.SPS
SPSS Script window	*.SBS
SPSS Chart Editor	*.SCT

การบันทึกข้อมูลที่อยู่ใน Window ใด ๆ สามารถดำเนินการได้ดังนี้

• เลือก Window ที่จะบันทึกข้อมูลโดยการใช้เมาส์คลิกบริเวณใด ๆ ใน Window ที่ต้องการจะปรากฏแถบ แสงที่ชื่อ Window นั้น เปิดเมนู File และเลือกรายการใดรายการหนึ่ง

- ◆ Save ชื่อ และ ชนิดของแฟ้มข้อมูลสำหรับบันทึกภายใต้ชื่อแฟ้มเดิมที่เคยบันทึกไว้แล้ว
- ◆ Save as สำหรับการบันทึกภายใต้ชื่อแฟ้มใหม่
- กำหนดชื่อ ตำแหน่งไดรฟ์ และ ประเภทของแฟ้ม
- คลิกปุ่ม Save
- 12. การเปิดแฟ้มข้อมูล

แฟ้มข้อมูลของ Window ที่ถูกบันทึกไว้แล้วเมื่อต้องการนำมาใช้ต้องทำดังนี้

• คลิกเมนู File และเลือกรายการ Open จะปรากฏรายการให้เลือกตามชนิดของ Window ต่าง ๆ ใน ความหมายของต่อไปนี้

- ♦ Data สำหรับเปิด SPSS Data Editor
- ♦ Syntax สำหรับเปิด SPSS Syntax Editor
- ♦ Output สำหรับเปิด SPSS Viewer
- ♦ Draft Output สำหรับเปิด SPSS Viewer ที่เป็นข้อความ
- ♦ Script สำหรับเปิด SPSS for Windows ที่จัดการเกี่ยวกับโปรแกรม
- พิมพ์ชื่อที่ต้องการ แล้วคลิก Open

13. การบันทึกข้อมูล

การบันทึกข้อมูลใน Window มีขั้นตอนที่สำคัญดังนี้

- เลือกชนิด Window ที่ต้องการบันทึกข้อมูลเช่น Data, Output, Syntax, ...
- เลือกเมนู File
- เลือกรายการ Save หรือ Save as
- กำหนดชื่อแฟ้ม และตำแหน่งที่จะบันทึกตามความต้องการ
- คลิกปุ่ม Save

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

1.6 Icon บนเมนูบาร์กับการทำงานของ SPSS for Windows

SPSS Data Editor

🛗 Untitled - SPSS Data Editor	
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze (<u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp
	M <u>4</u> = = = = = = = = = =
1 2 3 4 5 6 7 8	9 10 11 12 13 14 15 16
1. เปิดแฟ้มข้อมูล	2. Save ข้อมูล
3. พิมพ์ข้อมูล	 ดูบันทึกคำสั่งล่าสุดที่วิเคราะห์ข้อมูล
5. Undo	6. ไป Windows chart Editor
7. ไปหาค่าสังเกตที่ต้องการ	 แสดงรายละเอียดของตัวแปร
9. คันหาข้อมูล	10. แทรกค่าสังเกต
11. แทรกตัวแปร	12. แยกแฟ้มเป็น 2 ส่วน
13. กำหนดตัวแปรน้ำหนัก	14. Select Case
15. แสดงผลเป็น Value Label หรือค่าตัว	มิเลข 16. Use set
SPSS Viewer	

	0	utpul	t1 - SP	SS Vie	wer					
<u>F</u> i	le	<u>E</u> dit	<u>V</u> iew	<u>I</u> nsert	F <u>o</u> rmat	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
2	3		s d	9	🛒 🖂		= [?]	0 📠		+ +
			1							
			1	2		3				
1.	พิง	มพ์ (Outpu	t ดูแบ	บ Prev	iew			2.	Expor
				-						

3. กลับไปที่ SPSS Data Editor

SPSS Chart Editor

👬 C	hart1	- SPSS	6 Chart	Editor							
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>G</u> allery	<u>C</u> hart	<u>S</u> eries	F <u>o</u> r	mat	<u>A</u> na	lyze	<u>G</u> ra	aphs <u>H</u> elp
<u> </u>		يا 🗠	<u> </u>		••• ×		ш	nD	~	т	⋏⊵⋹⋼⊇
											I
1	2			3	4	5	б	7	8	9	10

- 1. ดูบันทึกคำสั่งล่าสุดที่วิเคราะห์ข้อมูล
- 3. กำหนดรูปแบบการแรเงากราฟ
- 5. กำหนดชนิดของเส้น
- 7. กำหนดชนิดของ Bar graph Label
- 9. กำหนดชนิดของตัวอักษร

- 2. กลับไปที่ SPSS Data Editor
- 4. กำหนดสีของกราฟ
- 6. กำหนดชนิดของ Bar graph
- 8. เลือกชนิดของกราฟเส้น
 - 10. หมุนกราฟ

SPSS Syntax Editor

- 2. บันทึกแฟ้มชนิด Syntax
- 3. สั่งพิมพ์แฟ้มข้อมูล Syntax
- 4. สั่งให้โปรแกรมใน Syntax Editor ทำงานด้วยคำสั่ง Run
- 5. สั่งให้ Syntax เริ่มต้นทำงานที่บรรทัดที่ Cursor อยู่
- 6. ตัวโปรแกรม Syntax

หมายเหตุ	#	เปิดแฟ้มตามชนิดของ Windows ขณะนั้น
	e	พิมพ์ข้อมูลของ Windows ขณะนั้น
		บันทึกข้อมูลตามชนิดของ Windows ขณะนั้น
	#	ค้นหาข้อความ
		ปุ่มสลับการแสดงค่าตัวแปร หรือ Value Label ของตัวแปร
	[?	าไมแสดง Variable Information

บทที่ 2 การสร้างแฟ้มข้อมูล

สิ่งที่สำคัญของผู้ที่ต้องการวิเคราะห์ข้อมูลต้องทำคือ การวางแผนเก็บข้อมูล การสร้างแบบสอบถาม การแปลความหมายแบบสอบถามเพื่อเป็นข้อมูลของการวิเคราะห์ด้วยโปรแกรม SPSS for Windows ตัวอย่าง เช่น บริษัทแห่งหนึ่งต้องการเก็บรวบรวมข้อมูลและวิเคราะห์ข้อมูลพนักงานเกี่ยวกับ เพศ อายุ ระดับการศึกษา สถานะภาพการแต่งงาน เงินเดือน ระดับคะแนนความสามารถ และ เงินตอบแทนประจำปี จึงทำการสอบถาม ข้อมูลด้วยแบบสอบถามดังนี้

แบ	บสอบถามข้อมูลพนักงาน		สำหรับเจ้าหน้าที่กรอกข้อมูล
1.	เลขประจำตัว		-
2.	เพศ 🗅 ชาย 🗖 หญิง		
3.	อายุบี		
4.	ระดับการศึกษา		
	🗅 ต่ำกว่าระดับปริญญาตรี	🗅 จบระดับปริญญาตรี	
	🗅 จบระดับปริญญาโท	🗖 จบระดับปริญญาเอก	
5.	สถานะภาพ		
	🗅 โสด	🗅 แต่งงานแล้ว	
	🗅 เป็นหม้าย	🗅 หย่าร้าง	
6.	เงินเดือน	บาท	
7.	ระดับคะแนนความสามารถ		
8.	เงินตอบแทนประจำปี	บาท	

ข้อกำหนดในการสร้างแฟ้มข้อมูล

จากแบบสอบถามที่ผู้ที่ต้องการวิเคราะห์ข้อมูล เมื่อต้องการจะทำเป็นข้อมูลสำหรับ SPSS for Windows ต้องทำการกำหนดค่าต่าง ๆ เช่น ชื่อแฟ้ม (file name) ชื่อตัวแปร (variable name) ชนิดของค่าตัว แปร (variable type) กำหนดค่าข้อมูลที่ไม่สมบูรณ์ (missing value) คำอธิบายความหมายของชื่อตัวแปร (variable label) คำอธิบายความหมายของค่าตัวแปร (value label)

ข้อกำหนดของแฟ้มข้อมูลที่เ	ราต้องการเป็นดังนี้ กำหนดชื่อแฟ้มข้อมูล	example4.sav
1. เลขประจำตัว	กำหนดชื่อตัวแปร	id
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 3 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	ไม่มี
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	ไม่มี
	กำหนดความกว้าง Columns การแสดงผลเป็	ц 5
หมายเหตุ เนื่องจาก id เป็นเส	ลขจำนวนเต็ม 3 หลัก เราจึงเตรียมความกว้าง	Columns เป็น 5
2. เพศ	กำหนดชื่อตัวแปร	sex
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 1 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	1. Male 2. Female
	กำหนดความกว้าง Columns การแสดงผลเป็	ม 8
หมายเหตุ เนื่องจากคำอธิบาย	เค่าตัวแปร Female กว้าง 6 Character เราจึงเ	ตรียมความกว้าง Columns เป็น 8
3. อายุ	กำหนดชื่อตัวแปร	age
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 2 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	99
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	ไม่มี
หมายเหตุ เนื่องจาก age เป็น	เลขจำนวนเต็ม 2 หลัก เราจึงเตรียมความกว้า	ง Columns เป็น 4
 ระดับการศึกษา 	กำหนดชื่อตัวแปร	educ
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 1 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9
	คำอธิบายความหมายของชื่อตัวแปร	Level of education
	คำอธิบายความหมายของค่าตัวแปร	
	1. Under graduate 2. Graduate 3. Pos	st graduate 4. Doctorate

หมายเหตุ เนื่องจากคำอธิบายค่าตัวแปร Under graduate กว้าง 14 Character เราจึงเตรียมความกว้าง Columns เป็น 16 บทที่ 2 การสร้างแฟ้มข้อมูล

5. สถานะภาพ	กำหนดชื่อตัวแปร		status					
	กำหนดชนิดของข้อมูล		จำนวนเต็ม 1 หลัก					
	ค่าที่กำหนดให้สำหรับ	ข้อมูลที่ไม่สมบูรณ์	9					
	คำอธิบายความหมายข	เองชื่อตัวแปร	ไม่มี					
	คำอธิบายความหมายข	เองค่าตัวแปร						
	1. Single 2. Mar	rried 3. Widowho	od 4. Divorce					
หมายเหตุ เนื่องจากคำอธิบา	เยค่าตัวแปร Widowhoo	d กว้าง 9 Character เ	ราจึงเตรียมความกว้าง Columns					
เป็น 11								
6. เงินเดือน	กำหนดชื่อตัวแปร		income					
	กำหนดชนิดของข้อมูล		จำนวนเต็ม 4 หลัก					
	ค่าที่กำหนดให้สำหรับ	ข้อมูลที่ไม่สมบูรณ์	9999					
	คำอธิบายความหมายข	เองชื่อตัวแปร	ไม่มี					
	คำอธิบายความหมายข	เองค่าตัวแปร	ไม่มี					
หมายเหตุ เนื่องจาก income	ะ เป็นเลขจำนวนเต็ม 4 เ	หลัก เราจึงเตรียมความ	เกว้าง Columns เป็น 6					
7. ระดับคะแนน	กำหนดชื่อตัวแปร		grade					
	กำหนดชนิดของข้อมูล		จำนวนจริง xxxx.xx					
	ค่าที่กำหนดให้สำหรับ	ข้อมูลที่ไม่สมบูรณ์	9.99					
	คำอธิบายความหมายข	เองชื่อตัวแปร	ไม่มี					
	คำอธิบายความหมายข	เองค่าตัวแปร	ไม่มี					
หมายเหตุ เนื่องจาก grade เ	ป็นเลขจำนวนจริง xxxx	.xx เราจึงเตรียมความ	กว้าง Columns เป็น 8					
8. เงินตอบแทนประจำปี	กำหนดชื่อตัวแปร		bonus					
	กำหนดชนิดของข้อมูล		จำนวนจริง xxxxx.xx					
	ค่าที่กำหนดให้สำหรับ	ข้อมูลที่ไม่สมบูรณ์	9.99					
	คำอธิบายความหมายข	<i>เ</i> องชื่อตัวแปร	ไม่มี					
	คำอธิบายความหมายข	เองค่าตัวแปร	ไม่มี					
หมายเหตุ เนื่องจาก bonus	เป็นเลขจำนวนจริง xxxx	x.xx เราจึงเตรียมควา	มกว้าง Columns เป็น 10					
คำแนะนำสำหรับเจ้าหน้าที่ท	พิมพ์ข้อมูล							
1. เลขประจำตัว		พิมพ์ข้อมูลตามค่าจริง	งจากแบบสอบถาม					
2. เพศ	ชาย	พิมพ์ข้อมูลเป็นเลข 1						
	หญิง	พิมพ์ข้อมูลเป็นเลข 2						
หมายเหตุ ไม่ตอบ หรือ	ข้อมูลไม่สมบูรณ์ให้พิมา	พ์ข้อมูลเป็นเลข 9						
3. อายุ		พิมพ์ข้อมูลตามค่าจริง	งจากแบบสอบถาม					
หมายเหตุ ไม่ตอบ หรือ	หมายเหตุ ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้พิมพ์ข้อมูลเป็นเลข 99							

4.	ระดับการศึกษา	🛯 ต่ำกว่าระดับปริญญาตรี	พิมพ์ข้อมูลเป็นเลข	1							
		🗅 จบระดับปริญญาตรี	พิมพ์ข้อมูลเป็นเลข	2							
		🗅 จบระดับปริญญาโท	พิมพ์ข้อมูลเป็นเลข	3							
		🗅 จบระดับปริญญาเอก	พิมพ์ข้อมูลเป็นเลข	4							
	หมายเหตุ ไม่ตอบ ห ^ร	รือ ข้อมูลไม่สมบูรณ์ให้พิมา	พ์ข้อมูลเป็นเลข 9								
5.	สถานะภาพ	🗅 โสด	พิมพ์ข้อมูลเป็นเลข	1							
		🗅 แต่งงานแล้ว	พิมพ์ข้อมูลเป็นเลข	2							
		🗅 เป็นหม้าย	พิมพ์ข้อมูลเป็นเลข	3							
		🗅 หย่าร้าง	พิมพ์ข้อมูลเป็นเลข	4							
	หมายเหตุ ไม่ตอบ ห ^ร	รือ ข้อมูลไม่สมบูรณ์ให้พิมา	พ์ข้อมูลเป็นเลข 9								
6.	เงินเดือน		พิมพ์ข้อมูลตามค่าจ	ริงจากแบบสอบถาม							
	หมายเหตุ ไม่ตอบ ห ^ร	รือ ข้อมูลไม่สมบูรณ์ให้พิมา	พ์ข้อมูลเป็นเลข 999	9							
7.	ระดับคะแนน		พิมพ์ข้อมูลตามค่าจ	ริงจากแบบสอบถาม							
	หมายเหตุ ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้พิมพ์ข้อมูลเป็นเลข 9.99										
8.	เงินตอบแทนประจำปี		พิมพ์ข้อมูลตามค่าจ	ริงจากแบบสอบถาม							
	หมายเหตุ ไม่ตอบ ห ^ร ์	รือ ข้อมูลไม่สมบูรณ์ให้พิมา	พ์ข้อมูลเป็นเลข 9.9	9							

ตัวอย่างแบบสอบถามข้อมูลพนักงานที่กรอกแล้ว

			สำหรับเจ้าหน้าที่กรอกข้อมูล
1.	เลขประจำตัว 1		
2.	เพศ 🗅 ชาย 🛛 หญิง		1
3.	อายุ 37 ปี		
4.	ระดับการศึกษา		
	🗅 ต่ำกว่าระดับปริญญาตรี	🗅 จบระดับปริญญาตรี	2
	🗅 จบระดับปริญญาโท	🗅 จบระดับปริญญาเอก	
5.	สถานะภาพ		
	🗅 โสด	🗅 แต่งงานแล้ว	4
	🗅 เป็นหม้าย	🗅 หย่าร้าง	
6.	เงินเดือน 5500 บาท		
7.	ระดับคะแนน 3.78		

8. เงินตอบแทนประจำปี 11000.00 บาท

2.1 การสร้างแฟ้มข้อมูลใน SPSS Data Editor

เริ่มต้นการสร้างแฟ้มข้อมูลที่ SPSS Data Editor

 Image: Specific stready

Type

Transform

Data

View Data Transform

ïle Edit

28

<u>Analyze Graphs Utilities Window</u>

iransform Analyze Graphs Utilities Window He ∽ | ≦ | ‱ | ‰ | ∭ [∰ | ∰ | ∰ | ∰

Width

SPSS Processor is ready

คลิกที่ Variable View SPSS Data Editor จะเปลี่ยนไปทำงาน ในส่วนของการกำหนดตัวแปร

ความหมายของแต่ละ Column ของ Variable View

- Name กำหนดชื่อตัวแปร Type กำหนดชนิดของตัวแปรเช่น
 - ตัวเลข(Numeric) ตัวอักษร(String)
- Width กำหนดความกว้างสำหรับเก็บค่าของตัวแปร
- Decimals กำหนดตำแหน่งทศนิยมของข้อมูลตัวเลข
- Label กำหนดคำอธิบายชื่อของตัวแปร
- Values กำหนดความหมายให้กับค่าตัวเลข เช่น 1 หมายถึง ชาย 2 หมายถึง หญิง
- Missing กำหนดค่าของข้อมูลไม่สมบูรณ์เช่น กรอกตัวเลขอายุผิด ไม่ตอบค่าที่ต้องการ
- Columns กำหนดความกว้างของ Columns ใน Data Veiw
- Align กำหนดการแสดงผลใน Column เป็น ชิดซ้าย ชิดขวา หรือ กึ่งกลาง
- Measure กำหนดชนิดข้อมูลเป็น Scale, Ordinal, Nominal

การกำหนดค่าต่าง ๆ ของตัวแปร id

ขั้นที่ 1. พิมพ์ชื่อตัวแปรแรกคือ id ในช่อง Name ของตัวแปรตัวที่ 1

🛗 Untitle	🛗 Untitled - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs <u>U</u> tili	ties <u>W</u> indow <u>H</u> e	elp					
2	2 日号 🔍 오고 🖳 1 🖗 湘首 🎟 🎫 🗐 🎯									
	Name	Туре	Width	Decimals	Label	Values	Missing			
1	id									
2										

เมื่อกด Enter โปรแกรมจะนำค่า Default ของ SPSS เกี่ยวกับตัวแปรมาเติมให้ ซึ่งจะได้ผลบนจอภาพเป็นดังนี้

🎬 Untitled - SPSS Data Editor									
<u>File</u> <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs <u>U</u> tili	ities <u>W</u> indow <u>H</u> ∉	elp				
211 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111									
	Name	Туре	Width	Decimals	Label	Values	Missing		
1	id	Numeric	8	2		None	None		
2									

จากข้อกำหนดของการสร้างแฟ้มของตัวแปร id

ଞାଉ

1. เลขประจำตัว	กำหนดชื่อตัวแปร		id		
	กำหนดชนิดของข้อมูล		ຈຳนวเ	แต็ม 3 หลัก	
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สะ	มบูรณ์	ไม่มี		
	คำอธิบายความหมายของชื่อตัวแป	ร	ไม่มี		
	คำอธิบายความหมายของค่าตัวแป	ร	ไม่มี		
การเปลี่ยนข้อกำหนดต่าง ๆ เ	ของตัวแปร id	Variable Ty	pe		? ×
1. พิมพ์ค่าที่ต้องการ	ในแต่ละ Column ของตัวแปร id	C Dot		Width: 8	_ OK "Cancel
a a d lumania		C <u>S</u> cientific	notation	Decimal <u>P</u> laces: 2	Help
หรือ 2. คลิกที <u>Numeric</u>	<u>่ – –</u> จะได้เมนูย่อยเป็น	C Dollar			
ในเมนูย่อยเราสา	มารถเลือก	C C <u>u</u> stom o	currency		
ชนิดของตัวแปรเ	ป็น Numeric, String,				
เปลี่ยน Width เป็	ใน 3	Variable Ty	pe		? ×
กำหนดการแสดง	ผลทศนิยมเป็น 0 ตำแหน่ง			<u>₩</u> idth: 3	ОК
กำหนดความกว้า	ง columns เป็น 5	C <u>D</u> ot C <u>S</u> cientific	: notation	Decimal <u>P</u> laces: 0	Help
จะได้ผลของเมนูเ	่อย Variable Type	⊂ D <u>a</u> te ⊂ Dollar			
บนจอภาพเป็นดั	านี้	C C <u>u</u> stom o	currency		

เสร็จแล้วคลิก OK จอภาพ SPSS Data Editor ในส่วนของ Variable View จะมีผลดังนี้

🎬 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> di	<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp									
▆▣◙ऽऽऽॊщщщщщшшш										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2										

การกำหนดค่าต่าง ๆ ของตัวแปร sex

ขั้นที่ 1. พิมพ์ชื่อตัวแปร sex ในช่อง Name ของตัวแปรตัวที่ 2

🛗 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp									
2										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex									

เมื่อกด Enter โปรแกรมจะนำค่า Default ของ SPSS เกี่ยวกับตัวแปรมาเติมให้ ซึ่งจะได้ผลบนจอภาพเป็นดังนี้

🛗 Unti	🛗 Untitled - SPSS Data Editor									
<u>F</u> ile <u>E</u> o	dit <u>V</u> iew <u>[</u>	<u>)</u> ata <u>T</u> ransfo	orm <u>A</u> nalyze	e <u>G</u> raphs <u>L</u>	<u>I</u> tilities <u>W</u> in	dow <u>H</u> elp				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
	1 id	Numeric	3	0		None	None	5	Right	Scale
	2 sex	Numeric	8	2		None	None	8	Right	Scale
	3									
จากข้อกำหนดของการสร้างแฟ้มข้อมูลของตัวแปร sex

2. เพศ

กำหนดชื่อตัวแปร	sex
กำหนดชนิดของข้อมูล	จำนวนเต็ม 1 หลัก
ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9
คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
คำอธิบายความหมายของค่าตัวแปร	1. Male 2. Female

ให้เปลี่ยนค่า Decimals จาก 2 เป็น 0

ให้เปลี่ยนค่า Width จาก 8 เป็น 1

หมายเหตุ ในกรณีที่ Width มีค่าต่ำกว่า Decimals ต้องกำหนดค่า Decimals ก่อน

ขั้นที่ 2. การกำหนดค่า Missing Values ให้กับตัวแปร sex ให้คลิกเมาส์ที่ ^{№ne}

🛗 Untitle	ed - SPSS Da	ita Editor					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs <u>U</u> tili	ities <u>W</u> indow <u>H</u> e	elp		
20	i 🔍 🗠	o 🖂 🖳 🟪	除 A 情自	1 <u>84</u> 5	<u>s</u>		
	Name	Туре	Width	Decimals	Label	Values	Missing
1	id	Numeric	3	0		None	None
2	sex	Numeric	1	0		None	None …
							· •

จะได้เมนูย่อยของการกำหนด Missing Values เป็นดังนี้

หมายเหตุ ความหมายของ Options ในเมนูย่อย

- No missing values ตัวแปรนี้ไม่มีค่า Missing values
- ⊙ Discrete missing values ตัวแปรนี้มีค่า Missing เป็นตัว ๆ
- Range plus one optional discrete missing values
 ตัวแปรนี้มีค่า Missing แบบผสมทั้งชนิดเป็นช่วง
 และเป็นค่าแบบ discrete อีก 1 ค่า

สำหรับตัวแปร sex เลือกชนิด Missing เป็น Discrete missing value และพิมพ์ค่าในช่องเป็นเลข 9

Missing Values ? X No missing values OK Discrete missing values Cancel Help Gange plus one optional discrete missing value Low: High: Discrete value:

···· ↑

เสร็จแล้วคลิก OK

บนจอภาพจะกลับไปที่ SPSS Data Editor ในส่วน Variable View

🛗 Untitle	ed - SPSS Da	ta Editor					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs <u>U</u> tili	ities <u>W</u> indow <u>H</u> e	elp		
2	e 🖳 🗠	0 💷 🏪	[?]] []	1 8 4 5	<u></u>		
	Name	Туре	Width	Decimals	Label	Values	Missing
1	id	Numeric	3	0		None	None
2	sex	Numeric	1	0			9

ขั้นที่ 3. การกำหนด Values และ Value Labels ให้กับตัวแปร sex

		S									
	<u> </u>	ile <u>E</u> dit	<u>V</u> iew <u>D</u> at	ta <u>T</u> ransform <u>A</u> nal	yze <u>G</u> ra	aphs <u>U</u> tilitie	es <u>W</u> indow	<u>H</u> elp			
	Г	2	a 🔍	n 🖂 🖾 🔛	[?] #4	I •≣Iă		<u>.</u> 1910			
	Ľ		Name			idth	Decimals	Label	Values	Missing	
	-	1	id	Numeric	3	0)		None	None	
	I-	2	sex	Numeric	1	L	J		ivone -	<u> </u>	
ให้คลิกที่ตํ	ำแหน่งลู	กศรชื่	None					Value Labe	S		? ×
	v			\uparrow		. 9 [,]		Value:	els		<u> </u>
จะได้เมนูย่	่อย Valu	ie Lal	bels 20	งการกำหนด	เค่าเป็	ในดังนี		Value Labe	:		Cancel
-								Add			Help
								Change			
								<u>R</u> emove			
									,		
								Value Labe	s		? ×
ð 4	۲ıdı		9	<i>ব</i> । র	Y			⊢ Value Lab	els		
ขนท 3.1	เปทชอ _`	۱ Val	ue WNV	งคา 1 เสรจเ	เลวก	ด		Val <u>u</u> e:	1		Cancel
	Tab เพื่	อไปที่	ช่อง Va	ulue Label				Valu <u>e</u> Labe	: Male		Halp
อ้.ส่.ว.ก	พิษพ์คว	1191989	บายของ	a'n Valua I	abal			Add			
<u>ยหก 5.2</u>		1 191 119	0 10 0 0 1	WI Value L	aber			<u>C</u> hange			
	เป็น Ma	ale						Remove			
* 	ດລືຄຸມ	11 24	ໄດ້ແລະເ	າເເຈເຍເວັດເອເວ	• D	ofino I	ahala (9	ไมดังส้			
บนท 3.3	មាតាកា Ad	10 15	សោសពា	หเหหืออองเ	אני סע		abels ti	านตานน			
ในทำนองเ	ดียวกัน							Value Labels			? ×
ขั้นที่ 3.4	ไปที่ช่อ	a Valı	ue พิมข	ง์ค่า 2 เสร็จเ	เล้วก	ด		Value Labe	ls		<u> </u>
2 0.12	т	_1.id	.!					Value Label:	μ [Cancel
ข	Tab IW	อเบท	ซอง Va	alue Label				Add	, 1 = "Male"		Help
ขั้นที่ 3.5	พิมพ์คว	ามหរ	มายของ	ค่าเป็น Fem	ale			Change			
	เสร็จแล้	, ำดลิก	พี่ งงง					<u>R</u> emove			
	661 9 V 6661	311611	in Auu						,		
								Value Labe	s		? ×
								Value Lab	els		т ок I
383176113803	ใงแองม	19191ei:	ລຍ					Val <u>u</u> e:			Cancel
	ынын П	า เกห็ตเ	00 					Valu <u>e</u> Labe	: 		Help
Change เป	ป็นการเลี	อกที่จ	าะเปลียา	นค่า Value I	เละ ไ	Value 1	Label	Add	1 = "Male" 2 = "Female"		

Remove เป็นการยกเลิกค่า Value และ Value Label

จะได้ผลบนเมนูย่อยของ Value Labels เป็นดังนี้

เสร็จแล้วคลิก OK จอภาพจะกลับมาที่ SPSS Data Editor ในส่วนของ Variable View ดังนี้

🛗 Untitle	ed - SPSS	Data Edito	T							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfo	rm <u>A</u> nalyze	e <u>G</u> raphs <u>U</u>	<u>I</u> tilities <u>V</u>	<u>∕</u> indow <u>H</u> elp				
2	8 🔍	n a I	- <u>-</u> [鱼帽		11 🖪 🖾	0			
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale

<u>R</u>emove

ข้อสังเกต ในช่อง values ของตัวแปร sex มีคำอธิบายความหมายบางส่วนของ Value Label ปรากฏ ขณะนี้เรากำหนดค่าต่าง ๆ เกี่ยวกับตัวแปร sex เสร็จแล้ว

้ในทำนองเดียวกันการกำหนดค่าเกี่ยวกับตัวแปรอื่น ๆ สามารถทำได้ตามขั้นตอนโดยย่อดังนี้

การกำหนดค่าต่าง ๆ ของตัวแปร age

ขั้นที่ 1. พิมพ์ชื่อตัวแปร age ในช่อง Name ของตัวแปรตัวที่ 3

🛗 Untitle	ed - SPSS	Data Edito	or							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfo	orm <u>A</u> nalyze	e <u>G</u> raphs <u>L</u>	Itilities <u>M</u>	/indow <u>H</u> elp				
2	8 🔍	n a I	s) 🔚 🖟	商情		1 1 🖪 🖾	0			
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale
3	age									

เมื่อกด Enter โปรแกรมจะนำค่า Default ของ SPSS เกี่ยวกับตัวแปรมาเติมให้ ซึ่งจะได้ผลบนจอภาพเป็นดังนี้

🛗 Untitle	ed - SPSS	Data Edito	r							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfo	rm <u>A</u> nalyze	<u>G</u> raphs <u>U</u>	Itilities <u>W</u>	/indow <u>H</u> elp				
2	<i>a</i> 🔍	n a l	s) 🔚 🖟	商情		11 🖪 🖾	0			
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale
3	age	Numeric	8	2		None	None	8	Right	Scale

ขั้นที่ 2. กำหนดชนิดของตัวแปร age เลือกชนิดเป็น Numeric

เปลี่ยน Decimals จากเดิม 2 เป็น 0

เปลี่ยน Width จากเดิม 8 เป็น 2

เปลี่ยนค่า Columns จากเดิม 8 เป็น 4

ขั้นที่ 3. กำหนด Missing Value โดยเลือกชนิดเป็น Discrete missing value

และพิมพ์ค่าในช่องเป็นเลข 99

จะได้ผลบนจอภาพเป็น

🛗 Untitle	🛗 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfo	rm <u>A</u> nalyze	e <u>G</u> raphs <u>L</u>	<u>I</u> tilities <u>W</u>	∕indow <u>H</u> elp					
20	Bee <u>soo bee bee been the soon soon soon soon soon soon soon soo</u>										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	
1	id	Numeric	3	0		None	None	5	Right	Scale	
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale	
3	aqe	Numeric	2	0		None	99	4	Right	Scale	

การกำหนดค่าต่าง ๆ ของตัวแปร educ

ขั้นที่ 1. พิมพ์ชื่อตัวแปร educ ในช่อง Name ของตัวแปรตัวที่ 4

🛅 Untitle	ed - SPSS	Data Edito	n							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfo	orm <u>A</u> nalyze	e <u>G</u> raphs <u>L</u>	<u>I</u> tilities <u>W</u> indov	v <u>H</u> elp				
2	<i>a</i> 🖷	n a	- <u>-</u>	鱼帽	ii 🔳	<u>s</u>				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale
3	age	Numeric	2	0		None	99	4	Right	Scale
4	educ									

เมื่อกด Enter โปรแกรมจะนำค่า Default ของ SPSS เกี่ยวกับตัวแปรมาเติมให้ ซึ่งจะได้ผลบนจอภาพเป็นดังนี้

🛗 Untitle	d - SPSS	Data Edito	or							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransf	orm <u>A</u> nalyze	e <u>G</u> raphs <u>L</u>	<u>I</u> tilities <u>W</u> indo	w <u>H</u> elp				
2	<i>a</i> 🔍	2 Cu	ii) 🔚 🕻	2 4 雪	rt 🔳 🗗	F 🗟 Ø				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale
3	age	Numeric	2	0		None	99	4	Right	Scale
4	educ	Numeric	8	2		None	None	8	Right	Scale

ขั้นที่ 2. กำหนดชนิดของตัวแปร educ เลือกชนิดเป็น Numeric เปลี่ยน Decimals จากเดิม 2 เป็น 0 เปลี่ยน Width จากเดิม 8 เป็น 1 เปลี่ยนค่า Columns จากเดิม 8 เป็น 16

- ขั้นที่ 3. กำหนด Missing Value โดยเลือกชนิดเป็น Discrete missing value และพิมพ์ค่าในช่องเป็นเลข 9
- ขั้นที่ 4. ไปที่ช่อง Label พิมพ์ Level of education
- ขั้นที่ 5. การกำหนด Value Labels ให้กับตัวแปร educ ให้คลิกที่ช่อง Mone ของตัวแปร educ บนจอ

ภาพที่ช่อง Values ของตัวแปร educ จะเปลี่ยนเป็น ^{None}

ให้คลิกที่ตำแหน่งลูกศรชี้ None 🦳 จะได้เมนูย่อยเป็นดังนี้

ขั้นที่ 5.1 ไปที่ช่อง Value พิมพ์ค่า 1 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Under graduate เสร็จแล้วคลิกที่ Add

alue Labels	?
Value Labels	ОК
Value:	- Cancel
	_ Help
Change	
Bemove	

ขั้นที่ 5.2 ไปที่ช่อง Value พิมพ์ค่า 2 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Graduate เสร็จแล้วคลิกที่ Add

- ขั้นที่ 5.3 ไปที่ช่อง Value พิมพ์ค่า 3 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Post graduate เสร็จแล้วคลิกที่ Add
- ขั้นที่ 5.4 ไปที่ช่อง Value พิมพ์ค่า 4 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Doctorate เสร็จแล้วคลิกที่ Add

alue Labels	? ×
Value Labels Value: Value Labet Add Change Bernove I = "Under graduate" 2 = "Graduate" 3 = "Post graduate" 4 = "Doctorate"	OK Cancel Help

ขั้นที่ 6. คลิกที่ OK จะได้ผลบนจอภาพเป็นดังนี้

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
ë∎⊜ ¤ ∽ ∝ ⊒ ¥ k ≜ ¶it ≣‡≣ ≅ Q										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale
3	age	Numeric	2	0		None	99	4	Right	Scale
4	educ	Numeric	1	0	Level of edu	{1. Under gra	9	16	Right	Scale

การกำหนดค่าต่าง ๆ ของตัวแปร status

ขั้นที่ 1. พิมพ์ชื่อตัวแปร status ในช่อง Name ของตัวแปรตัวที่ 5

🛗 Untitle	📅 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	jile Edit ⊻iew Data Iransform Analyze Graphs Utilities Window Help										
2	♥₽₽ ♥ ♡ ♀ ₽ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ♥										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	
1	id	Numeric	3	0		None	None	5	Right	Scale	
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale	
3	age	Numeric	2	0		None	99	4	Right	Scale	
4	educ	Numeric	1	0	Level of edu	{1, Under gra	9	16	Right	Scale	
5	status										

เมื่อกด Enter โปรแกรมจะนำค่า Default ของ SPSS เกี่ยวกับตัวแปรมาเติมให้ ซึ่งจะได้ผลบนจอภาพเป็นดังนี้

📺 Untitl	🛗 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>File Edit V</u> iew <u>D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
2	8.8 • • • • 1. • • • • • • • • • • • • • • • • • • •										
Name Type Width Decimals Label Values Missing Columns Align M										Measure	
1	id	Numeric	3	0		None	None	5	Right	Scale	
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Scale	
3	age	Numeric	2	0		None	99	4	Right	Scale	
4	educ	Numeric	1	0	Level of edu	{1, Under gra	9	16	Right	Scale	
5	status	Numeric	8	2		None	None	8	Right	Scale	

- ขั้นที่ 2. กำหนดชนิดของตัวแปร status เลือกชนิดเป็น Numeric
- ขั้นที่ 3. เปลี่ยน Decimals จากเดิม 2 เป็น 0 เปลี่ยน Width จากเดิม 8 เป็น 1 เปลี่ยนค่า Columns จากเดิม 8 เป็น 11
- ขั้นที่ 4. กำหนด Missing Value โดยเลือกชนิดเป็น Discrete missing value และพิมพ์ค่าในช่องเป็นเลข 9
- ขั้นที่ 5. การกำหนด Value Label ให้กับตัวแปร status

ให้คลิกที่ช่อง ^{None}ของตัวแปร status บนจอภาพที่ช่อง

Values ของตัวแปร status จะเปลี่ยนเป็น None

ให้คลิกที่ตำแหน่งลูกศรชี้ <u>None</u> 🛄 จะได้เมนูย่อยเป็นดังนี้

ขั้นที่ 5.1 ไปที่ช่อง Value พิมพ์ค่า 1

เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label

พิมพ์ความหมายของค่าเป็น Single เสร็จแล้วคลิกที่ Add

ขั้นที่ 5.2 ไปที่ช่อง Value พิมพ์ค่า 2 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label

พิมพ์ความหมายของค่าเป็น Married เสร็จแล้วคลิกที่ Add

ขั้นที่ 5.3 ไปที่ช่อง Value พิมพ์ค่า 3 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label

พิมพ์ความหมายของค่าเป็น Widowhood เสร็จแล้วคลิกที่ Add

- ขั้นที่ 5.4 ไปที่ช่อง Value พิมพ์ค่า 4
- เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label
- พิมพ์ความหมายของค่าเป็น Divorce

เสร็จแล้วคลิกที่ Add

Value Labels	? ×
Value Labels Value: Value Label Add Change Remove	OK Cancel Help

Value Labels	? ×
Value Labels Value Labels Value Label: Add 1 = "Single" 2 = "Married" 3 = "Widowhood" Bernove 4 = "Divorce"	OK Cancel Help

ขั้นที่ 6. คลิกที่ OK จะได้ผลบนจอภาพเป็นดังนี้

📺 Untit	🗑 Untitled - SPSS Data Editor									
<u>F</u> ile <u>E</u> di	t <u>V</u> iew <u>D</u>	lata <u>T</u> ransfor	m <u>A</u> nalyze	<u>G</u> raphs <u>U</u> tili	ities <u>W</u> indow	<u>H</u> elp				
2	● ■ ♀ □ ⊑ L M # II III ▼ 0									
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	. id	Numeric	3	0		None	None	5	Right	Scale
2	sex !	Numeric	1	0		{1, Male}	9	8	Right	Ordinal
3	age	Numeric	2	0		None	99	4	Right	Scale
	educ	Numeric	1	0	Level of ed	{1, Under g	9	16	Right	Ordinal
5	istatus	Numeric	1	0		{1, Single}.	9	11	Right	Ordinal

การกำหนดค่าต่าง ๆ ของตัวแปร income

พิมพ์ชื่อตัวแปร income ในช่อง Name ของตัวแปรตัวที่ 6

กำหนดชนิดของตัวแปรเป็น Numeric

เปลี่ยน Decimals จากของเดิม 2 เป็น 0

เปลี่ยน Width จากของเดิม 8 เป็น 4

กำหนด Missing Value เป็นเลข 9999

กำหนด Columns จากของเดิม 8 เป็น 6

การกำหนดค่าต่าง ๆ ของตัวแปร grade

พิมพ์ชื่อตัวแปร grade ในช่อง Name ของตัวแปรตัวที่ 7

กำหนดชนิดของตัวแปรเป็น Numeric

เปลี่ยน Width จากของเดิม 8 เป็น 6

กำหนด Missing Value เป็นเลข 9.99

การกำหนดค่าต่าง ๆ ของตัวแปร bonus

พิมพ์ชื่อตัวแปร bonus ในช่อง Name ของตัวแปรตัวที่ 8

กำหนดชนิดของตัวแปรเป็น Numerics

เปลี่ยน Width จากของเดิม 8 เป็น 9

กำหนด Missing Value เป็นเลข 9.99

กำหนด Columns จากของเดิม 8 เป็น 10

ผลบนจอภาพเมื่อกำหนดค่าต่าง ๆ เสร็จแล้วคือ

🛅 Untitle	ed - SPSS	Data Edito	ĩ							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransfor	m <u>A</u> nalyze	<u>G</u> raphs <u>U</u> til	ties <u>W</u> indow	<u>H</u> elp				
2	# 🖷	n a l	a) 🔚 📴	角帽		<u>,</u> 🗟 🎯				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	id	Numeric	3	0		None	None	5	Right	Scale
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Ordinal
3	age	Numeric	2	0		None	99	4	Right	Scale
4	educ	Numeric	1	0	Level of ed	{1, Under g	9	16	Right	Ordinal
5	status	Numeric	1	0		{1, Single}.	9	11	Right	Ordinal
6	income	Numeric	4	0		None	9999	6	Right	Scale
7	grade	Numeric	6	2		None	9.99	8	Right	Ordinal
8	bonus	Numeric	8	2		None	9.99	10	Right	Scale
↓ ► \ Data	ata View 👌	Variable Vie	w/			4			1	+
	SPSS Processor is ready									

คลิกที่ Data View จะกลับไปส่วนที่ทำงานเกี่ยวกับการใส่ข้อมูล ผลบนจอภาพจะเป็นดังนี้

🛗 Untitle	🛗 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>File Edit V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
2	2日参 🔍 いっ 🗉 上 10 州 11住 副北京 📎 🎯										
15 :			-								
	id sex age educ status income grade bonus										
1											
2											
3											
4											
5	5										
6	6										
▲ → \ Da	Data View / Variable View /										
	SPSS Processor is ready										

จากข้อมูลที่เก็บมาได้ของพนักงาน 50 คน ได้ข้อมูลดังนี้

• 1			1		•	-	1
id	sex	age	educ	status	income	grade	bonus
l	l	37	2	4	5500	3.78	11000.00
2	2	29	3	1	4100	3.89	12300.00
3	2	48	1	2	5400	3.67	21600.00
4	1	99	1	2	9999	2.78	19998.00
5	2	33	2	9	9999	3.00	29997.00
6	2	45	3	4	8300	3.45	16600.00
7	2	38	1	4	7700	3.89	7700.00
8	2	23	3	1	3900	3.67	11700.00
9	1	34	2	4	4500	2.56	9000.00
10	1	50	2	2	6700	2.69	6700.00
11	2	43	2	2	4700	3.56	18800.00
12	2	37	3	2	3900	3.00	3900.00
13	1	24	2	1	3300	2.45	9900.00
14	1	46	2	2	4900	2.45	14700.00
15	1	32	1	1	4000	3.87	8000.00
16	1	42	2	3	6600	3.67	13200.00
17	1	38	4	2	8000	3.23	32000.00
18	2	41	2	3	7000	3.45	21000.00
19	2	99	1	9	2000	3.21	2000.00
20	1	54	2	2	7400	3.00	22200.00
21	2	32	3	9	6200	2.56	24800.00
22	1	43	1	2	4700	2.45	18800.00
23	2	22	1	1	3400	3.78	3400.00
24	1	40	2	2	5900	2.67	17700.00
25	1	37	4	9	7500	3.45	22500.00
26	1	28	1	1	3100	2.78	9300.00
27	1	44	3	2	6800	2.56	13600.00
2.8	1	56	2	2	6400	2.78	19200.00
29	1	35	3	1	5800	3 33	5800.00
30	2	42	1	2	3900	2.56	11700.00
31	1	21	2	1	4700	2.67	14100.00
32	1	39	2	2	5900	2.89	17700.00
33	1	45	1	2	4900	2.6	4900.00
34	1	31	1	2	3100	3 23	9300.00

35	1	51	2	3	5400	3.01	5400.00
36	1	23	3	1	6300	2.77	12600.00
37	1	40	3	2	7100	2.89	21300.00
38	1	47	2	3	6600	2.77	19800.00
36	1	53	2	2	7200	2.31	21600.00
40	2	27	2	1	1700	2.67	5100.00
41	1	29	4	1	5000	2.89	15000.00
42	1	40	3	2	6000	3.67	18000.00
43	2	30	1	1	3000	2.56	12000.00
44	2	53	2	2	4700	3.00	9400.00
45	1	31	1	1	2800	2.74	5600.00
46	1	45	2	2	5700	2.67	22800.00
47	1	22	2	4	4300	3.07	4300.00
48	2	34	1	1	3900	2.56	7800.00
49	2	33	3	2	6700	2.12	20100.00
50	1	54	2	2	4800	2.66	19200.00

เมื่อพิมพ์ข้อมูลเสร็จแล้วจะได้ผลเป็น

🛅 Untitle	iii Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	jile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
学日毎 興 ∽ ~ 国 논 № 桷 推善 豊 む馬 珍⊘ 11:											
	id sex age educ status income grade bonus										
1	1	1	37	2	4	5500	3.78	11000.00			
2	2	2	29	3	1	4100	3.89	12300.00			
3 3 2 48 1 2 5400 3.67 21600.00											
4	4	1	99	1	2	9999	2.78	19998.00			

2.2 การบันทึกแฟ้มข้อมูล

ขั้นที่ 1. คลิกคำสั่ง File / Save

จะได้เมนูย่อย Save Data As

🛅 Untitled - SPSS Data Editor

Save as type: SPSS (".sav)
Paste

K Write variable names to spreadsheet

Cancel

ขั้นที่ 2. บักทึกเป็นแฟ้มข้อมูล ในช่อง File name โดยพิมพ์ชื่อ example4

: Save Data	As			? ×
Save jn: 🔂	data for spss	<u>•</u>	<u></u>	🖷 🗐 👻
🛅 1.sav		💼 example13.sav		example2.sav
🛗 Aggr. sav		🛅 example14.sav		example20.sav
🛗 appendix2	sav	🛅 example15.sav		example21.sav
🛗 example1.:	sav	🛅 example16.sav		example22.sav
🛅 example10	l.sav	🛅 example17.sav		example23.sav
🛗 example11	.sav	🛅 example18.sav		example24.sav
i example12	.sav	🛅 example19.sav		example25.sav
1				•
File <u>n</u> ame:	example4			<u>S</u> ave
Save as <u>t</u> ype:	SPSS (*.sav)		•	<u>P</u> aste
	₩ <u>W</u> rite varia	ble names to spreadsheet		Cancel

ขั้นที่ 3. คลิก Save จะเห็นได้ว่า Untitled เปลี่ยนเป็น example4.sav แล้ว

	\downarrow													
💼 examp	🖀 example4.sav - SPSS Data Editor													
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>A</u> n	alyze <u>G</u> raphs <u>U</u> tilities <u>W</u>	<u>(</u> indow <u>H</u> elp									
2	a 🖷	. n a E	5	📭 🛤 📲 📺 🔳	11 1 1 (
18 :			1											
	id	sex	age	educ	status	income	grade	bonus						
1	1	1	37	2	4	5500	3.78	11000.00						
2	2	2	29	3	1	4100	3.89	12300.00						
3	3	2	48	1	2	5400	3.67	21600.00						
4	4	1	99	1	2	9999	2.78	19998.00						

ขณะนี้ถือว่าการสร้างแฟ้มข้อมูลเสร็จและบันทึกไว้ที่แฟ้มข้อมูลชื่อ example4.sav เรียบร้อยแล้ว

2.3 การเปิดแฟ้มข้อมูล

ขณะนี้ขอสมมติว่าได้สร้างแฟ้มข้อมูลชื่อ example4.sav บันทึกไว้แล้วประกอบด้วยตัวแปร 8 ตัว และมีค่า สังเกต 50 ค่า (หมายเหตุ หากไม่ต้องการพิมพ์ข้อมูลของตัวอย่างเอง ติดต่อขอ copy แผ่นข้อมูลของหนังสือ เล่มนี้ได้ที่ผู้เขียน)

ขั้นที่ 1. เข้าสู่ SPSS Data Editor และ เลือกคำสั่ง File

🛗 Untitled - SPSS [)ata Editor					
<u>File E</u> dit <u>V</u> iew <u>D</u> al	ta <u>T</u> ransform	Analyze	<u>G</u> raphs	: <u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
<u>N</u> ew	+	1	46	.≣ I ≛I	≣lati	🛒 🖗
<u>O</u> pen	+		0.0	P+- F++	m	<u> </u>
Open Data <u>b</u> ase	•					
<u>R</u> ead Text Data		Va	ar	var	V	ar
Save	Ctrl+S					

ขั้นที่ 2. เลือกคำสั่ง Open จะมีเมนูย่อยว่าจะเปิดแฟ้มแบบใด

โดยเลือกจาก Data, Syntax, Output, Script, ...

🛅 Untitled - SPSS	Data Editor	
<u>File E</u> dit <u>V</u> iew <u>D</u>	<u>ata T</u> ransform	<u>Analyze</u> <u>G</u> raphs
New	+	المداحة ا
<u>O</u> pen	Þ	D <u>a</u> ta
Open Data <u>b</u> ase	•	<u>S</u> yntax
<u>R</u> ead Text Data		<u>O</u> utput
Caus	CHLC	S <u>c</u> ript
Save As	C(II+5	O <u>t</u> her

- ขั้นที่ 3. คลิกที่ Data จะได้เมนูย่อยเป็น
- เลือก Directory ที่มีแฟ้มข้อมูลอยู่
 ดูรายชื่อแฟ้มข้อมูลแล้วเลือก แฟ้มที่ต้องการโดยการกดดับเบิลคลิก ที่ชื่อแฟ้มข้อมูล

หรือ

 พิมพ์ชื่อแฟ้มข้อมูลที่ต้องการเช่น example4.sav เสร็จแล้วคลิกที่ปุ่ม Open จะได้ข้อมูลบนจอภาพดังนี้

	Open File				? ×
$1 \rightarrow$	Look jn: 🕞	data for spss	<u>•</u>] 🖻 💋	
	🛅 1.sav		💼 example13.sav		example2.sav
	🛅 Aggr. sav		🛅 example14.sav		example20.sav
h	🛅 appendix2	.sav	🛅 example15.sav		example21.sav
$2 \rightarrow$	example1.	sav	🛅 example16.sav		example22.sav
	🛅 example10).sav	🛅 example17.sav		example23.sav
	example11	.sav	🛅 example18.sav		example24.sav
	i example12	.sav	🛅 example19.sav		example25.sav
	•				•
$^{3}\rightarrow$	File <u>n</u> ame:	example4			<u>O</u> pen
	Files of type:	SPSS (*.sav)		•	<u>P</u> aste
					Cancel

💼 ex	amp	le4.sav	- SPSS Data	Editor					
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>A</u> n	alyze <u>G</u> raphs <u>U</u> tilities <u>W</u>	<u>/</u> indow <u>H</u> elp			
Ē		#	. v a 1	L.	: 🕼 🗚 <u>*</u> 👔 🗄	1 <u>4 </u> , <u>v</u> @			
18 :				-					
		id	sex	age	educ	status	income	grade	bonus
	1	1	1	37	2	4	5500	3.78	11000.00
	2	2	2	29	3	1	4100	3.89	12300.00
	3	3	2	48	1	2	5400	3.67	21600.00

ขณะนี้เราเปิดแฟ้มข้อมูล example4.sav เข้าสู่การทำงานของ SPSS Data Editor เรียบร้อยแล้ว

2.4 การดูรายละเอียดของตัวแปร

เราสามารถตรวจสอบรายละเอียดต่าง ๆ เกี่ยวกับแฟ้มข้อมูลได้ ตามขั้นตอนดังนี้ แบบที่ 1. ดูรายละเอียดและข้อกำหนดต่างของตัวแปรผ่านทาง Variable View

🚞 examp	🗰 example4 - SPSS Data Editor													
<u>F</u> ile <u>E</u> dit	<u>File Edit V</u> iew <u>D</u> ata <u>Transform</u> <u>Analyze Graphs Utilities Window H</u> elp													
28	ë∎⊜ ¤ ∽ ⊲ ⊑ ⊵ № ∰ ∰È ≣‡≣ ⊽⊘													
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure				
1	id	Numeric	3	0		None	None	5	Right	Scale				
2	sex	Numeric	1	0		{1, Male}	9	8	Right	Ordinal				
3	age	Numeric	2	0		None	99	4	Right	Scale				
4	educ	Numeric	1	0	Level of ed	{1, Under grad	9	16	Right	Ordinal				
5	status	Numeric	1	0		{1, Single}	9	11	Right	Ordinal				
6	income	Numeric	4	0		None	9999	6	Right	Scale				
7	grade	Numeric	6	2		None	9.99	8	Right	Ordinal				
8	bonus	Numeric	8	2		None	9.99	10	Right	Scale				
9														
I P K Da	Data View Variable View													
				SPSS Pro	cessor is read	ly .								

การดูรายละเอียดของตัวแปรผ่านทาง Variable View เราสามารถแก้ไขรายละเอียดต่าง ๆ ของตัวแปรได้ แบบที่ 2. ดูรายละเอียดและข้อกำหนดต่างของตัวแปรด้วยคำสั่ง Utilities

ขั้นที่ 1. คลิกคำสั่ง Utilities

	e e e e e e e e e e	amp	le4.sav	- SPS	iS Data	Edito					
E	ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransfo	<u>G</u> raphs	<u>U</u> tilities	Hel			
	2		ð <u>s</u>	ß	CI I		: [?	<u> </u>	Va <u>r</u> i File	ables I <u>n</u> fo	
Ľ	: id					1			Defi	ne Sets	
			id	9	sex	age		edu	<u>U</u> se	Sets	-
		1	1]	1	37			Pue	Corint	-[
		2	2		2	29			- nun	<u>ə</u> cnpt	_[
Г		3	3		2	48			<u>M</u> en	u Editor	

ขั้นที่ 2. คลิกคำสั่ง Variables จะได้เมนูย่อย

ต้องการดูรายละเอียดของตัวแปรใด ให้คลิกที่ชื่อของตัวแปรที่ต้องการ เช่นลองเลื่อน pointer ไปที่ตัวแปร sex จะเห็นรายละเอียดของตัวแปร sex

เมื่อดูเสร็จแล้วให้คลิก Close

2.5 การสั่งให้ SPSS Data Editor แสดง Value Labels

ข้อมูลที่กำหนด Value Labels ไว้แล้วหากต้องการให้แสดงผลในลักษณะของ Value Labels ต้องทำดังนี้ จากจอภาพของ SPSS Data Editor

🚞 ехап	🖀 example4.say - SPSS Data Editor											
<u>F</u> ile <u>E</u> d	ile Edit View Data Iransform Analyze Graphs Utilities Window Help											
1 8 :	学日曇 및 圴෬ 画 높原 桷 准能 副銀馬 珍⊘ 18:											
	id	sex	age	educ	status	income	grade	bonus				
	1 1	1	37	2	4	5500	3.78	11000.00				
	2 2	2	29	3	1	4100	3.89	12300.00				

🚞 exampl	e4.sav - SPSS Data Edit
<u>F</u> ile <u>E</u> dit	<u>⊻iew</u> <u>D</u> ata <u>T</u> ransform <u>A</u>
Celai.	✓ <u>S</u> tatus Bar
	<u>T</u> oolbars
1 : id	Eonts
	✓ Grid Lines
1	<u>V</u> alue Labels
2	Variables Ctrl+T

หมายเหตุ มีเครื่องหมายถูกหน้าคำสั่ง Grid Lines แปลว่าให้แสดงเส้นตารางใน SPSS Data Editor คำสั่ง Fonts ใช้ในการเปลี่ยน Fonts ของตัวอักษรใน SPSS Data Editor หน้า Value Labels ไม่มีเครื่องหมายถูก แปลว่าให้ SPSS แสดงผลเป็นค่าตัวเลข

ขั้นที่ 2. คลิกที่คำสั่ง Value Labels หน้า Value Labels มีเครื่องหมายถูก การแสดงผลของตัวแปรจะแสดงค่า Value Labels ตามที่กำหนดไว้ การแสดงผลบนจอภาพ SPSS Data Editor จะแสดงค่าของ Value Labels ออกมาแทนค่าตัวเลข ดังนี้

📸 example4.sav - SPSS Data Editor											
Eile Edit ⊻iew Data Iransform Analyze Graphs Utilities Window Help											
ë∎∰ ™⊲ ⊾ ⊾ k M ¶≜ ≣∰≣ ©⊘											
1 : id	1: id 1										
	id	sex	age	educ	status	income	grade	bonus			
1	1	Male	37	Graduate	Divorce	5500	3.78	11000.00			
2	2	Female	29	Post graduate	Single	4100	3.89	12300.00			
3	3	Female	48	Under graduate	Married	5400	3.67	21600.00			
4	4	Male	99	Under graduate	Married	9999	2.78	19998.00			

จะเห็นว่าการแสดงผลจะเปลี่ยนไปเช่นตัวแปร sex 1 จะแสดงค่าเป็น Male 2 จะแสดงค่าเป็น Female ตามที่กำหนดไว้ตอนที่สร้างแฟ้มข้อมูล

หมายเหตุ การเปลี่ยน Fonts ของข้อมูลใน SPSS Data Editor ให้เลือกคำสั่ง View / Fonts จะได้เมนูย่อย

เลือก Fonts : Times New Roman, Font style : Italic, Size : 12 เสร็จแล้วคลิก OK ผลลัพธ์บนจอภาพจะเป็นดังนี้

🛗 examp	📰 example4 - SPSS Data Editor											
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp												
🖻 🖬	2											
15 :												
	id	sex	age	educ	educ status income grade bonus							
1	1	Male	37	Graduate	Divorce	5500	3.78	11000.00				
2	2	Female	29	Post graduate	Single	4100	3.89	12300.00				
3	3	Female	48	Under graduate	Married	5400	3.67	21600.00				
4	4	Male	99	Under graduate Married 9999 2.78 19998								
5	5	Female	33	Graduate	9	9999	3.00	29997.00				

2.6 การแสดงรายละเอียดเกี่ยวกับตัวแปรของแฟ้มข้อมูล

จากเมนูของ SPSS Data Editor คลิกที่ Utilities / File Info

🚞 e:	xamp	le4.sav	- SPSS Data	Editor					
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>A</u> n	alyze	<u>G</u> raphs	<u>U</u> tilities	$\underline{W}\text{indow}$	He
2		a 📼			. [p	66 ×	Vari	ables	_
Ē							File	<u>n</u> fo	
1 : id				1			D <u>e</u> fi	ne Sets	_
		id	Sex	age		edu	<u>U</u> se	Sets	
	1	1	1	37			Dum	Corint	_
	2	2	2	29			nun	Johpen	
	3	3	2	48			<u>M</u> en	u Editor	

จะได้ผลของคำสั่งที่ SPSS Viewer ดังนี้

1

2

3

ผลของคำสั่ง Utilities / File Info จะได้รายละเอียดของตัวแปรในแฟ้ม example4.sav คือ

List of variables on the working file

Name	Position
ID Measurement Level: Scale Column Width: 5 Alignment: Right Print Format: F3 Write Format: F3	
SEX Measurement Level: Ordinal Column Width: 8 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9	
Value Label	
1 Male 2 Female	

AGE

Measurement Level: Scale Column Width: 4 Alignment: Right Print Format: F2 Write Format: F2 Missing Values: 99 EDUC Level of education Measurement Level: Ordinal Column Width: 16 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9

Value Label

- 1 Under graduate
- 2 Graduate
- 3 Post graduate
- 4 Doctorate

STATUS

5

4

Measurement Level: Ordinal Column Width: 11 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9

Value Label

- 1 Single
- 2 Married
- 3 Widowhood
- 4 Divorce

INCOME

6

Measurement Level: Scale Column Width: 6 Alignment: Right Print Format: F4 Write Format: F4 Missing Values: 9999

GRADE

Measurement Level: Ordinal Column Width: 8 Alignment: Right Print Format: F6.2 Write Format: F6.2 Missing Values: 9.99

BONUS

Measurement Level: Scale Column Width: 10 Alignment: Right Print Format: F8.2 Write Format: F8.2 Missing Values: 9.99 8

7

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

การวิเคราะห์ข้อมูลทางสถิติที่สำคัญคือ การคำนวณค่าสถิติเบื้องต้น การแจกแจงความถี่ของข้อมูลแบบ 1 ทาง การแจกแจงความถี่ของข้อมูลแบบ 2 ทาง การตรวจสอบความถูกต้องของข้อมูล คำสั่งสำคัญในการ คำนวณค่าสถิติเบื้องต้นของ SPSS คือ คำสั่ง Analyze / Descriptive Statistics ซึ่งมีคำสั่งย่อยต่าง ๆ ในการ ทำงานเช่น

- Analyze / Descriptive Statistics / Frequencies
- Analyze / Descriptive Statistics / Descriptives
- Analyze / Descriptive Statistics / Explore
- Analyze / Descriptive Statistics / Crosstabs

แจกแจงความถี่ คำนวณค่าสถิติเบื้องต้น คำนวณค่าสถิติเบื้องต้น คำนวณค่าสถิติเบื้องต้น แจกแจงความถี่ คำนวณค่าสถิติเบื้องต้น

3.1 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptives คำสั่ง Analyze / Descriptive Statistics / Descriptives เป็นคำสั่งใช้ในการหาค่าสถิติเบื้องต้นเช่น ค่าเฉลี่ยเลข คณิต ค่าฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด การใช้คำสั่งนี้ได้ต้องมีข้อมูลใน SPSS Data Editor

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4.sav เข้ามาใน SPSS Data Editor

🚞 е	🧰 example4 - SPSS Data Editor									
<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	<u>D</u> ata	<u>T</u> rans	form <u>A</u> n	alyze <u>G</u>	raphs <u>U</u> tili	ties <u>W</u> ir	ndow <u>H</u> elp	
21 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11										
-	id sex age educ status income grade bonus									
	1	1	1	37	2	4	5500	3.78	11000.00	

ขั้นที่ 2. คลิกเมาส์ที่ Analyze บนเมนูบาร์ จอภาพจะเป็นดังนี้

example4 - SPSS Dat

ขั้นที่ 3. เลื่อนเมาส์ไปซี้ที่ <u>D</u>escriptive Statistics จอภาพจะเปลี่ยนแปลงเป็นเป็นดังนี้

ขั้นที่ 4. คลิก Descriptives จะได้เมนูย่อย

หมายเหตุ

- 1. เครื่องหมายแสดงชนิดตัวแปรว่าเป็นข้อมูลตัวเลข
- ตัวแปรที่มี Value Labels จะแสดงค่า Value Label เช่นตัวแปร educ

ขั้นที่ 5. การเลือกตัวแปร age เพื่อทำการคำนวณ ให้นำเมาส์ไปคลิกที่ตัวแปร age

แล้วคลิกที่ปุ่ม 🕩 เพื่อย้ายตัวแปร age ไปทางขวา บนจอภาพจะกลายเป็น

<u>F</u> ile <u>E</u> d	t <u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
i⊊]	<i>a</i> 0			Repo	rts		_ लग	الھا∞ ا
		<u> </u>	<u> </u>	D <u>e</u> sc	riptive Sta	itistics	<u> Е</u>	requencies
1 : id			1	Custo	om <u>T</u> ables		• <u>D</u>	escriptives
	i i	4 I	Sex	Comp	oare <u>M</u> ear	IS	► <u>E</u>	xplore
	<u> </u>			<u>G</u> ene	ral Linear	Model	• <u>c</u>	rosstabs
1 2		scriptiv ex ige evel of i tatus income irade irade ionus	res = education (= 	Lues as var	Variable iables	ə(s):		K OK Paste Cancel Help Options

 id sex Level of education [edu status income grade bonus 	Variable(s):	OK Paste Reset Cancel Help
└ Save standardized values	as variables	Options

ขั้นที่ 6. เสร็จแล้วให้คลิกปุ่ม OK จะได้ผลการคำนวณที่ SPSS Viewer ดังนี้

<mark>評 Output1 - SPSS Viewer</mark> File <u>E</u> dit <u>V</u> iew Insert Format Analyze Graphs Utilities Window <u>H</u> elp								
:								
Contraction of the second)escriptives		Descriptive Sta	atistics			
→ Can Notes → Can Descriptive Statistics	 		N	Minimum	Maximum	Mean	Std. Deviation	
		AGE Valid N (listwise)	48 48	21	56	37.94	9.55	

3.2 การเปลี่ยนรูปแบบของตารางในการแสดงผลของ SPSS Viewer

การแสดงผลของการคำนวณหากตารางแนวนอนมีความยาวมากจะทำให้เราไม่มีความสะดวกที่จะเห็นผลการ คำนวณทั้งหมดในหน้าจอ

ดังนั้นเราควรจะทำการ Transpose ให้ตารางแสดงผลในแนวตั้ง

ขั้นที่ 1. จากจอภาพใน SPSS Viewer ให้เลือกตารางที่ต้องการ

ในที่นี้ขอให้เลือกตารางโดยการคลิกที่ชื่อของตาราง จะเห็นว่าบนจอภาพจะมีลูกศรสีแดงขึ้นที่ขอบของตาราง

3.3 การกำหนดตำแหน่งทศนิยมของการคำนวณในตารางของ SPSS Viewer

ตารางผลการคำนวณที่ได้เราสามารถกำหนดการแสดงผลว่าต้องการให้แสดงผลเป็นทศนิยม k ตำแหน่งได้ตาม ความต้องการ สมมติว่าเราต้องการให้แสดงผลการคำนวณของ Mean ให้เป็นทศนิยม 6 ตำแหน่ง มีขั้นตอน การทำงานดังนี้ จากการคำนวณล่าสุดบนจอภาพ

ชั้นที่ 1. จากจอภาพใน SPSS Viewer ให้เลือกตารางที่ต้องการด้วยการเลื่อนเมาส์เข้าในบริเวณของตาราง

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

ขั้นสุดท้ายให้นำเมาส์มาคลิกนอกบริเวณตาราง จอภาพจะกลับไปที่ SPSS Viewer

3.4 การคำนวณค่าสถิติเบื้องต้นอื่น ๆ ด้วยคำสั่ง Descriptives

จากขั้นตอนที่เราเลือกตัวแปร age เสร็จแล้ว หากต้องการคำนวณค่าสถิติอื่นเพิ่มเติม ให้นำเมาส์ไปคลิกที่ปุ่ม Options

escriptives: Options		
Mean	∏ <u>S</u> um	Continue
Dispersion	- - - - - - - - - -	Cancel
Std. deviation	Mi <u>n</u> imum	Help
☐ Variance	₩ Ma <u>x</u> imum	
∏ <u>R</u> ange	∏ S. <u>E</u> . mean	
Distribution		
∏ <u>K</u> urtosis	∏ Ske <u>w</u> ness	
Display Order		
Variable list		
○ <u>A</u> lphabetic		
← As <u>c</u> ending mea	ans	
<u>D</u> escending me	eans	

🕐 id	Variable(s):	ОК
	A AR	<u>P</u> aste
#) status #) income		<u>R</u> eset
♥ grade ♠ bonus		Cance
		Help

บนจอภาพจะมีเมนูย่อย ให้เลือกค่าสถิติต่าง ๆ เพิ่มเติม ค่าสถิติอื่น ๆ ที่ต้องการคำนวณให้คลิกที่กรอบสี่เหลี่ยม เพื่อให้เกิดเครื่องหมายถูก

- 🗌 มีเครื่องหมายถูก แสดงว่า ให้คำนวณค่า
- □ ไม่มีเครื่องหมายถูก แสดงว่า ไม่ให้คำนวณค่า
 ⊙ เลือกอย่างใดอย่างหนึ่งเท่านั้น

โดยการคลิกให้เกิดจุดสีดำหน้าข้อที่ต้องการ

ในตัวอย่างนี้ขอให้เลือกทุกกรอบสี่เหลี่ยมให้เป็นเครื่องหมายถูก เสร็จแล้วให้คลิก Continue และ OK ตามลำดับ

จะได้ผลการคำนวณดังนี้

Descriptives: Options		
₩ ean	₩ <u>S</u> um	Continue
Dispersion V Std. deviation	∀ Mi <u>n</u> imum	Cancel
₩ <u>V</u> ariance	⋈ Ma <u>x</u> imum	Help
₽ <u>R</u> ange	₩ S. <u>E</u> . mean	
Distribution		
₩ <u>K</u> urtosis	∀ Ske <u>w</u> ness	
Display Order		
Variable list		
○ <u>A</u> lphabetic		
← As <u>c</u> ending mea	ns	
← <u>D</u> escending me	ans	

ทำการ Transpose ตาราง	譯 Output1 - SPSS Viewer File Edit View Insert Format Analuze Granks Utilities Window Help						
ได้ผลเป็นดังนี้	FBBB D D						
	Output	Descriptiv	ves Descriptiv	e Statistics			
	Notes			AGE	Valid N (listwise)		
	Descriptive Statistics	N	Statistic	48	48		
		Range	Statistic	35			
		Minimum	Statistic	21			
2 2 2		Maximum	Statistic	56			

ผลการคำนวณทั้งหมดคือ

Descriptive Statistics

		AGE	Valid N (listwise)
N	Statistic	48	48
Range	Statistic	35	
Minimum	Statistic	21	
Maximum	Statistic	56	
Sum	Statistic	1821	
Mean	Statistic	37.94	
	Std. Error	1.38	
Std. Deviation	Statistic	9.55	
Variance	Statistic	91.251	
Skewness	Statistic	.025	
	Std. Error	.343	
Kurtosis	Statistic	812	
	Std. Error	.674	

3.5 สูตรของค่าสถิติและเปรียบเทียบการคำนวณ MATHCAD กับ SPSS

ตัวอย่าง 3.5.1 กำหนดข้อมูล 14 ตัวคือ 3, 3, 6, 4, 5, 8, 1, 2, 3, 8, 4, 5, 2, 6 จงคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptives วิธีทำ สร้างแฟ้มข้อมูลแล้ว Save ไว้ที่ชื่อ example5.sav

🛗 e	🚎 example5 - SPSS Data Editor								
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	Iransform <u>A</u>	<u>Analyze</u> <u>G</u> rapł	ns <u>U</u> tilities <u>V</u>	/indow <u>H</u> elp			
		a 🔍 🗠		<u>= [? </u>			¥@		
1: x			3						
i		х	var	var	var	var	var		
	1	3							
	2	3							
	3	6							

ใช้คำสั่ง Analyze / Descriptive Statistics / Descriptives และเลือกค่าสถิติต่าง ๆ ที่มีใน Options ได้ผลการ คำนวณเป็นดังนี้ Descriptive Statistics

		Х	Valid N (listwise)
Ν	Statistic	14	14
Range	Statistic	7	
Minimum	Statistic	1	
Maximum	Statistic	8	
Sum	Statistic	60	
Mean	Statistic	4.29	
	Std. Error	.58	
Std. Deviation	Statistic	2.16	
Variance	Statistic	4.681	
Skewness	Statistic	.421	
	Std. Error	.597	
Kurtosis	Statistic	614	
	Std. Error	1.154	

ความหมายของค่าสถิติและที่มาของสูตร

Ν	จำนวนข้อมูล	Range	พิสัยของข้อมูลมาจากสูตร ค่ามากสุด –	ค่าน้อยสุด
Minimum	ค่าต่ำสุดของข้อมูล	Maximum	ค่าสูงสุดของข้อมูล	
Sum	ผลบวกของข้อมูลทุกตัว	Mean	ค่าเฉลี่ยเลขคณิต	
Median	ค่ามัธยฐาน M	ode	ค่าฐานนิยม	
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตร	รฐาน (SPSS	ถือว่าข้อมูลที่คำนวณเป็นข้อมูลตัวอย่าง)	

มาจากสูตร
$$\sqrt{rac{\displaystyle\sum_{i=1}^{n}(x_{i}^{}-\overline{x})^{2}}{n-1}}$$

Variance

มาจากสูตร
$$rac{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

 $x_i :=$

 $\begin{array}{c} 3 \\ 3 \\ \hline 6 \\ 4 \\ \hline 5 \\ 8 \\ \hline 1 \\ 2 \\ \hline 3 \\ 8 \\ 4 \\ \hline 5 \\ 2 \\ \hline 6 \\ \end{array}$

i := 1.. 14

variance population formula = 4.3469

Skewness เป็นค่าที่บอกว่า โค้งความถี่ของข้อมูล มีลักษณะความเบ้ของเส้นโค้งเป็นอย่างไร

- Skewness < 0 โค้งความถี่จะมีลักษณะ เบ้ทางด้านซ้าย หรือ เบ้ทางด้านลบ
- Skewness = 0 โค้งความถี่จะมีลักษณะสมมาตร เป็นรูประฆังคว่ำ หรือ normal curve
- Skewness > 0 โค้งความถี่จะมีลักษณะ เบ้ทางด้านขวา หรือ เบ้ทางด้านบวก

Kurtosis เป็นค่าที่บอกว่า โค้งความถี่ของข้อมูล มีลักษณะของเส้นโค้งมีการกระจายเป็นอย่างไร

- Kurtosis < 0 ข้อมูลมีการกระจายมาก โค้งความถี่จะมีลักษณะค่อนข้างแบน
- Kurtosis = 0 ข้อมูลมีการกระจายแบบปกติ โค้งความถี่จะมีลักษณะคล้ายการแจกแจงปกติ

ORIGIN:= 1

Kurtosis > 0 ข้อมูลมีการกระจายน้อย โค้งความถี่จะมีลักษณะสูงโด่ง

Mean (Std. Error) เป็นค่าที่ได้มาจากสูตร <u>Stan dard Deviation</u>

การคำนวณด้วยโปรแกรม MATHCAD

$\sum_{i = 1}^{14} x_i = 60$	n := length(x)	n = 14
$\min(\mathbf{x}) = 1$	$\max(\mathbf{x}) = 8$	mean(x) = 4.2857
median(x) = 4	var(x) = 4.3469	stdev (x) = 2.0849
Var(x) = 4.6813	Stdev(x) = 2.1636	

สูตร ความแปรปรวนและส่วนเบี่ยงเบนมาตรฐาน เมื่อกำหนดว่าข้อมูลนั้นคือประชากร

$$\sum_{i=1}^{n} (x_i - mean(x))^2$$

n

variance_population_formula := $\frac{i = 1}{}$

mula :=
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \text{mean}(x))^2}{n}}$$

standard_deviation_population_formula :=

standard_deviation_population_formula = 2.0849

้สูตรความแปรปรวนและส่วนเบี่ยงเบนมาตรฐาน เมื่อกำหนดข้อมูลเป็นข้อมูลจากการสุ่มตัวอย่าง

variance_sample_formula :=
$$\frac{\sum_{i=1}^{n} (x_i - mean(x))^2}{n-1}$$
 variance_sample_formula = 4.6813

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

standard_deviation_sample_formula :=
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - mean(x))^2}{n-1}}$$

standard_deviation_sample_formula = 2.1636

คำสั่งของ MATHCAD ที่ช่วยในการคำนวณค่าสถิติ

var(x) = ค่าความแปรปรวนของประชากร Var(x) = ค่าความแปรปรวนของตัวอย่าง mean(x) = ค่าเฉลี่ยเลขคณิต cnorm(z) = พื้นที่ใต้โค้งปกติมาตรฐานบนช่วง (-∞, z) slope(x, y) = สัมประสิทธิ์การถดถอยเชิงเส้นของ Y เทียบกับ X intercept(x, y) = ระยะตัดแกน Y ของสมการถดถอย $\hat{y} = a + bx$ corr(x, y) = ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation) min(x) = ค่าต่ำสุดของข้อมูล length(x) = จำนวนข้อมูล

ตัวอย่าง 3.5.2 จงสร้างแฟ้มข้อมูล(กำหนดตัวแปรชื่อ score) ที่ประกอบด้วยข้อมูล 3, 3, 6, 4, 5, 1, 2, 3, 8, 4, 5, 6 เสร็จแล้ว Save ไว้ที่ชื่อ example2.sav และคำนวณค่าสถิติเบื้องต้น

วิธีทำ เริ่มต้นที่ SPSS Data Editor สร้างแฟ้มข้อมูล example2.sav และใช้คำสั่ง

Analyze / Descriptive Statistics / Descriptives จะได้ผลการคำนวณดังนี้

		SCORE	Valid N (listwise)
N	Statistic	12	12
Range	Statistic	7.00	
Minimum	Statistic	1.00	
Maximum	Statistic	8.00	
Sum	Statistic	50.00	
Mean	Statistic	4.1667	
	Std. Error	.5618	
Std. Deviation	Statistic	1.9462	
Variance	Statistic	3.788	
Skewness	Statistic	.342	
	Std. Error	.637	
Kurtosis	Statistic	.004	
	Std. Error	1.232	

าน	
Descriptive	Statistics

🧰 ехатр	le2 - SPSS D	ata Editor	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raph
~	a 🔍 🗠		<u>* </u>
1: score		3	
	score	var	var
1	3.00		
2	3.00		
3	6.00		
4	4.00		
5	5.00		
6	1.00		
7	2.00		
8	3.00		
9	8.00		
10	4.00		
11	5.00		
12	6.00		

ตัวอย่าง 3.5.3 การสร้างแฟ้มข้อมูล 2 ตัวแปรเช่นข้อมูลคะแนนสอบย่อย 2 ครั้งของนิสิต 10 คน

ครั้งที่ 1	ครั้งที่ 2
76	81
60	52
85	87
58	70
91	86
75	77
82	90
64	63
79	85
88	83

ทำการบันทึกโดยใช้ชื่อแฟ้ม example3.sav และวิเคราะห์ข้อมูลเพื่อหาค่าสถิติเบื้องต้น

วิธีทำ จาก SPSS Data Editor สร้างแฟ้มแล้ว Save ชื่อ example3.sav ใช้คำสั่ง Analyze / Descriptive Statistics / Descriptives

	Yariable(s):	OK Paste Reset Cancel Help
, ┌──Save standardi <u>z</u> ed values	as variables	<u>O</u> ptions

🧱 examp	le3 - SPSS D	ata Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r
28	a 🖳 🗠	
11 :		
	test1	test2
1	76.00	81.00
2	60.00	52.00
3	85.00	87.00
4	58.00	70.00
5	91.00	86.00
6	75.00	77.00
7	82.00	90.00
8	64.00	63.00
9	79.00	85.00
10	88.00	83.00

เลือกตัวแปร test1 และ test2 ไปวิเคราะห์จะได้ผลการคำนวณดังนี้

		TEST1	TEST2	Valid N (listwise)
Ν	Statistic	10	10	10
Range	Statistic	33.00	38.00	
Minimum	Statistic	58.00	52.00	
Maximum	Statistic	91.00	90.00	
Sum	Statistic	758.00	774.00	
Mean	Statistic	75.8000	77.4000	
	Std. Error	3.6812	3.8505	
Std. Deviation	Statistic	11.6409	12.1765	
Variance	Statistic	135.511	148.267	
Skewness	Statistic	427	-1.200	
	Std. Error	.687	.687	
Kurtosis	Statistic	-1.173	.683	
	Std. Error	1.334	1.334	

3.6 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Frequencies

คำสั่ง Analyze / Descriptive Statistics / Frequencies ใช้ในการคำนวณ

- ความถี่ข้อมูลแบบ 1 ทาง เช่น จำนวนชายและหญิง จำนวนคนที่มี status ต่าง ๆ กัน
- ค่าสถิติเบื้องต้นเช่น ค่าเฉลี่ยเลขคณิต มัธยฐาน เปอร์เซ็นต์ไทล์
- เขียนกราฟความถี่ของข้อมูล

ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Frequencies กับตัวแปร age ในแฟ้มข้อมูล example4.sav

ขั้นที่ 1. นำแฟ้ม example4.sav เข้ามาใน SPSS Data Editor โดยใช้คำสั่ง File / Open

🛗 example4 - SPSS Data Editor										
<u>F</u> ile	<u>E</u> dit	⊻ie	w <u>D</u>	ata <u>T</u>	ransform	Analyz	e <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow <u>H</u>	<u>t</u> elp

3:										
		id	sex	age	educ	statu	income	grade	bonus	var
	1	1	1	37	2	4	5500	3.78	11000.0	ו

ขั้นที่ 2. เลือกคำสั่ง Analyze / Descriptive Statistics / Frequencies บนจอภาพจะเป็นดังนี้

🛗 example4 - SPSS Data Editor		
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
	Reports	• പ⊡െ പെപി
	Descriptive Statistics	Erequencies
1:id 1	Custom <u>T</u> ables	<u>D</u> escriptives
id sex age educ	Compare <u>M</u> eans	Explore
1 1 1 37 2	<u>G</u> eneral Linear Model	<u>C</u> rosstabs

ขั้นที่ 3. คลิกเมาส์ที่ Frequencies จะได้เมนูย่อยของคำสั่งดังนี้

A Frequencies		⊻aria	ıble(s):		ok
 ♦ sex ♦ age 					Paste
Level of education [edu					Reset
 Instants 					Cancel
□ I Display frequency tables					Help
	Statistics	s	<u>C</u> harts	<u>F</u> ormat	

หมายเหตุ 1. ลำดับตัวแปรเรียงตามลำดับของ column

2. เมื่อเข้ามาครั้งแรกตัวแปรตัวแรกจะมีแถบสีดำทับอยู่

ขั้นที่ 4. เลือกตัวแปรโดยการเอาเมาส์คลิกที่ตัวแปรที่ต้องการ เช่น ตัวแปร age ขึ้นเป็นแถบสีดำ

id		⊻aria	ble(s):		OK
 sex age 					<u>P</u> aste
 Level of education [edu status 					Reset
⊯ income ⊯ grade					Cancel
🏶 bonus		I			Help
☑ Display frequency tables	Statistics	3	<u>C</u> harts	<u>F</u> ormat	

ขั้นที่ 5. คลิกที่ปุ่ม 🕞 ตัวแปร age ที่เราเลือกไว้จะมาอยู่ทางช่องขวามือ

<pre> id sey </pre>		Yariable(s):		ок
Level of education [edu				<u>P</u> aste
				<u>R</u> eset
(₩) grade (₩) bonus				Cancel
		I		Help
✓ Display frequency tables				
	<u>S</u> tatistics	s <u>C</u> harts	<u>F</u> ormat	

ขั้นที่ 6. คลิก OK ผลการคำนวณที่ SPSS Viewer เป็นดังนี้

2

ผลการคำนวณทั้งหมดเป็นดังนี้

Frequencies

AGE

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	21	1	2.0	2.1	2.1
	22	2	4.0	4.2	6.3
	23	2	4.0	4.2	10.4
	24	1	2.0	2.1	12.5
	27	1	2.0	2.1	14.6
	28	1	2.0	2.1	16.7
	29	2	4.0	4.2	20.8
	30	1	2.0	2.1	22.9
	31	2	4.0	4.2	27.1
	32	2	4.0	4.2	31.3
	33	2	4.0	4.2	35.4
	34	2	4.0	4.2	39.6
	35	1	2.0	2.1	41.7

				1	
	37	3	6.0	6.3	47.9
	38	2	4.0	4.2	52.1
	39	1	2.0	2.1	54.2
	40	3	6.0	6.3	60.4
	41	1	2.0	2.1	62.5
	42	2	4.0	4.2	66.7
	43	2	4.0	4.2	70.8
	44	1	2.0	2.1	72.9
	45	3	6.0	6.3	79.2
	46	1	2.0	2.1	81.3
	47	1	2.0	2.1	83.3
	48	1	2.0	2.1	85.4
	50	1	2.0	2.1	87.5
	51	1	2.0	2.1	89.6
	53	2	4.0	4.2	93.7
	54	2	4.0	4.2	97.9
	56	1	2.0	2.1	100.0
	Total	48	96.0	100.0	
Missing	99	2	4.0		
Total		50	100.0		

ความสามารถอื่นๆ ของคำสั่ง Frequencies ที่สามารถทำได้เช่น

- หาค่าสถิติเบื้องต้น (เหมือนคำสั่ง Analyze / Descriptive Statistics / Descriptives)
- หาเปอร์เซ็นต์ไทล์ 1, 2, 3, ..., 99
- เขียนกราฟความถี่ แบบบาร์กราฟ และกราฟแบบฮีสโตแกรม

ขั้นที่ 7. จากขั้นตอนที่ 5. เมื่อเลือกตัวแปร age ยังไม่ต้องคลิก OK ให้คลิกที่ปุ่ม Statistics จะได้เมนูย่อย สำหรับเลือกคำนวณค่าสถิติที่ต้องการ

Percentile Values	Central Tendency Cor	ntinue
☑ <u>Q</u> uartiles	⊠ Mean Ca	incel
☞ C <u>u</u> t points for 10 equal groups	I Me <u>d</u> ian H	lelp
Ercentile(s):	₩ <u>o</u> de	
Add	₩ <u>S</u> um	
<u>C</u> hange		
<u>R</u> emove	∏ Values are group midpoin	its
Dispersion	Distribution	
Std. deviation 🔽 Minimum	I Ske <u>w</u> ness	
⊽ <u>V</u> ariance ⊽ Ma <u>×</u> imum	₩ Kurtosis	

ขั้นที่ 8.

ต้องการคำนวณค่าสถิติใดให้ใส่ เครื่องหมายถูก ในช่องสี่เหลี่ยม (ในที่นี้ขอให้เลือกหมด) ผลบนจอภาพจะเป็นดังนี้ หมายเหตุ การเลือก Percentile ต้องกำหนด รายละเอียดของคำสั่งเพิ่มเติมดังนี้

การเลือกเปอร์เซ็นต์ไทล์

- 1. คลิกที่ Percentile(s)
- ที่ช่องหลัง Percentile(s)
 พิมพ์ค่าเปอร์เซ็นต์ไทล์ที่ต้องการ เช่น เปอร์เซ็นต์ไทล์ 45
 จะสังเกตเห็นว่าปุ่ม Add จะดำขึ้น
- 9. คลิก Add เสร็จแล้วจอภาพจะมีเลข 45 ในกรอบของ Percentile

ขั้นที่ 9. เสร็จแล้วให้คลิกปุ่ม Continue จอภาพจะกลับไปที่เมนูย่อยของ คำสั่ง Frequencies

<u>Display frequency tables</u> <u>Statistics</u> <u>Charts</u> <u>Format</u>	in requestions is a constraint of education [edu status status income grade bonus		⊻arial ∲ag	ble(s): e		OK Paste <u>R</u> eset Cancel Help
	☑ <u>D</u> isplay frequency tables	Statistics	s	<u>C</u> harts	<u>F</u> ormat	

Percentile Values	Central Tendency	Contin
☑ <u>Q</u> uartiles	₩ <u>M</u> ean	Canc
✓ Cut points for 10 equal groups	I Me <u>d</u> ian	Hal
	⊠ M <u>o</u> de	
Add	I Sum	
Change		
Remove		
	Values are group	midpoints
Dispersion	Distribution	
☑ Std. deviation ☑ Minimum	I Ske <u>w</u> ness	
<i>∀</i> <u>Y</u> ariance <i>∀</i> Ma <u>×</u> imum	₩ <u>K</u> urtosis	
I Ra <u>ng</u> e I S. <u>E</u> . mean		
equencies: Statistics		
equencies: Statistics - Percentile Values	Central Tendency	Contir
equancies: Statistics Percentile Values IZ Quartiles	-Central Tendency- ☞ <u>M</u> ean	Contir Cano
equencies: Statistics Percentile Values 교 Quartiles 다 C <u>u</u> t points for 10 equal groups	Central Tendency F <u>M</u> ean F Me <u>d</u> ian	Contir Canc
equancies: Statistics Percentile Values 교 Quartiles 교 Cut points for 10 equal groups 교 Percentile(s):	Central Tendency IF <u>M</u> ean IF Me <u>d</u> ian IF M <u>o</u> de	Contir Canc Hel
equencies: Statistics Percentile Values Quartiles Image: Cut points for 10 equal groups Image: Percentile(s): [add]	Central Tendency	Contir Cano Hel
equencies: Statistics Percentile Values Percentile Values Image: Cut points for 10 equal groups Percentile(s): Add Change	Central Tendency	Contir Canc Hel
equencies: Statistics Percentile Values V Quartiles V Quartiles V Cut points for 10 equal groups V Percentile(s): Add Change Remove	Central Tendency V Mean V Megian V Mege V Sum	Contir Canc Hel
equencies: Statistics Percentile Values V Quartiles V	Central Tendency ↓ Mean ↓ Megian ↓ Mode ↓ Sum ↓ Values are group	Contir Canc Helj midpoints
equencies: Statistics - Percentile Values Quartiles Cut points for 10 equal groups Percentile(s): Add Change Remove - Dispersion	Central Tendency	Contir Cance Help
equencies: Statistics -Percentile Values V Quartiles V Cut points for 10 equal groups V Dercentile(s): Add Change Remove -Dispersion V Std. deviation V Minimum	Central Tendency	Contir Canc Hel midpoints
equencies: Statistics -Percentile Values V Quartiles V Cut points for 10 equal groups V Percentile(s): Add Change Remove -Dispersion V Std. deviation V Minimum V Yariance V Magimum	Central Tendency	Contir Canc Helj midpoints

ขั้นที่ 10. การสั่งให้เขียนกราฟของการแจกแจงความถี่ให้คลิกที่ปุ่ม Charts จะได้เมนูย่อย

Chart Type ☞ None ☞ Bar charts ☞ Pie charts ☞ Histograms ☞ With normal curve	Continue Cancel Help	ให้คลิกที่ Bar charts	Chart Type C None C Dar charts C Pie charts C Histograms F With normal curve	Continue Cancel Help
Chart Values	r <u>c</u> entages		Chart Values	centages

เสร็จแล้วให้คลิกที่ปุ่ม Continue จอภาพจะกลับไปที่เมนูย่อยของคำสั่ง Frequencies

หมายเหตุ ในกรณีที่ไม่ต้องการตารางแจกแจงความถี่ให้ยกเลิกเครื่องหมายถูกที่หน้า Display frequency tables

☐ Display frequency tables				
	<u>S</u> tatistics	<u>C</u> harts	<u> </u>	

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

🚏 Output1 - SPSS Viewer <u>File Edit ⊻iew Insert Fo</u>rmat <u>Analyze G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp <u>=-++++ |: 1 @ 0 1 = 0 | = @ 0 ...</u> Output + Frequencies E Frequencies Frequencies
 Title
 Title
 Notes
 Gatistics
 Gate Chart Statistics AGE Valid 48 Missing 2 Mean 37.94 Std. Error of Mean 1.38

หมายเหตุ ตารางผลการคำนวณสามารถกำหนดให้แสดงผลตามแนวนอน หรือ แนวตั้งก็ได้เพื่อประหยัดพื้นที่ และสะดวกในการพิมพ์ลงกระดาษเราควรเลือกใช้การแสดงผลตามแนวตั้ง ผลการคำนวณคือ

Frequencies

Statistics

AGL		
Ν	Valid	48
	Missing	2
Mean		37.94
Std. Error of Mean		1.38
Median Mode		38.00 37ª
Std. Deviation		9.55
Variance		91.25
Skewness		.025
Std. Error of Skewne	ess	.343
Kurtosis		812
Std. Error of Kurtosi	S	.674
Range		35
Minimum		21
Maximum		56
Sum		1821
Percentiles	10	23.00
	20	29.00
	25	31.00
	30	32.00
	40	34.60
	45	37.00
	50	38.00
	60	40.40
	70	43.30
	75	45.00
	80	46.20
	90	53.00

a. Multiple modes exist. The smallest value is shown

ต่อไปให้คลิก OK จะได้ผลการคำนวณค่าสถิติต่าง ๆ ที่ SPSS Viewer เป็นดังนี้

ตัวอย่างกราฟของความถี่แบบ Bar chart

กราฟของความถี่แบบ Histogram

3.7 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Explore

คำสั่ง Analyze / Descriptive Statistics / Explore สามารถคำนวณค่าสถิติเบื้องต้นต่างๆ ได้เช่น ค่าเฉลี่ย มัธยฐาน ความแปรปรวน ส่วนเบี่ยงเบนมาตรฐาน ฯลฯ และสามารถหาช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย ประชากรได้ ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Explore กับตัวแปร age ในแฟ้มข้อมูล example4.sav

🖥 example4 - SPSS Data Edito

View Data Transform

5

id sex age educ

Edit

1 1 1 37

File

ขั้นที่ **1.** นำข้อมูลเข้า SPSS Data Editor โดยใช้คำสั่ง File / Open

🎬 example4 - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>∨</u> ie	w <u>D</u>	ata <u>T</u>	ransform	<u>A</u> nalyz	e <u>G</u> raphs	<u>U</u> tilities	<u>₩</u> indow <u>H</u>	lelp
* .									
	id	sex	age	educ	statu	income	grade	bonus	var
1	1	1	37	2	4	5500	3.78	11000.00)
			-			•			

Analyze Graphs Utilities

Custom Tables

Compare Means

General Linear Mode

Reports

Descripti

Window Help

പല ചരി

Erequencies.

Descriptives.

Explore..

Crosstabs.

ขั้นที่ 2. เลือกคำสั่ง Analyze / Descriptive Statistics / Explore

ขั้นที่ 3. คลิกที่ Explore บนจอภาพจะขึ้นเมนูย่อย ของคำสั่ง Explore ดังนี้

ผลการคำนวณทั้งหมดคือ

Explore

Case FIOLESSING Summary	Case	Processing	Summary
-------------------------	------	------------	---------

	Cases								
	Va	lid	Miss	sing	Total				
	Ν	Percent	Ν	Percent	Ν	Percent			
AGE	48	96.0%	2	4.0%	50	100.0%			

หมายเหตุ จำนวนข้อมูลต้องคิดจาก n = 48 ซึ่งตัดค่าที่ไม่สมบูรณ์ออกไป 2 ตัว

Descriptives

			Statistic	Std. Error
AGE	Mean		37.94	1.38
	95% Confidence	Lower Bound	35.16	
	Interval for Mean	Upper Bound	40.71	
	5% Trimmed Mean		37.91	
	Median		38.00	
	Variance	91.251		
	Std. Deviation		9.55	
	Minimum		21	
	Maximum		56	
	Range		35	
	Interquartile Range		14.00	
	Skewness		.025	.343
	Kurtosis		812	.674

AGE AGE Stem-and-Leaf Plot Frequency Stem & Leaf 6.00 2. 122334 2.7899 4.00 9.00 3.011223344 3.5777889 7.00 9.00 4.000122334 6.00 4.555678 6.00 5.013344 1.00 5.6 Stem width: 10 Each leaf: 1 case(s)

หมายเหตุ Stem width = 10 เป็นตัวเลขบอกขนาดของตัวคูณ ตัวอย่างเช่น 6.00 2 . 122334 stem = 2 , Leaf = 1 ข้อมูลคือ 2(10) + 1 = 21 เพราะฉะนั้นข้อมูล 6 ตัวคือ 21, 22, 22, 23, 23, 24 หรือ 4.00 2 . 7899 มีข้อมูล 5 ตัวคือ 27, 28, 29, 29

กราฟแบบ Stem-and-Leaf Plot ที่ได้

หมายเหตุ ความสามารถอื่น ๆ ของคำสั่ง Analyze / Descriptive Statistics / Explore โดยเลือกค่าเพิ่มเติมได้ ที่ปุ่ม Statistics

คลิกปุ่ม <u>S</u> tatistics จะได้เมนูย่อย	-
Explore: Statistics	
☑ Descriptives	
<u>C</u> onfidence Interval for Mean: 95 %	2 ^y
厂 <u>M</u> -estimators	ตองการตาร
┌─ <u>0</u> utliers	
☐ Percentiles	
Continue Cancel Help	

หรือต้องการเปลี่ยนเปอร์เซ็นต์ช่วงความเชื่อมั่น ให้พิมพ์ค่าใหม่ลงไป <u>S</u>tatistics... P<u>l</u>ots... <u>O</u>ptions...

ต้องการตารางเปอร์เซ็นต์ไทล์ คลิกที่ Percentiles

Explore: Statistics X						
☑ Descriptives						
Confidence Interval for Mean: 95						
☐ <u>M</u> -estimators						
┌─ <u>0</u> utliers						
✓ Percentiles						
Continue Cancel Help						

เสร็จแล้วคลิก Continue และ OK ตามลำดับ ตารางแสดงค่าเปอร์เซ็นต์ไทล์ต่าง ๆ เป็นดังนี้

	Weighted Average(Definition 1)	Tukey's Hinges
Percentiles	AGE	AGE
5	22.00	
10	23.00	
25	31.00	31.00
50	38.00	38.00
75	45.00	45.00
90	53.00	
95	54.00	

Percentiles

```
ความหมายทางสถิติจากผลการวิเคราะห์
```

```
• Interquartile Range = 14.00 หมายถึงค่าได้มาจาก ควอไทล์ที่ 3 – ควอไทล์ที่ 1
```

• 5% Trimmed Mean = 37.91 หมายถึงค่าเฉลี่ยที่ได้มาจากข้อมูล 90 % ของทั้งหมด

โดยการตัดค่าที่มากออกไป 5 % และตัดค่าที่น้อยออกไป 5 %

• 95% Confidence Interval for Mean Lower Bound = 35.16

Upper Bound = 40.71

เป็นช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากร

เพราะฉะนั้น ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรคือ 35.16 < μ< 40.71 • สูตรช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ คือ

$$\overline{x} - t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}}) < \mu < \overline{x} + t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}}) \quad \text{ if } n = 1$$

เปรียบเทียบผลการคำนวณด้วย MATHCAD

 $t_{0.025, df = 47} =$ ระยะบนแกน t ที่ทำให้พื้นที่ใต้โค้งทางหางด้านขวามีค่าเท่ากับ 0.025 $t_{0.025, df = 47}$ หาค่าได้โดยการเปิดตารางสถิติ

การหาค่า t_{0.025,df = 47} โดยใช้ MATHCAD ทำได้ดังนี้

หมายเหตุ ฟังก์ชัน qt(1 - A, df) ของ MATHCAD มีค่าเท่ากับ $t_{A, df}$ เพราะฉะนั้น $t_{0.025, df = 47} = qt(1 - 0.025, 47) = 2.012$

3.7 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Crosstabs

คำสั่ง Statistics / Descriptive Statistics / Crosstabs ใช้ในการคำนวณเกี่ยวกับ

- ความถี่ข้อมูลแบบจำแนก 2 ทาง
- ค่าสถิติเบื้องต้นเช่น ค่าเฉลี่ย มัธยฐาน เปอร์เซ็นต์ไทล์
- เขียนกราฟเปรียบเทียบความถี่ของข้อมูล
- คำนวณค่าสถิติไคสแควส์เพื่อทดสอบความเป็นอิสระ

ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Crosstabs กับตัวแปร educ และ sex โดยทำการแจก แจงความถี่จำแนกตาม ระดับการศึกษา และ เพศ ในแฟ้มข้อมูล example4.sav

ขั้นที่ 1. นำข้อมูลเข้า SPSS Data Editor โดยใช้คำสั่ง File / Open

🚟 example4 - SPSS Data Editor									
<u>F</u> ile <u>E</u>	Edit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransfo	orm <u>A</u> naly	ze <u>G</u> rap	ihs <u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
000									
10 :									
		id	sex	age	educ	status	income	grade	bonus
	1	1	1	37	2	4	5500	3.78	11000.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Descriptive Statistics / Crosstabs

🞬 example4 - SPSS Data Editor											
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp		
اھ		4) D	al 🗤		Repo	Reports			• ഫ⊡ പരി		
					D <u>e</u> sc	Descriptive Statistics			requencies		
10 :				Custom <u>T</u> ables			► <u>D</u>	escriptives			
		id	Sex	ane edi	Compare <u>M</u> eans		► <u>E</u>	xplore			
<u> </u>	1	1	1	37	<u>G</u> eneral Linear Model			• _	rosstabs		

ขั้นที่ 3. คลิกที่ <u>C</u> rosstabs บนจอภาพจะขึ้นเมนูย่อย ของคำสั่ง Crosstabs ขั้นที่ 4. เลือกตัวแปร educ มาไว้ที่ช่อง <u>Row(s)</u> เลือกตัวแปร sex มาไว้ที่ช่อง <u>Column(s)</u> status one Paste or <u>Paste</u> of <u>age</u> ostatus <u>Column(s): Cancel</u> <u>or <u>Beset</u> <u>Column(s): Cancel</u> <u>Help</u> <u>Previous Layer 1 of 1</u> <u>Mext</u></u>	Structure Row(s): OK e sex age Paste Level of education [edu Column(s): Cancel e status Column(s): Cancel e grade Image Help Previous Layer 1 of 1 Next Image Image Image Image Image Image Image
□ □	ชั้นที่ 5. คลิกที่ปุ่ม OK จะได้ผลการคำนวณที่ SPSS Viewer ดังนี้ <u>Likites Window Help</u> @ รี <u>* + + รี รี</u> Destabs Case Processing Si Valid N Percent el of education * SEX 50 100.0%

ผลการคำนวณทั้งหมดคือ

Crosstabs

Case Processing Summary

	Cases						
		Valid	Missing		Total		
	Ν	Percent	Ν	Percent	Ν	Percent	
Level of education * SEX	50	100.0%	0	.0%	50	100.0%	

Level of education * SEX Crosstabulation

Count				
	S	EX		
		Male	Female	Total
Level of education	Under graduate	7	7	14
	Graduate	17	5	22
	Post graduate	5	6	11
	Doctorate	3		3
Total		32	18	50

C<u>e</u>lls...

<u>F</u>ormat...

Statistics.

Display clustered bar charts จะได้กราฟของการแจกแจงความถี่ดังนี้

Display clustered bar charts

Exact...

┌─ Suppress tables

Level of education

ในกรณีที่เราเลือกปุ่ม Statistics จะได้ เมนูย่อยของการคำนวณค่าสถิติต่าง ๆ ลองเลือกค่าสถิติ

 Crosstabss Statistics
 ×

 IF
 Chi-square
 Г
 Correlations
 Continue

 Nominal
 Ordinal
 Cancel
 Cancel

 IF
 Contingency coefficient
 Г
 Gamma
 Cancel

คลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณ

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.203 ^a	3	.102
Likelihood Ratio	7.193	3	.066
Linear-by-Linear Association	.500	1	.480
N of Valid Cases	50		

a. 3 cells (37.5%) have expected count less than 5. The minimum expected count is 1.08.

หมายเหตุ ค่า Pearson Chi-Square 6.203, df = 3 และ Asymp. Sig. (2-sided) สามารถนำไปสรุปผลได้ว่า ระดับการศึกษา กับ เพศ ไม่เป็นอิสระต่อกัน ที่ระดับนัยสำคัญ 0.05 ซึ่งเนื้อหาการทดสอบความเป็นอิสระมี เนื้อหาและขั้นตอนการทำงานอย่างสมบรูณ์ในบทที่ 7 หัวข้อ 7.7

ข้อควรระวัง จากการคำนวณทางทฤษฎีพบว่า $P(\chi^2 > 6.203) = 0.102$ เมื่อ df = 3

จากตาราง Chi-Square Tests ค่าแท้จริงของ Asymp. Sig. (2-sided) ควรจะเป็น 0.204
บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze Reports และ Custom Tables

คำสั่ง Analyze / Reports และ Analyze / Custom Tables ของ SPSS for Windows เป็นคำสั่ง รวบ ้รวมข้อมล นำเสนอข้อมล และสามารถทำการการวิเคราะห์ข้อมลทางสถิติเบื้องต้นได้ ตัวอย่างคำสั่งต่าง ๆ เช่น

- Analyze / Reports / OLAP Cubes
- Analyze / Reports / Case Summaries
- Analyze / Reports / Case Summaries in Rows
 Analyze / Reports / Case Summaries in Columns
- Analyze / Custom Tables / Basic Tables
 - Analyze / Custom Tables / General Tables
- Analyze / Custom Tables / Multiple Response Tables
- Analyze / Custom Tables / Tables of Frequencies

4.1 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Reports / OLAP Cubes

้คำสั่ง Analyze / Reports / OLAP Cubes เป็นคำสั่งใช้ในการตรวจสอบข้อมลเบื้องต้น สามารถหาค่าสถิติ เบื้องต้นต่างๆ เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยงเบนมาตรฐาน ค่าสงสด ค่าต่ำสด

และสามารถคำนวณจำแนกตามกลุ่มได้

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4.sav เข้ามาใน SPSS Data Editor

NUL		ю	1 161 6	икец	0 461	1 14 94 1	194	нын	0 9	11 101 16101
	💼 e	amp	le4 - S	PSS D	ata Eo	litor				
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> rans	form <u>A</u> n	alyze	<u>G</u> raphs <u>L</u>	<u>J</u> tilities <u>W</u> ir	idow <u>H</u> elp
	B		e	i			= [?	<u>m</u> 1		1 1
	10 :									
			id	sex	age	educ	statu	income	grade	bonus
		5	5	2	33	2	9	9999	3.00	29997.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / OLAP Cubes

🖀 example4 - SPSS Data Editor										
<u>File Edit View Data Iransform</u>	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp								
	Reports	OL <u>A</u> P Cubes								
10: id sex age edu	D <u>e</u> scriptive Statistics Custom <u>I</u> ables Compare <u>M</u> eans General Linear Model	Case Su <u>m</u> maries <u>R</u> eport Summaries in Rows Report <u>S</u> ummaries in Columns								

การแสดงผลตารางข้อมูลจำแนกตามกลุ่มชาย และกลุ่มหญิง ให้ทำตามขั้นตอนดังนี้ ขั้นที่ 4. นำเมาส์มากดดับเบิลคลิกที่ตาราง OLAP Cubes จะได้ผลดังนี้

64

ขั้นที่ 4. เลือกคำสั่ง Pivot

และ Move Layers to Rows

ลักษณะของตารางแสดงผลใน SPSS Viewer

จะได้ผลตารางของตัวแปร Sex จำแนกเป็น 2 กลุ่มดังนี้

OLAP Cubes

SEX		Sum	Ν	Mean	Std. Deviation	% of Total Sum	% of Total N
Male	AGE	1211	31	39.06	9.97	66.5%	64.6%
Female	AGE	610	17	35.88	8.65	33.5%	35.4%
Total	AGE	1821	48	37.94	9.55	100.0%	100.0%

การคำนวณค่าสถิติต่าง ๆ เพิ่มเติม

ขั้นที่ 5. จากขั้นตอนที่เลือกตัวแปรเสร็จแล้ว

CULAP Lubes		
()	(A) age	ОК
status		Paste
 Income Income		Reset
🚸 bonus		Cancel
		Help
	<u>G</u> rouping Variable(s):	
	♦ sex	
		Statisti <u>c</u> s
		Title

OLAP Cubes: Statistic:

ให้คลิกปุ่ม Statistics จะได้เมนูย่อยเป็น

<u>S</u> tatistics		Cell Statistics
Median Grouped Median Grouped Median Std. Error of Mean Maximum Range First Last Variance Kurtosis Std. Error of Kurtosis Skewness Std. Error of Skewness Std. Error of Skewness Std. Error of Skewness Geometric Mean		Sum Number of Cases Mean Standard Deviation Percent of Total Sum Percent of Total N
Continue	Cancel	Help
LAP Cubes: Statistics Statistics Median Grouped Median Std. Error of Mean Range First Last Variance Kurtosis Std. Error of Kurtosis Std. Error of Skewness Std. Error of Skewness Harmonic Mean Geometric Mean Percent of Sum in[sex] Percent of N in[sex]	-	× <u>Cell Statistics</u> Sum Number of Cases Mean Standard Deviation Percent of Total Sum Percent of Total N Minimum Maximum
Continue	Cancel	Help

เลือก Minimum, Maximum มาไว้ที่ช่องขวามือ

×

SEX		Sum	N	Mean	Std. Deviation	% of Total Sum	% of Total N	Minimum	Maximum
Male	AGE	1211	31	39.06	9.97	66.5%	64.6%	21	56
Female	AGE	610	17	35.88	8.65	33.5%	35.4%	22	53
Total	AGE	1821	48	37.94	9.55	100.0%	100.0%	21	56

OLAP Cubes

4.2 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Reports / Case Summaries

ผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Case Summaries จะได้รายละเอียดของข้อมูลจำแนก ตามกลุ่ม พร้อมค่าสถิติเบื้องต้นต่างๆ เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่าส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด ที่คำนวณแบบจำแนกตามกลุ่มและแบบคิดรวมทั้งกลุ่ม

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4.sav เข้ามาใน SPSS Data Editor

เสร็จแล้วคลิก Continue และ OK ตามลำดับ จะได้ผลดังนี้

🚞 e	📰 example4 - SPSS Data Editor									
<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	<u>D</u> ata	<u>T</u> ransforr	n <u>A</u> nalyz	e <u>G</u> raphs	: <u>U</u> tilities	<u>W</u> indow	<u>H</u> elp	
4 :		e [u] <u>* [</u>	? 44	<u>* ii </u>	∎ 1 1 ≣	<u>.</u>	
		id	sex	age	educ	status	income	grade	bonus	
	1	1	1	37	2	4	5500	3.78	11000.00	

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / Case Summaries

🚞 example4 - SPSS Data Editor		
<u>File Edit V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
	Reports	OLAP Cubes
	D <u>e</u> scriptive Statistics	Case Su <u>m</u> maries
	Custom <u>Lables</u>	Report Summaries in Rows
id sex age educ	General Linear Model	Report Summaries in Columns

คลิกที่ Case Summaries จะได้เมนูย่อยเป็น

	<u>Variables:</u>	0K
🔹 age		Paste
Level of education [educeduceduceduceduceduceduceduceduceduc		<u>R</u> eset
Grade Approx		Cancel
A 20162		Help
	<u>G</u> rouping Variable(s):	
⊽ Display cases		
☑ Limit cases to first 100	_	
Show only valid cases		

66

บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports และ Custom Tables

67

ผลการคำนวณทั้งหมดคือ

Summarize

Case Processing Summary

	Cases							
	Included		Excluded		Total			
	Ν	Percent	Ν	Percent	Ν	Percent		
AGE * SEX	48	96.0%	2	4.0%	50	100.0%		

a. Limited to first 100 cases.

Case Summaries

				AGE
SEX	Male	1		37
		2		34
		3		50
		4		24
		5		46
		6		32
		7		42
		8		38
		9		54
		10		43
		11		40
		12		37
		13		28
		14		44
		15		56
		16		35
		17		21
		18		39
		19		45
		20		31
		21		51
		22		23
		23		40
		24		47
-		25		53
		26		29
		27		40
		28		31
		29		45
		30	1	22
		31		54
		Total	N	31
			Median	40.00
			Sum	1211
	Female	1	1	29

	2		48
	3		33
	4		45
	5		38
	6		23
	7		43
	8		37
	9		41
	10		32
	11		22
	12		42
	13		27
	14		30
	15		53
	16		34
	17		33
	Total	N	17
		Median	34.00
		Sum	610
Total	N		48
	Median		38.00
	Sum		1821

a Limited to first 100 cases.

จากตัวอย่างนี้จะเห็นว่าผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Case Summaries จะได้ราย ละเอียดของข้อมูลทุกตัวในแฟ้มข้อมูล จำแนกตามกลุ่ม พร้อมค่าสถิติเบื้องต้นต่าง ๆ ที่คำนวณแบบจำแนกตาม กลุ่ม และ แบบคิดรวมทั้งกลุ่ม

4.3 การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง

Analyze / Reports / Report Summaries in Rows

Analyze / Reports / Report Summaries in Columns

ผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Report Summaries in Rows จะได้รายละเอียดของข้อ มูลจำแนกตามกลุ่ม พร้อมค่าสถิติเบื้องต้นต่าง ๆ เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยง เบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด ที่คำนวณแบบจำแนกตามกลุ่มและแบบคิดรวมทั้งกลุ่ม ขั้นที่ 1. เปิดแฟ้มข้อมูล example4.sav เข้ามาใน SPSS Data Editor

🧱 ехап	🗑 example4 - SPSS Data Editor										
<u>F</u> ile <u>E</u> d	it <u>V</u> iew) <u>D</u> ata	<u>T</u> ransforr	n <u>A</u> nalyz	e <u>G</u> raphs	: <u>U</u> tilities)	<u>W</u> indow	<u>H</u> elp			
4:	6	■ <u></u>] <u>* [</u>	? #	* ii <u>-</u>	∎ ⊈ ≣	<u></u>			
	id	sex	age	educ	status	income	grade	bonus			
	1 1	1	37	2	4	5500	3.78	11000.00			

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / Report Summaries in Rows

คลิก OK จะได้ผลการคำนวณเป็นรายงาน ข้อมูลของ เลขที่ (id) และ ระดับการศึกษา (educ) Level of education ID

	22
	23
	26
	30
	33
	34
	43
	45
	48
Graduate	1
	5
	9
	10
	11
	13
	14
	16
	18
	20
	20
	28
	31
	32
	35
	38
	36
	40
	44
	46
	47
	50
Post graduate	2
r obt Braadate	6
	8
	12
	21
	27
	29
	36
	37
	42
	49
Doctorate	17
	25
	41

ในทำนองเดียวกันคำสั่ง Analyze / Reports / Report Summaries in Columns สามารถทำรายงานข้อมูลได้แบบเดียวกับ Analyze / Reports / Report Summaries in Rows ตัวอย่างเช่น การจำแนกผลบวกของ Bonus จำแนกตาม เพศ(sex) และ ระดับการศึกษา(educ) โดยการเลือกในเมนูย่อย Report Summaries in Columns ดังนี้

#A Report: Summaries in Columns		×
() id	– <u>D</u> ata Columns – – – – – – – – – – – – – – – – – – –	ОК
 Image <li< th=""><th></th><td>Paste</td></li<>		Paste
Grade A boous		Reset
A Dougs		Cancel
	l <u>n</u> sert Total S <u>u</u> mmary	Help
	For <u>m</u> at	
	Break Columns	⊢ Pre⊻iew
	♦ sex – Ascending ♦ Level of education [e	Report
	Sort Sequence	Opt <u>i</u> ons
	•• Ascending Options •• Descending Format	Layout
	☐ Data are already <u>s</u> orted	

ผลการวิเคราะห์ข้อมูลที่ได้คือ

L eo	evel of lucation	Sum		
Male	Under graduate	75898.00		
	Graduate	248500.00		
	Post graduate	71300.00		
	Doctorate	69500.00		
Female	Under graduate	66200.00		
	Graduate	84297.00		
	Post graduate	89400.00		

4.4 การนำเสนอข้อมูลด้วยคำสั่ง Analyze / Custom Tables

โปรแกรม SPSS for Windows มีคำสั่ง Analyze / Custom Tables ช่วยในการนำเสนอข้อมูลในรูป แบบตารางที่จำแนกข้อมูลออกเป็น กลุ่ม ๆ และ หมวดหมู่ต่าง ๆ ได้อย่างดีและสวยงาม ตัวอย่างเช่น ขั้นที่ 1. นำแฟ้มข้อมูล example4.sav เข้ามาใน SPSS Data Editor

🧱 examp	🗑 example4 - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>A</u> n	alyze <u>G</u> raphs <u>U</u> tilities <u>W</u>	<u>(</u> indow <u>H</u> elp					
2	学品》 및 오고 및 높原 M 相前 副北京 % (2) 19:									
	id	sex	age	educ	status	income	grade	bonus		
1	1	1	37	2	4	5500	3.78	11000.00		

ขั้นที่ 2. เลือกคำสั่ง Analyze / Custom Tables / Basic Tables

🛗 example4 - SPSS Data Editor		
<u>File Edit V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	Window Help
	Reports	⁺ ni⊨i ⊗i@i
	Descriptive Statistics	
19 :	Custom <u>T</u> ables	 <u>B</u>asic Tables
id sex la	Compare <u>M</u> eans	 <u>G</u>eneral Tables
	<u>G</u> eneral Linear Model	Multiple Response Tables
	<u>C</u> orrelate	<u>T</u> ables of Frequencies

จะได้เมนูย่อย Basic Tables เป็นดังนี้

- 1. หาผลบวกย่อยของตัวแปรตามที่เลือก
- 2. จำแนกกลุ่มย่อยของตัวแปรตามแนวบรรทัด
- 3. จำแนกกลุ่มย่อยของตัวแปรตามแนว column
- 4. จำแนกตารางออกเป็นตารางย่อยตามค่าของตัวแปรย่อยในกลุ่มที่กำหนด

ขั้นที่ 3. เลือกตัวแปรต่าง ๆ ดังนี้

- 1. หาผลบวกย่อยของตัวแปร income โดยนำตัวแปร income ไปไว้ที่ช่อง Summaries
- 2. จำแนกกลุ่มย่อยของตัวแปร status ตามแนวบรรทัด โดยนำตัวแปร status ไปไว้ที่ช่อง Down
- 3. จำแนกกลุ่มย่อยของตัวแปร educ ตามแนว column โดยนำตัวแปร educ ไปไว้ที่ช่อง Across
- 4. จำแนกตารางออกเป็นตารางย่อยตามค่าของตัวแปร sex โดยนำตัวแปร sex ไปไว้ที่ช่อง Separate Tables

ขั้นที่ 4. คลิก OK ได้ผลการคำนวณเป็นดังนี้

T Output1 example4 table - SPSS Viewer											
<u>File Edit V</u> iew Insert Format Analyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp											
I - + - I - + + + - I - I											
Output	٦	ables									
🔚 🛅 Title		Male									
Notes				Level of e	ducation						
····+ 📺 Table 1			Under		Post						
	L		graduate	Graduate	graduate	Doctorate					
	-	Single	3300	4000	6050	5000					
		Married	4233	6100	6633	8000					
		Widowhood		6200							
		Divorce		4767							

หมายเหตุ ขณะนี้ SPSS แสดงผลการคำนวณบางส่วนที่เป็นตารางของกลุ่มหญิง หากต้องการให้แสดงผลทั้ง หมดต้องใช้คำสั่งเพิ่มเติมดังนี้

ขั้นที่ 5.

กดดับเบิลคลิกที่ตาราง

🙀 Output1 example4 table - SPSS Viewer										
<u>File Edit View Insert F</u>	ivot F	<u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	/ <u>H</u> elp						
E Output	T	Tables								
····+L Table 1				Level of education						
			Under		Post					
			graduate	Graduate	graduate	Doctorate				
		Single	3300	4000	6050	5000				
		Married	4233	6100	6633	8000				
		Widowhood		6200						
		Divorce		4767						
	1 1									

74

ขั้นที่ 6. เลือกคำสั่ง Pivot / Move Layers to Rows

คลิกที่ Move Layers to Rows จะได้ผลการคำนวณเป็นดังนี้

iii Oi	🖀 Output1 example4 table - SPSS Viewer														
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	Pivo	ot F <u>o</u> rmat	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>₩</u> ind	w.	<u>H</u> elp				
		utput Table M Ti M Ti N	s itle otes able 1		Tab	les									
												Level	of e	education	
										Un grac	der luate	Gradua	ate	Post graduate	Doctorate
					Ma	le S	ingle				3300	40	00	6050	5000
						M	arried				4233	61	00	6633	8000
					•	V	/idowhoo	bd				62	00		
						D	ivorce					47	67		
					Fer	nale S	ingle				3433	17	00	4000	
						M	arried				4650	47	00	5300	
						V	/idowhoo	bd				70	00		
						D	ivorce				7700			8300	

นำเมาส์คลิกนอกบริเวณตารางจะได้ผลการคำนวณทั้งหมดเป็นดังนี้

Tables

		Level of education						
		Under		Post				
		graduate	Graduate	graduate	Doctorate			
Male	Single	3300	4000	6050	5000			
	Married	4233	6100	6633	8000			
	Widowhood		6200					
	Divorce		4767					
Female	Single	3433	1700	4000				
	Married	4650	4700	5300				
	Widowhood		7000					
	Divorce	7700		8300				

(r) id ane	<u>Frequencies for:</u>	ОК
		Paste
₩ grade ♦ bonus		Rese
	Subgroups	Cance
	Level of education [edu	Help
	Separate Ta <u>b</u> les:	<u>S</u> tatistics
		Layout
	All combinations (nested)	For <u>m</u> at
	C Each separately (stacked)	<u>T</u> itles

ตัวอย่างการใช้คำสั่ง Analyze / Custom Tables / Tables of Frequencies

ผลการวิเคราะห์ข้อมูลที่ได้

			Level of e	education		
		Under graduate	Graduate	Post graduate	Doctorate	
		Count	Count	Count	Count	
Single	Male	3	2	2	1	
	Female	3	1	2		
Married	Male	4	9	3	1	
	Female	2	2	2		
Widowhood	Male		3			
	Female		1			
Divorce	Male		3			
	Female	1		1		

้หมายเหตุ Option Statatistics จะทำการคำนวณในรูปแบบอื่น ๆ เพิ่มเติมได้เช่นคำนวณสัดส่วนเป็นเปอร์เซ็นต์ เทียบกับจำนวนข้อมูลทั้งหมด

	Level of education								
		Under graduate		Graduate		Post graduate		Doctorate	
		Count	%	Count	%	Count	%	Count	%
Single	Male	3	23.1%	2	9.5%	2	20.0%	1	50.0%
	Female	3	23.1%	1	4.8%	2	20.0%		
Married	Male	4	30.8%	9	42.9%	3	30.0%	1	50.0%
	Female	2	15.4%	2	9.5%	2	20.0%		
Widowhood	Male			3	14.3%				
	Female			1	4.8%				
Divorce	Male			3	14.3%				
	Female	1	7.7%			1	10.0%		

บทที่ 5 การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform

การทำงานกับแฟ้มข้อมูลของ SPSS for Windows เราสามารถทำการแก้ไขแฟ้มข้อมูล ปรับปรุงแฟ้ม ข้อมูล เช่น เพิ่มตัวแปร ลดตัวแปร เพิ่มค่าสังเกต ลดค่าสังเกต สร้างตัวแปรใหม่จากตัวแปรเก่า เปลี่ยนแปลง ค่าของตัวแปร ฯลฯ การปรับปรุงแฟ้มข้อมูลแบบต่างๆ เหล่านี้เราใช้คำสั่ง Data และ Transform ตัวอย่างเช่น คำสั่ง Data มีคำสั่งย่อยของคำสั่ง Data ที่ใช้งานกันมากคือ

แทรกตัวแปรใหม่ Data / Insert Variable แทรกค่าสังเกต Data / Insert Case เคลื่อนที่ไปยังค่าสังเกตที่ต้องการ Data / Go to Case เรียงลำดับข้อมูล Data / Sort Cases รวมแฟ้ม 2 เข้าด้วยกัน Data / Merge Files กำหนดตัวแปรน้ำหนักของข้อมูล Data / Weight Cases คำสั่ง Transform มีคำสั่งย่อยของคำสั่ง Transform ที่ใช้งานกันมากคือ นำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่ Transform / Compute กำหนดค่าใหม่ให้กับตัวแปรเดิมตามเงื่อนไขที่กำหนด Transform / Recode เพื่อความสะดวกในการเรียนคำสั่ง Data และ Transforms ขอให้สร้างข้อมูลตัวอย่างและ Save ไว้ในดิสก์ file_xy1.sav มีตัวแปร x, y และค่าสังเกต 5 ตัว file_xy2.sav มีตัวแปร x, y และค่าสังเกต 3 ตัว file_zw.sav มีตัวแปร z, w และค่าสังเกต 5 ตัว โดยมีข้อมูลดังต่อไปนี้

บทที่ 5 การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform

file_xy1.sav			file_xy2.s	av	file_zw.s	file_zw.sav		
х		у	х	у	z	w		
2	2.00	15.00	8.00	32.00	100.00) 17.00		
3	3.00	17.00	9.00	48.00	250.00	35.00		
7	7.00	23.00	15.00	67.00	370.00) 64.00		
9	9.00	45.00	•		420.00	72.00		
12	2.00	58.00			550.00) 89.00		

5.1 การเพิ่มตัวแปร การลดตัวแปร การแทรกตัวแปร

การทำงานกับแฟ้มข้อมูลงานที่เราอาจจะต้องทำเพิ่มเติมกับแฟ้มข้อมูลคือ การเพิ่มตัวแปร การลดตัว แปร และการแทรกตัวแปร

5.1.1 การแทรกตัวแปร และ การเพิ่มตัวแปร

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor

🛅 file_xy	v1 - SPSS Da	ta Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r
~	e 🔍 🗠	
10 :		
	х	у
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

สมมติว่าเราต้องการแทรกตัวแปร t ระหว่างตัวแปร x และ y เพื่อให้แฟ้มข้อมูลใหม่มีข้อมูลดังนี้

×	t	У	
2.00	12.00	15.00	
3.00	18.00	17.00	
7.00	19.00	23.00	
9.00	21.00	45.00	
12.00	23.00	58.00	

ขั้นที่ 2. ให้เลื่อนเมาส์ไปคลิกที่หัว column ของตัวแปร y

ขั้นที่ 3. เลือกคำสั่ง Data / Insert Variable

File Edit View Data Iransform Analyze Grap
🖆 🕞 👼 👳 🔤 Define Dates
Insert <u>v</u> ariable
1 : y Insert Case
x Go to Case

คลิกที่ Insert Variable

บนจอภาพจะแทรกช่องตัวแปร var00001 ระหว่างแปร x และ y

🛗 file_xy	1 - SPSS Da	ta Editor	
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	∆nalyze <u>G</u> raph
28	🛎 🖳 🗠		- I? M
1:y		15	
	Х	у	var
1	2.00	15.00	
2	3.00	17.00	
3	7.00	23.00	
4	9.00	45.00	
5	12.00	58.00	

f	le_xy`	1 - SP	SS Dal	ta Editor	
	E 10	1.11	D 1	T (

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raph	IS .
Ê		e 🖷	N	Ca Er	ي ا	#	≥
1: y				15	ō		
		х		var00001)	<i>,</i>	
	1		2.00			15.00	
	2		3.00			17.00	
	З		7.00			23.00	
	4		9.00			45.00	
	5	1	2.00			58.00	

บทที่ 5 การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform

ขั้นที่ 4. กกดับเบิลคลิกที่ตัวแปร var00001 จอภาพจะเปลี่ยนเป็น Window ของ Variable View

ขั้นที่ 4. พิมพ์ชื่อตัวแปรใหม่ t แทนที่ var00001

หมายเหตุ ในขั้นตอนนี้เราสามารถเปลี่ยนค่า Type, Width,

Data Transform Analyze Graphs Utili 88 🔍 눈 🛛 Ð 楢 lE Name Туре Width ar00001 herio 8 Numeric 8 зју Edit <u>V</u>iew <u>D</u>ata <u>T</u>ransform <u>A</u>nalyze <u>G</u>raphs Util

28	in 🗐 🖻	n 🖾 🔛	[? 44]] []
	Name	Туре	Width
2	t	Numeric	8
3	у	Numeric	8

Cata View A Variable View

ขั้นที่ 4. คลิกที่เมนู Data View จะได้ผลบนจอภาพเป็น

Decimals และค่าอื่น ๆ ของตัวแปรได้

🛗 file_	ху	1 - SP9	6S Dal	ta Editor					
<u>F</u> ile <u>E</u>	dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Δ	nalyze	<u>G</u> raph	ns <u>U</u> tilitie	s <u>W</u>
<u></u>	3	a 🗉	u		2	= [?	#		
0:t									
		х		t)	,	var	
	1		2.00				15.00		
	2		3.00				17.00		

เสร็จแล้วขอให้ Save ไว้ที่ชื่อ file_xty.sav

5.1.2 การลดตัวแปร

สมมติว่าเราต้องการลดตัวแปร y ออกจากแฟ้ม file_xty.sav และ save ใหม่เป็นแฟ้มชื่อ file_xt.sav

file_xty.sav

file xt.sav

х	t	у	х	t
2.00	12.00	15.00	2.00	12.00
3.00	18.00	17.00	3.00	18.00
7.00	19.00	23.00	7.00	19.00
9.00	21.00	45.00	9.00	21.00
12.00	23.00	58.00	12.00	23.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xty.sav เข้ามาใน SPSS Data Editor

ขั้นที่ 2. คลิกที่ช่องตัวแปร y

m rile_s	ity - SPSS Da	ta Editor		
<u>F</u> ile <u>E</u> d	it <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	<u>A</u> nalyze <u>G</u> raph	ns <u>U</u> tili
B	6		- <u>R</u>	×≣ È
1: y		15		
	х	t	у	V
	1 2.00	12.00	15.00	
	2 3.00	18.00	17.00	
:	3 7.00	19.00	23.00	
	4 9.00	21.00	45.00	
	5 12.00	23.00	58.00	

🛗 file_xty - SPSS Data Editor					
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	∆nalyze <u>G</u> raph		
2	8 🔍 🗠		- I? M		
1: x		2			
	х	t	у		
1	2.00	12.00	15.00		
2	3.00	18.00	17.00		
3	7.00	19.00	23.00		
4	9.00	21.00	45.00		
5	12.00	23.00	58.00		

📺 file_xy1 - SPSS Data Editor					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	alyze <u>G</u> raph		
~	a 🖳 🗠		🗠 😰 🏘		
6:t					
	х	t	У		
1	2.00	12.00	15.00		
2	3.00	18.00	17.00		
3	7.00	19.00	23.00		
4	9.00	21.00	45.00		
5	12.00	23.00	58.00		

พิมพ์ข้อมูลใหม่เข้าไปผลสุดท้ายบนจอภาพคือ

กด Del จะได้ว่าตัวแปร y หายไป

🛗 file_xt	🛗 file_xty - SPSS Data Editor						
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	analyze <u>G</u> raph				
🛎 🖩 🚳 🔍 🗠 🖂 🔚 😰 🗚							
1:							
	х	t	var				
1	2.00	12.00					
2	3.00	18.00					
3	7.00	19.00					
4	9.00	21.00					
5	12.00	23.00					

เสร็จแล้วขอให้ Save ไว้ที่ชื่อ file_xt.sav

5.1.3 การแทรกค่าสังเกต

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor สมมติว่าเราต้องการแทรกค่าสังเกต x = 5, y = 19 ระหว่างค่าสังเกตตัวที่ 2 และ 3

х У 2.00 15.00 1 2 3.00 17.00 3 7.00 23.00 9.00 45.00 4

		×	У
	1	2.00	15.00
	2	3.00	17.00
→	3	5.00	19.00
	4	7.00	23.00
	5	9.00	45.00
	6	12.00	58.00

🛗 file_xy	1 - SPSS Da	ta Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
2	a 🔍 🗠	
9:		
	х	у
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

ขั้นที่ 2. คลิกที่ตำแหน่งแถวที่ 3

12.00

58.00

🎬 file_xy1 - SPSS Data Editor				
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>		
	a 🖳 🗠			
3: x		7		
	х	у		
1	2.00	15.00		
2	3.00	17.00		
3	7.00	23.00		
4	9.00	45.00		
5	12.00	58.00		

5

ขั้นที่ 4. คลิกที่ Insert Case จอภาพจะเป็น

🎬 file_xy1 - SPSS Data Editor				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>		
	a 🔍 🗠			
3 : x		7		
	х	у		
1	2.00	15.00		
2	3.00	17.00		
3				
4	7.00	23.00		
5	9.00	45.00		
6	12.00	58.00		

ขั้นที่ 5. พิมพ์ค่า x = 5

ขั้นที่ 3. เลือกคำสั่ง Data / Insert Case

3 : x

file_xy1 - SPSS Data Editor <u>File Edit View Data Iransform</u> 🖻 日 🎒 🔤 🛛 D<u>e</u>fine Dates.

Insert <u>V</u>ariable

Insert Case Go to Case

และ y = 19

💼 file_xy	1 - SPSS Da	ta Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	Iransform <u>A</u>
B	a 🔍 🗠	
3:у		19
	х	у
1	2.00	15.00
2	3.00	17.00
3	5.00	19.00
4	7.00	23.00
5	9.00	45.00
6	12.00	58.00

เสร็จแล้ว Save ไว้ที่ชื่อ file_xy1 6obs.sav

5.2 การลบค่าสังเกต

การลบค่าสังเกตออกจากแฟ้มข้อมูล

ขั้นที่ 1. นำเมาส์ไปคลิกที่หมายเลขบรรทัดของค่าสังเกต

เช่นขณะนี้เราต้องการลบค่าสังเกตตัวที่ 5 ทิ้งไป

ขั้นที่ 2. คลิกเมาส์ตรงบรรทัดที่ 5

SPSS		
📺 file_xy	1 6obs - SPS	S Data Edito
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
	a 🖳 🗠	
5:x		12
	х	У
1	2.00	15.00
2	3.00	17.00
3	5.00	19.00
4	7.00	23.00
5	12.00	58.00

🛗 file_xy	1 Gobs - SPS	iS Data Edito
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>{</u>
≊ ∎	a 🗉 🗠	
5:x		9
	х	У
1	2.00	15.00
2	3.00	17.00
3	5.00	19.00
4	7.00	23.00
5	9.00	45.00
6	12.00	58.00

C1 .

📻 file_xy	1 Gobs - SPS	iS Data Edito
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
2	a 🔍 🖉	
12 :		
	х	у
1	2.00	15.00
2	3.00	17.00
3	5.00	19.00
4	7.00	23.00
5	9.00	45.00
6	12.00	58.00

ค่าสังเกตที่ 5 ของเก่าหายไป และ เลื่อนค่าสังเกตตัวที่ 6 ขึ้นมาเป็นค่าสังเกตตัวที่ 5

5.3 การรวมแฟ้มข้อมูลแบบเพิ่มตัวแปร

แฟ้มข้อมูล 2 แฟ้มที่มีตัวแปรต่างกันสามารถนำมารวมเป็นแฟ้มเดียวกันได้

โดยใช้ค่ำสั่ง Data / Merge files / Add Variables ตัวอย่างเช่น

file_xy1.s	av	file_zw.sa	v
х	у	z	W
2.00	15.00	100.00	17.00
3.00	17.00	250.00	35.00
7.00	23.00	370.00	64.00
9.00	45.00	420.00	72.00
12.00	58.00	550.00	89.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav

เข้ามาใน SPSS Data Editor

	me_xyzw.sav					
	х	у	z	W		
	2.00	15.00	100.00	17.00		
	3.00	17.00	250.00	35.00		
	7.00	23.00	370.00	64.00		
	9.00	45.00	420.00	72.00		
	12.00	58.00	550.00	89.00		

x y 1 2.00 15.00 2 3.00 17.00 3 7.00 23.00 4 9.00 45.00 5 12.00 58.00

ขั้นที่ 2. เลือกคำสั่ง

Data / Merge Files / Add Variables

🛅 file_xy1 - SPS	S Data Editor				
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>D</u> ata <u>T</u> ransform	Analyze	<u>G</u> raph	is <u>U</u> tilities	₩i
₽ ₽₽ 1:x	D <u>e</u> fine Dates Insert <u>V</u> ariable <u>I</u> nsert Case		<u>#</u>	<u>* (()</u>	
X.	Go to Ca <u>s</u> e		ar	var	Т
1	S <u>o</u> rt Cases	[
2	Tra <u>n</u> spose	[Т,
3	Merge Files	•	Add	<u>C</u> ases	
4	Aggregate		Add	<u>V</u> ariables	

ขนท 3. คลกท Add Variables จะ	เดเมนยอยเบน	Add Variables: Read F	ile	i i	? X
	ข	Look jn: 🔂 data for bo	ook spss10	- 🖻 💆 🖻	**
หมายเหตุ ในดิสก์ต้องมีแฟ้ม file_z ขั้นที่ 4. พิมพ์ชื่อแฟ้ม file_zw.sav	w.sav อยู่ก่อน 7 แล้วคลิก Open	1 Aggr example1 example1 example10 example11 example12	example13 example14 example15 example16 example17 example18 example19	example2 example20 example21 example22 example23 example24 example24 example25	म्ब्राश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्वास्त्रश्
File name: File zw		File name:		_	<u>د</u>
		Files of type:		L	Cancel
riles of <u>type</u> . 5F55 (*.sav)		nies of gype. Jonob (13	idvj	<u> </u>	Cancer
	1.				//
จะได้ผลดังนี้	Add Variables fromfor	book spss10\file_zw.sav			x
ข้อสับเกต	<u>E</u> xcluded Variables:		<u>N</u> ew Wor	king Data File:	ОК
			× (*)		Paste
คาอธบายของ SPSS			Z (+) W (+)		<u>R</u> eset
บอกว่าแฟ้มใหม่ที่ได้					Cancel
ประกอบด้วยตัวแปร 4 ตัว	I			-	Help
คือ x v z w	Ren <u>a</u> r	ne		-	
110 X, y, 2, w	☐ Match cases on k G Both files provi	ey variables in sorted f ide cases	files Key⊻ari	ables:	
	External file is	keyed table			
	ር <u>W</u> orking Data F	file is keyed table			
	∏ Indicate case sou	rce as variable: sou	rce01		
	(*) = Working Data F	ile (+) =for book sp	ss10\file_zw.sav		
ยหมอ.		4			
คล่ก OK จะได้แฟ้มไหม่เป็นดังนี้		🐨 file_xy1 - SF	PSS Data Editor		
หมายเหตุ 1 ข้อบอเดิบบีตัวแปร 9	ต้าดื่อ 🗴 และ 🗤	<u>F</u> ile <u>E</u> dit <u>V</u> iew	/ <u>D</u> ata <u>T</u> ransform <u>A</u>	nalyze <u>G</u> raphs <u>U</u> tili	ties <u>W</u> indow

หมายเหตุ 1. ข้อมูลเดิมมีตัวแปร 2 ตัวคือ x และ y ขณะนี้ได้มีตัวแปรเพิ่มมาอีก 2 ตัวคือ z และ w 2. ชื่อแฟ้มข้อมูลยังเป็นชื่อเดิมคือ file_xy1.sav 3. ถ้าต้องการเปลี่ยนชื่อแฟ้มข้อมูลใหม่

ควรใช้ Save as โดยใช้ชื่อใหม่ว่า file_xyzw.sav

iii ne_xyr - 5P55 Data Editor						
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	ynalyze <u>G</u> raph	ns <u>U</u> tilities <u>W</u>	(indow	
B						
10 : z						
	х	у	z	W	Vá	
1	2.00	15.00	100.00	17.00		
2	3.00	17.00	250.00	35.00		
3	7.00	23.00	370.00	64.00		
4	9.00	45.00	420.00	72.00		
5	12.00	58.00	550.00	89.00		

5.4 การรวมแฟ้มข้อมูลแบบเพิ่มค่าสังเกต

์ แฟ้มข้อมูล 2 แฟ้มที่มีโครงสร้างตัวแปรเหมือนกันเราสามารถรวมแฟ้มเข้าด้วยกันเพื่อให้จำนวนค่าสังเกตเพิ่ม ขึ้นได้โดยใช้คำสั่ง Data / Merge Files / Add Cases ตัวอย่างเช่น

82

å 4

~ d

- ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor
- ขั้นที่ 2. เลือกคำสั่ง Data / Merge Files / Add Cases

🛗 file_xy	1 - SPSS Da	ta Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
	# 🔍 🗠	
1: x		2
	х	У
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

คลิกที่ Add Cases จะได้เมนูย่อยเป็น

หมายเหตุ ในดิสก์ต้องมีแฟ้ม file_xy2.sav อยู่ก่อน ขั้นที่ 3. พิมพ์ชื่อแฟ้ม file_xy2.sav

File <u>n</u> ame:	File_xy2	<u>O</u> pen
Files of type:	SPSS (*.sav)	Cancel

Add Cases: Read	File	? ×
Look in: 🗟 data	for book spss10	- 🗈 💋 💣 🔳
1	🛅 example13	🛗 example2 📲
i 🛗 Aggr	🛅 example14	🛗 example20 🛛 👔
appendix2	🛅 example15	🛗 example21 🛛 👔
. 💼 example1	💼 example16	🛗 example22 🛛 🧯
example10	🛅 example17	🛗 example23 🛛 👔
example11	💼 example18	🛗 example24 🛛 🧯
iiii example12	🛅 example19	🛗 example25 🛛 👔
•		•
File <u>n</u> ame:		<u>O</u> pen
Files of type: SPS	ŝS (*.sav)	✓ Cancel

แล้วคลิก Open จะได้ผลดังนี้	Add Cases fromor book spss10\File_xy2.sav	×
	Unpaired Variables: Yariables in New Working	Data File:
	P <u>a</u> ir	
ข้อสังเกต		
คำอธิบายของ SPSS	」 ☐ Indicate case source a	s variable:
บอกว่าแฟ้มใหม่ที่จะได้	R <u>e</u> name source01	
ประกอบด้วยตัวแปร 2 ตัว อื่อ	(*) = Working Data File (+) =or book spss10\File_xy2.sav	I Help
ทย x, y ขั้นที่ 3. คลิก OK จะได้แฟ้มใ	mม่เป็น	PSS Data Editor ata <u>I</u> ransform <u>A</u>

หมายเหตุ 1. ข้อมูลเดิมมีตัวแปร 2 ตัวคือ x และ y ข้อมูลใหม่ยังมี 2 ตัวแปรเดิม แต่มี 8 ค่าสังเกต 2. ชื่อแฟ้มข้อมูลยังเป็นชื่อเดิมคือ file_xy1.sav 3. ถ้าต้องการเปลี่ยนชื่อแฟ้มข้อมูลใหม่ ควรใช้ Save as โดยใช้ชื่อใหม่ว่า file_xy 8obs.sav

📰 file_xy	1.sav - 5P55	o Data Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
<u>-</u>	a 🔍 🗠	
16 :		
	х	у
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00
6	8.00	32.00
7	9.00	48.00
8	15.00	67.00

5.5 การเรียงลำดับข้อมูล

คำสั่ง Data / Sort Cases เป็นคำสั่งที่ช่วยในการเรียงลำดับข้อมูล

file_xy1.sav

	х	у
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

เราต้องการเรียงลำดับข้อมูลในตัวแปร y เป็น

	х	у
1	12.00	58.00
2	9.00	45.00
3	7.00	23.00
4	3.00	17.00
5	2.00	15.00

🛅 file_xy1 - SPSS Data Edito

<u>File Edit View D</u>ata <u>T</u>ransform

ž

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor

หมายเหตุ 1. ชื่อแฟ้มข้อมูลยังเป็นชื่อเดิมคือ file_xy1.sav 2. การเรียงลำดับของตัวแปร x มีผลทำให้ตัวแปร y มีการเรียงลำดับตามไปด้วย

2 0 0 1 4				
5:				
	х	у		
1	12.00	58.00		
2	9.00	45.00		
3	7.00	23.00		
4	3.00	17.00		
5	2.00	15.00		

84

5.6 การกำหนดตัวแปรน้ำหนัก

ข้อมูลที่อยู่ในรูปแบบของคะแนนและความถี่ตัวอย่างเช่น การหาค่าเฉลี่ยของคะแนน(x) ที่มีความถี่ตามที่ กำหนด ต้องกำหนดให้ตัวแปรความถี่(f) เป็นค่าน้ำหนัก

การกำหนดค่าตัวแปร f เป็นค่าน้ำหนักเราใช้คำสั่ง Data / Weight Cases

- ขั้นที่ 2. เลือกคำสั่ง

ขั้นที่ 3. คลิกที่ Weight Cases จะได้เมนูย่อยเป็น

♦ ×		ОК
₩. I	○ Weight cases by	<u>P</u> aste
	Erequency Variable:	Reset
		Cance
	Current Status: Do not weight cases	Help

ขั้นที่ 4. คลิกที่ Weight cases by เสร็จแล้วเลือกตัวแปร f มาไว้ที่ช่อง frequency Variable

⊛×		ок
	UDO NOT WEIGHT CASES	
	☞ Weight cases by	<u>P</u> ast
	<u> </u>	Bes
		Canc
		Hal

ขั้นที่ 5. คลิก OK จะได้ผลเป็นดังนี้

🎬 file_xf - SPSS Data Editor						
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>				
1:						
	х	f				
1	2.00	5.00				
2	5.00	8.00				
3	7.00	15.00				
4	10.00	9.00				
5	12.00	3.00				

ขณะนี้เรากำหนดตัวแปรน้ำหนักเสร็จแล้วต่อไปลองคำนวณค่าเฉลี่ยของตัวแปร x โดยใช้คำสั่ง

Analyze / Descriptive Statistics / Descriptives

Rep : Des	orts criptive Statistics		ച്ചി
: D <u>e</u> s	criptive Statistics	b l	
Com			Frequencies
COIL	Compare <u>M</u> eans		Descriptives
- <u>G</u> en	<u>G</u> eneral Linear Model		Explore
. <u>C</u> orr	<u>C</u> orrelate		<u>C</u> rosstabs

เลือกตัวแปร x มาที่ช่อง Variable(s) แล้วคลิก OK จะได้ผลการคำนวณเป็นดังนี้

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Х	40	2.00	12.00	7.0250	2.8328
Valid N (listwise)	40				

หมายเหตุ ค่าเฉลี่ยมาจากสูตร $\frac{(2)(5) + (5)(8) + (7)(15) + (10)(9) + (12)(3)}{5 + 8 + 15 + 9 + 3} = \frac{281}{40} = 7.0250$ ในกรณีที่ไม่กำหนดค่าน้ำหนักให้กับตัวแปร x จะได้ผลลัพธ์ของ Descriptive Statistics เป็นดังนี้

Descriptive Statistics

					Std.
	Ν	Minimum	Maximum	Mean	Deviation
Х	5	2.00	12.00	7.2000	3.9623
Valid N (listwise)	5				

5.7 การนำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่

คำสั่งที่ใช้ในการนำค่าจากตัวแปรเก่าไปสร้างเป็นตัวแปรใหม่คือ คำสั่ง Transform / Compute ตัวอย่างเช่น ในแฟ้ม file_xy1.sav มีตัวแปร x, y

เราต้องการสร้างตัวแปรใหม่เพิ่มอีกตัวคือ xplusy ที่มีสูตรเป็น x + y

file_xy1.sav	V
--------------	---

х	у
2.00	15.00
3.00	17.00
7.00	23.00
9.00	45.00
12.00	58.00

เพิ่มตัวแปร xplusy เป็น

×	У	xplusy
2.00	15.00	17.00
3.00	17.00	20.00
7.00	23.00	30.00
9.00	45.00	54.00
12.00	58.00	70.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor

- ขั้นที่ 2. เลือกคำสั่ง Transform / Compute
- file_xy1 SPSS Data Editor

 Eile
 Edit View
 Data
 Iransform
 Analyze
 Graphs
 Uti

 Image: Compute in the section of the sec
- x
 y

 1
 2.00
 15.00

 2
 3.00
 17.00

 3
 7.00
 23.00

 4
 9.00
 45.00

 5
 12.00
 58.00

ขั้นที่ 3. คลิกที่คำสั่ง Compute จะได้เมนูย่อยเป็น

ขั้นที่ 4. พิมพ์ชื่อตัวแปรใหม่ xplusy ที่ช่อง Target Variable พิมพ์สูตร x + y ที่ช่อง Numeric Expression

🛗 file_xy	1.sav - SPSS	Data Editor				
<u>File</u> Edit	<u>V</u> iew <u>D</u> ata	Iransform A	nalyze <u>G</u> raph:			
	🛎 🖬 🚳 🔍 🗠 🔤 🏪 😰 🛤 .					
6:						
	х	у	xplusy			
1	2.00	15.00	17.00			
2	3.00	17.00	20.00			
3	7.00	23.00	30.00			
4	9.00	45.00	54.00			

ขอให้ Save ข้อมูลใหม่เป็นชื่อ file_xplusy.sav

หมายเหตุ การเลือกฟังก์ชันที่มีใน SPSS ดูได้จากแถบเมนูย่อย

เช่น LN(X) หมายถึง ln(X)

🎬 file_xy1.sav - SPSS Data Editor							
<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	<u>D</u> ata	Transform	n é	<u>\nalyze</u>	<u>G</u> raph:
Ē		e			1	<u> </u>	#
4 :							
		х		У		In	×
	1		2.00	15	.00		.69

	~	7	1100
1	2.00	15.00	.69
2	3.00	17.00	1.10
3	7.00	23.00	1.95
4	9.00	45.00	2.20
5	12.00	58.00	2.48

บทที่ 5 การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform

5.8 การปรับเปลี่ยนค่าของตัวแปรด้วยคำสั่ง Transform / Recode

คำสั่งที่ใช้ในการเปลี่ยนค่าเก่าของตัวแปรไปเป็นค่าใหม่ คือ คำสั่ง Transform / Recode ตัวอย่างเช่น ในแฟ้ม file_xy1.sav มีตัวแปร x, y

เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5 และ เปลี่ยนค่า x เป็น 2 ถ้า x \ge 5

file_xy1.sav

	х	у
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

เปลี่ยนค่า x แล้วจะได้เป็น

me_xy1_fecture.sav		
	х	У
1	1.00	15
2	1.00	17

1	1.00	15.00
2	1.00	17.00
3	2.00	23.00
4	2.00	45.00
5	2.00	58.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor

ขั้นที่ 2. เลือกคำสั่ง Transform / Recode / In Same Variables

📺 file_xy	1 - SPSS Da	ta Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform A
	a 🔍 🗠	
11 :		
	х	У
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

ขั้นที่ 3. คลิกที่คำสั่ง Into Same Variables จะได้เมนูย่อยเป็น

📽 Recode into Same Variables		×
 ★ y 	Yariables:	OK <u>P</u> aste
	•	<u>R</u> eset Cancel
		Help
	<u></u>	
	<u>O</u> ld and New Values	

ขั้นที่ 4. เลือกตัวแปร x มาไว้ที่ช่อง Numeric Variables

	Numeric <u>V</u> ariables:	OK
∲у	* ×	Paste
	•	<u>R</u> eset
		Cancel
		Help
	<u>I</u> f	
	Old and New Values	

⊂Old Value → ○ ⊻alue:	New Value	 ⊂ System-missing
System-missing System- or <u>u</u> ser-missing Range:	Ol <u>d</u>	-> New:
Range:	<u>C</u> hange <u>R</u> emove	
Range:		
All other values	Continue C	ancel Help

ขั้นที่ 5. คลิกที่ Old and New Values จะได้เมนูย่อยเป็น

- 1. เปลี่ยนค่าแบบ 1 ค่า ต่อ 1 ค่า
- 2. เปลี่ยนค่า System missing เป็นค่าใหม่
- 3. เปลี่ยนค่า System missing หรือค่า Missing ที่เรากำหนดไว้เป็นค่าใหม่
- 4. เปลี่ยนค่าเก่าในช่วงที่กำหนดเป็นค่าใหม่
- 5. เปลี่ยนค่าเก่าที่ต่ำกว่าค่าที่กำหนดเป็นค่าใหม่
- 6. เปลี่ยนค่าเก่าที่สูงกว่าค่าที่กำหนดเป็นค่าใหม่
- 7. เปลี่ยนค่าอื่นที่ไม่ได้กำหนดไว้ข้างต้นเป็นค่าใหม่
- 8. กำหนดค่าใหม่ให้กับตัวแปรเดิม

ขณะนี้เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5 $\,$

เปลี่ยนค่า x เป็น 2 ถ้า x
$$\ge 5$$

ขั้นที่ 6. คลิกที่ Range และพิมพ์ค่า 1 และ 4 ดังนี้

Recode into Same Variables: Old and New Values		×
Old Value	New Value	
C ⊻alue:	@ Value:	⊂ System-missing
← <u>System-missing</u> ← System- or <u>u</u> ser-missing ← Ra <u>ng</u> e:	Ol <u>d</u> ->	> New:
1 <u>t</u> hrough 4	<u>C</u> hange	
C Range: Lowest through	<u>R</u> emove	
C Range:		
C All <u>o</u> ther values	Continue Ca	ncel Help

บทที่ 5 การปรับปรุงแฟ้มข้อมูลด้วยคำสั่ง Data และ Transform

Recode into Same Variables: Old and New Valu	es		
Old Value	New Value		⊂ System-missir
C System-missing	· · · · ·	01 <u>d</u> -> New:	:
Range:	<u>A</u> dd		
C Range:	<u>R</u> emove		
C Range:			
through highest			
· All <u>u</u> titer values	Continue	Cancel	Help

ขั้นที่ 7. ในช่อง New Value ให้พิมพ์ค่าเป็น 1 จะสังเกตเห็นว่าปุ่ม Add จะมีสีดำขึ้นมา

ขั้นที่ 8. คลิกที่ปุ่ม Add จะได้ผลดังนี้

Old Value	New Value
[^] ⊻alue:	
<u>System-missing</u>	Old → New:
C System- or <u>u</u> ser-missing	Add 1 thru 4 -> 1
• Range:	
through	Change
C Range:	Bemove
Lowest through	
⊂ Rang <u>e</u> :	
through highest	
C All <u>o</u> ther values	Continue Cancel Help

ในทำนองเดียวกัน ใ

ให้พิมพ์ค่า 5, 20 ในช่อง

ในช่อง New Value พิมพ์ค่า 2

เสร็จแล้วคลิก Add จะได้ผลบนจอภาพเป็นดังนี้

Old Value	New Value	
⊂ <u>V</u> alue:	@ Value:	⊂ System-missing
← <u>S</u> ystem-missing	- Old	-> New:
System- or <u>u</u> ser-missing	Add 1 th	ru 4 -> 1
Range:	5 th	ru 20 -> 2
through	<u>C</u> hange	
C Range:	Bemove	
Lowest through	100000	
⊂ Rang <u>e</u> :		
through highest		
C All other values	Continue	ancel Help

คลิก Continue และ OK ตามลำดับ จะได้ผลบนจอภาพเป็น

การเปลี่ยนแปลงค่าตัวแปรเก่าและเก็บค่านั้นไว้ที่ตัวแปรใหม่

ตัวอย่างเช่น ในแฟ้ม file_xy1.sav มีตัวแปร x, y เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5 และ เปลี่ยนค่า x เป็น 2 ถ้า x ≥ 5 โดยค่าที่เปลี่ยนแปลงแล้วเก็บไว้ที่ตัวแปรใหม่ชื่อ newx

เปลี่ยนค่า x ไว้ที่ตัวแปร newx แล้วจะได้เป็น

file_xy1.sav

	х	У
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

file xy1 recode newx.sav

		-	
	х	у	newx
1	2.00	15.00	1.00
2	3.00	17.00	1.00
3	7.00	23.00	2.00
4	9.00	45.00	2.00
5	12.00	58.00	2.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล file_xy1.sav เข้ามาใน SPSS Data Editor

ขั้นที่ 2. เลือกคำสั่ง Transform / Recode / In Different Variables

🛗 file_xy1 - SPSS Data Editor							
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> ı					
	a 🔍 🗠						
10 :							
	х у						
1	2.00	15.00					
2	3.00	17.00					
3	7.00	23.00					
4	9.00	45.00					
5	12.00	58.00					

ขั้นที่ 3. คลิกที่คำสั่ง Into Different Variables จะได้เมนูย่อยเป็น

📾 Recode into Different Variables		x
★ x ★ y ★	Input <u>V</u> ariable -> Output Variable:	Output Variable <u>Name:</u> <u>Change</u>
		Label:
	<u>I</u> f Old and New Values	
	OK <u>P</u> aste <u>R</u> eset C	ancel Help

92

🛗 file_xy	1.sav - SPSS	6 Data Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
2	a 🔍 🗠	0 🖂 🔚 🎽
11 :		
	х	У
1	2.00	15.00
2	3.00	17.00
3	7.00	23.00
4	9.00	45.00
5	12.00	58.00

ขั้นที่ 4. เลือกตัวแปร x มาไว้ที่ช่อง Numeric Variables → Output พิมพ์ชื่อตัวแปรใหม่ newx ในช่อง Output Variable

🚓 Recode into Different V	ariables	×
	── Numeric ⊻ariable -> Output × -> ?	Output Variable <u>N</u> ame: newx <u>C</u> hange Label:
	If	
	<u>Q</u> Id and New Values OK <u>P</u> aste <u>R</u> eset C	ancel Help

เสร็จแล้วคลิกที่ Change จะได้ผลบนจอภาพเป็น

Image: Second endormal problem Image: Second endorm Image: Sec	Numeric ⊻ariable -> Output x -> newx	Vutput Variable Name: newx Change Label:
		ancel Help

หมายเหตุ x → newx หมายความว่าค่าจากตัวแปร x เมื่อเปลี่ยนแปลงแล้วจะเก็บไว้ที่ตัวแปร newx

ขั้นที่ 5. คลิกที่ Old and New Values จะได้เมนูย่อยเป็น

Recode into Different Variables: Old and New Valu	299 X
Old Value	New Value
€ ¥alue:	
← <u>S</u> ystem-missing	C Copy old value(s)
← System- or <u>u</u> ser-missing	01 <u>d</u> -> New:
C Range:	Add
C Range: Lowest through	Remove
⊂ Rang <u>e</u> :	☐ Output variables are strings Width: 8
through highest	
← All <u>o</u> ther values	Continue Cancel Help

ขั้นที่ 6. เลือก Option Range:

ให้พิมพ์ค่า 1, 4 ในช่อง Range ของ Old Value และ ในช่อง New Value พิมพ์ค่า 1

Recode into Different Variables: Old and New V	/alues
Old ¥alue Ĉ⊻alue:	New Value © Value: 1 C System-missing
← <u>S</u> ystem-missing	C Copy old value(s)
← System- or <u>u</u> ser-missing	OI <u>d</u> → New:
@ Range:	<u>A</u> dd
1 <u>t</u> hrough 4	Change

เสร็จแล้วคลิก Add

ให้พิมพ์ค่า 5, 20 ในช่อง Range ของ Old Value และ ในช่อง New Value พิมพ์ค่า 2

Recode into Different Variables: Old and New Values			
Old Value	New Value		
⊂ <u>V</u> alue:			
C System-missing	C Copy old value(s)		
C System- or user-missing	01 <u>d</u> -> New:		
₢ Range:	Add 1 thru 4 -> 1		
5 <u>t</u> hrough 20	Change		

เสร็จแล้วคลิก Add จะได้ผลบนจอภาพเป็นดังนี้

Recode into Different Variables: Old and New Value	25 X		
Old Value	New Value		
C ⊻alue:			
← <u>S</u> ystem-missing	C Copy old value(s)		
← System- or <u>u</u> ser-missing	01 <u>d</u> -> New:		
	Add 1 thru 4 -> 1		
through	Change Change		
C Range: Lowest through	<u>R</u> emove		
← Rang <u>e</u> :	☐ Output variables are strings Width: 8		
through highest			
C All <u>o</u> ther values	Continue Cancel Help		

ขั้นที่ 7. คลิก Continue และ OK ตามลำดับ จะได้ผลบนจอภาพดังนี้

	Y 0	จ	0	ຊິ
หมายเหต ข	ขอแนะน	าเนกา	รทางาน	ควรจะเช

้คำสั่ง Transform / Recode / In Different Variables

ดีกว่า คำสั่ง Transform / Recode / In Same Variables

เพราะว่าหากมีข้อผิดพลาดจากการเปลี่ยนแปลงค่าเรายังมีตัวแปรเก่าอ้างอิงและใช้งานต่อไปได้

🎬 file_xy1.sav - SPSS Data Editor								
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	<u>analyze G</u> raph					
2	a 🔍 🗠		🗠 😰 🏘					
18 :								
	х	у	newx					
1	2.00	15.00	1.00					
2	3.00	17.00	1.00					
3	7.00	23.00	2.00					
4	9.00	45.00	2.00					
5	12.00	58.00	2.00					

บทที่ 6 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์

การทำงานทางด้านสถิติวิเคราะห์มีงานเกี่ยวกับการประมาณค่าพารามิเตอร์เช่น ค่าเฉลี่ยประชากร μ ผลต่างของค่าเฉลี่ยประชากร μ₁ – μ₂ ๆลๆ การประมาณค่าเราสามารถทำได้โดยการหาช่วงความเชื่อมั่น (1-α)100% ของค่าเฉลี่ย μ ช่วงความเชื่อมั่น (1-α)100% ของผลต่างค่าเฉลี่ย μ₁ – μ₂ ในบทนี้จะเป็นการใช้ โปรแกรม SPSS ช่วยในการหาช่วงความเชื่อมั่นของค่าพารามิเตอร์ หาค่าสถิติเบื้องต้นแบบจำแนกตามกลุ่ม และแบบรวมกลุ่ม และทำการวิเคราะห์ความแปรปรวนทดสอบว่าค่าเฉลี่ยของประชากรทุกกลุ่มเท่ากันหรือไม่


```
Analyze / Compare Means / Paired-Samples T Test
คำนวณค่าสถิติเบื้องต้นจำแนกตามกลุ่ม
หาช่วงความเชื่อมั่น (1–α)100% ของผลต่างค่าเฉลี่ย μ<sub>1</sub>–μ<sub>2</sub> กรณีข้อมูลที่ไม่อิสระต่อกัน
หาค่าสหสัมพันธ์(Correlation)
```

Analyze / Compare Means / One-Way ANOVA คำนวณค่าสถิติเบื้องต้นจำแนกตามกลุ่ม หาช่วงความเชื่อมั่น (1-α)100% ของค่าเฉลี่ย μ จำแนกตามกลุ่มและรวมกลุ่ม ทำตาราง ANOVA เพื่อทดสอบสมมติฐาน H₀ : μ₁ = μ₂ = μ₃ = ... = μ_k ทดสอบสมมติฐาน H₀ : σ₁² = σ₂² = σ₃² = ... = σ_k²

6.1 การหาช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ

หลักการทางทฤษฎีในเนื้อหาวิชาของความน่าจะเป็นและสถิติของการหาช่วงความเชื่อมั่น (1-α)100% ของค่า เฉลี่ย μ จำแนกเป็นกรณีต่าง ๆ ดังนี้

1. กรณีประชากรมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2 สุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$

ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

2. กรณีประชากรมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2

สุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$ และ ค่าความแปรปรวนของตัวอย่าง \mathbf{s}^2

2.1 ขนาดตัวอย่าง n \geq 30 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ

$$-z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

2.2 ขนาดตัวอย่าง n < 30 ช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} ; df = n - 1$$

3. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน $\,\sigma^2$

สุ่มตัวอย่างขนาด n \geq 30 คำนวณค่าเฉลี่ยตัวอย่าง $\overline{\mathbf{x}}$

ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \! < \! \mu \! < \! \overline{x} \! + \! z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

4. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2 สุ่มตัวอย่างขนาด n ≥ 30 คำนวณค่าเฉลี่ยตัวอย่าง \overline{x} และ ค่าความแปรปรวนตัวอย่าง s^2 และประมาณค่า σ^2 ด้วย s^2

ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ

$$\overline{x} - z_{\underline{\alpha}} \ \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\underline{\alpha}} \ \frac{s}{\sqrt{n}}$$

การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ ด้วย SPSS for Windows

1. ข้อมูลที่นำมาทำการวิเคราะห์จะมีการแจกแจงแบบปกติหรือไม่ก็ได้

2. สุ่มตัวอย่างขนาด
n คำนวณค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}\,$ และค่าความแปรปรวนของตัวอย่าง
 \mathbf{s}^2

3. ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ คือ $\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$; df = n - 1

หมายเหตุ โปรแกรม SPSS จะคิดว่าข้อมูลที่นำมาคำนวณเป็นข้อมูลตัวอย่าง และมีคำสั่งใช้หลายแบบเช่น

- โดยการใช้คำสั่ง Analyze / Descriptive Statistics / Explore
- โดยการใช้คำสั่ง Analyze / Compare Means / One-Sample T Test

ตัวอย่าง 6.1.1 อายุหลอดไฟฟ้ามีการแจกแจงปกติ ค่าความแปรปรวนของประชากร σ² = 1600 สุ่มตัวอย่างหลอดไฟฟ้าจำนวน 30 หลอด หาค่าเฉลี่ยของตัวอย่างได้เท่ากับ 780 ชั่วโมง จงหาช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ

้วิธีทำ โดยใช้หลักการทางทฤษฎีของความน่าจะเป็นและสถิติ

กรณีประชากรมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2

สุ่มตัวอย่างขนาด n = 30 ค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$ = 780 ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ คือ

$$\overline{x} - z_{0.025} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{0.025} \frac{\sigma}{\sqrt{n}}$$

$$780 - 1.96(\frac{40}{\sqrt{30}}) < \mu < 780 + 1.96(\frac{40}{\sqrt{30}})$$

$$765.68 < \mu < 794.31$$

ตัวอย่าง 6.1.2 ในการประมาณค่าเฉลี่ยของประชากรหลอดไฟฟ้า ผู้ทดลองได้ทำการสุ่มตัวอย่างหลอดไฟฟ้าจำนวน 30 หลอด ได้ข้อมูลดังนี้

826.30	793.70	829.90	780.00	750.70	810.20	717.80	786.30	835.80	739.00
770.10	722.80	804.40	786.90	732.50	823.70	726.60	725.60	799.80	801.40
765.50	724.10	811.00	829.20	818.30	730.40	785.70	822.30	731.60	818.40

จงหาช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย µ

วิธีทำ การวิเคราะห์ข้อมูลโดย SPSS for Windows

โดยการใช้คำสั่ง Analyze / Descriptive Statistics / Explore

ขั้นที่ 1. สร้างแฟ้มข้อมูล

ประกอบด้วย 1 ตัวแปรคือตัวแปร x มี 30 ค่าสังเกต

และบันทึกลงแฟ้มข้อมูลชื่อ example6.sav

ขั้นที่ 2. ใช้คำสั่ง Analyze / Descriptive Statistics / Explore

🛅 example6 - SPSS Data Editor									
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>G</u> raph					
		a 🔍 🗠		10 🖌 🔄					
15 :									
		х	var	var					
	1	826.30							
	2	793.70							

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณที่ SPSS Viewer เป็นดังนี้

🚏 Output1 - SPSS Viewer									
<u>File Edit View Insert Format Analyze Graphs Utilities Window H</u> elp									
2000									
E Output	Explore Case Processing Summary								
Notes		Cases							
Case Processing Summar		Valid		Mis	Missing				
		N	Percent	N	Percent	N			
E o	Х	30	100.0%	0	.0%	30			
Stem-and-leaf plot	Descriptives								
						Std.			
					Statistic	Error			
	Х	Mean			780.0000	7.3043			

ผลการคำนวณโดยละเอียดคือ

Explore

Case Processing Summary

	Cases								
	v v	alid	Mi	ssing	Total				
	N	Percent	Ν	Percent	Ν	Percent			
Х	30	100.0%	0	.0%	30	100.0%			

98
			Statistic	Std. Error
Х	Mean		780.0000	7.3043
	95% Confidence	Lower Bound	765.0610	
	Interval for Mean	Upper Bound	794.9390	
	5% Trimmed Mean		780.3722	
	Median		786.6000	
	Variance		1600.601	
	Std. Deviation		40.0075	
	Minimum		717.80	
	Maximum		835.80	
	Range		118.00	
	Interquartile Range		86.0500	
	Skewness		274	.427
	Kurtosis		-1.473	.833

Descriptives

สรุป ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ คือ (765.0610, 794.9390) หมายเหตุ ที่มาของช่วง (765.0610, 794.9390) ได้มาจากสูตร

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
; $df = n - 1$

$$\begin{split} \alpha = 0.05 , \ \frac{\alpha}{2} = 0.025 , \ df = \ 30 \ - \ 1 \ = \ 29, \ t_{0.025, \ 29} \ = \ 2.045, \ \overline{x} = 780.00 \ , \ s \ = \ 40.0075 \end{split}$$
ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ คือ $\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ 780.0000 - 2.045($\frac{40.0075}{\sqrt{30}}$) $< \mu < 780.0000 + 2.045(\frac{40.0075}{\sqrt{30}})$ 780.0000 - 14.937 $< \mu < 780.0000 + 14.937$ 765.063 $< \mu < 794.937$

โดยใช้คำสั่ง Analyze / Compare Means / One-Sample T Test ขั้นที่ 1. สร้างแฟ้มข้อมูล ประกอบด้วย 1 ตัวแปรคือตัวแปร x มี 30 ค่าสังเกต และบันทึกลงแฟ้มข้อมูลชื่อ example6.sav

🛅 e	xamp	le6 - SPSS D)ata Editor		
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze	<u>G</u> raph:
2		a 🔍 🗠		는 []	<i>#</i> 4
15 :					
		х	var	Vā	r
	1	826.30			
	2	793.70			

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / One-Sample T Test

🛅 examp	le6 - SPSS D	ata Editor		
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
15:	/ 		Re <u>p</u> orts D <u>e</u> scriptive Statistics Custom <u>T</u> ables	; ₽ <u>₽</u> <u>₽</u> <u>\$</u> }
<u> </u>	x	var	Compare <u>M</u> eans	▶ <u>M</u> eans
1	826.30	1.54	<u>G</u> eneral Linear Model	 One-Sample T Test
	703.70		<u>C</u> orrelate	 Independent-Samples <u>T</u> Test
²	/93.70		<u>R</u> egression	Paired-Samples T Test
3	829.90		Loglinear	One-Way ANDVA
A 1	700 00		Loginodi	

ขั้นที่ 5. คลิก OK จะได้ผลที่จอ SPSS Viewer ดังนี้

ผลการคำนวณทั้งหมดคือ

T-Test

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Х	30	780.0000	40.0075	7.3043

One-Sample Test

	Test Value = 0							
			Sia.	Mean	95% Co Interva Differ	nfidence I of the rence		
	t	df	(2-tailed)	Difference	Lower	Upper		
Х	106.786	29	.000	780.0000	765.0610	794.9390		

สรุป ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ คือ (765.0610, 794.9390)

หมายเหตุ คำสั่ง Analyze / Compare Means / One-Sample T Test สามารถเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นได้

จากขั้นที่ 4.

เมื่อเลือกตัวแปร x มาไว้ที่ ช่อง Test Variable(s) เสร็จแล้ว

ขั้นที่ **4.1** การเปลี่ยนเปอร์เซ็นต์ ของช่วงความเชื่อมั่นให้ คลิกที่ปุ่ม Options บนจอภาพจะขึ้นเมนูย่อย

ขั้นที่ 4.2 ในซ่อง Confidence Interval ให้เปลี่ยนจาก 95% เป็น 99% ขั้นที่ 4.3 คลิกที่ Continue และ OK ตามลำดับ จะได้ผลที่จอ SPSS Viewer และที่ตาราง One-Sample Test ได้ช่วงความเชื่อมั่นใหม่ดังนี้

<u>C</u> onfidence Interval: 95 %	Continue
Missing Values	Cancel
 Exclude cases <u>a</u>nalysis by analysis Exclude cases listwise 	Help

One-Sample T Test: Options	×
<u>C</u> onfidence Interval: 99 %	Continue
Missing Values	Cancel
Exclude cases <u>a</u> nalysis by analysis	
← Exclude cases <u>l</u> istwise	Help

One-Sample Test

	Test Value = 0						
			Sia.	Mean	99% Co Interva Diffe	nfidence I of the rence	
	t	df	(2-tailed)	Difference	Lower	Upper	
X	106.786	29	.000	780.0000	759.8664	800.1336	

สรุป ช่วงความเชื่อมั่น 99% ของค่าเฉลี่ย μ คือ (759.8664, 800.1366) หมายเหตุ ที่มาของ (759.8664, 800.1366) ได้จากสูตร

$$\overline{x} - t_{\underline{\alpha}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\underline{\alpha}} \frac{s}{\sqrt{n}} \ ; \ df = n - 1$$

 $\alpha = 0.01$, $\frac{\alpha}{2} = 0.005$, df = 30 - 1 = 29 , $t_{0.005, 29} = 2.756$, $\overline{x} = 780.00$, s = 40.0075ช่วงความเชื่อมั่น 99% ของค่าเฉลี่ย μ คือ $\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ $780.0000 - 2.765(\frac{40.0075}{\sqrt{30}}) < \mu < 780.0000 + 2.765(\frac{40.0075}{\sqrt{30}})$ $780.0000 - 20.131 < \mu < 780.0000 + 20.131$ $759.869 < \mu < 800.131$

6.2 การหาช่วงความเชื่อมั่น (1 - α)100% ของผลต่างค่าเฉลี่ย μ1 - μ2 กรณีประชากร 2 ชุดเป็นอิสระต่อกัน

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติในการหาช่วงความเชื่อมั่น (1 – α)100% ของผลต่างค่าเฉลี่ย μ₁ – μ₂ จะจำแนกออกเป็น 2 กรณีคือ

- กรณีที่ประชากร 2 ชุดเป็นอิสระต่อกัน
- กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน

สุ่มตัวอย่างขนาด n_1 จากประชากรชุดที่ 1 และ สุ่มตัวอย่างขนาด n_2 จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง \overline{x}_1 และ \overline{x}_2

1. กรณี $n_1 \ge 30$ และ $n_2 \ge 30$

1.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1}-\overline{x}_{2})-z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n_{1}}} < \mu_{1}-\mu_{2} < (\overline{x}_{1}-\overline{x}_{2})+z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n_{1}}} + \frac{\sigma_{2}^{2}}{n_{2}}$$

1.2. กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2 และประมาณ σ_1^2 และ σ_2^2 ด้วย s_1^2 และ s_2^2 ตามลำดับ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_1 - \overline{x}_2) - z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

2. กรณี n_1 < 30 หรือ n_2 < 30

2.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

2.2 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2

2.2.1 ภายใต้ข้อกำหนด σ_1^2 = σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - t_{\frac{\alpha}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + t_{\frac{\alpha}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

เมื่อ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$

2.2.2 ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - t_{\frac{\alpha}{2}}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + t_{\frac{\alpha}{2}}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$$

บทที่ 6 การหาช่วงความเชื่อมั่น (1-\alpha)100% ของค่าพารามิเตอร์

$$\mathfrak{lid} df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ ด้วย SPSS for Windows 1. ข้อมลที่นำมาทำการวิเคราะห์จะมีการแจกแจงแบบปกติหรือไม่ก็ได้

2. สุ่มตัวอย่างขนาด n_1 จากประชากรชุดที่ 1 และ สุ่มตัวอย่างขนาด n_2 จากประชากรชุดที่ 2 3. หาค่าเฉลี่ยของตัวอย่าง \overline{x}_1 และ \overline{x}_2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2 **ภายใต้ข้อกำหนด** $\sigma_t^2 = \sigma_s^2$ ช่วงความเชื่อมั่น $(1 - \alpha)100\%$ ของผลต่างค่าเฉลี่ย $u_1 - u_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - t_{\frac{\alpha}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + t_{\frac{\alpha}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

เมื่อ
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 และ df = $n_1 + n_2 - 2$

ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ

$$(\overline{x}_1 - \overline{x}_2) - t_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2 \frac{1}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

การหาช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$

โดยใช้คำสั่ง Analyze / Compare Means / Independent-Samples T Test

ตัวอย่าง 6.2.1 ทำการทดลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด n₁ = 9 จากประชากรชุดที่ 1 มีข้อมูลเป็นดังนี้

ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้

56.92	58.30	67.48	53.96	62.00	59.61	52.02	61.60
64.83	58.55	52.53	64.74	55.51	66.18	55.51	54.18

จงหาช่วงความเชื่อมั่น 95% ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$

วิธีทำ การคำนวณด้วย SPSS for Windows

โดยใช้คำสั่ง Analyze / Compare Means / Independent-Samples T Test

ขั้นที่ 1. สร้างแฟ้มข้อมูล โดยกำหนดให้มีตัวแปร 2 ตัวคือ ตัวแปรจำแนกกลุ่มตัวอย่าง (code)

ขั้นที่ 7. คลิก Continue
จะกลับมาที่เมนูย่อย
Independent-Samples T Test
ที่ช่อง Grouping Variable
ที่ตัวแปร Code จะเปลี่ยนเป็น
Code[1 3]

	Test Variable(s):	ОК
	(*) ×	Paste
		<u>R</u> eset
		Cancel
		Help
	<u>G</u> rouping Variable: code(1 2)	
	Define Groups	<u>O</u> ptions

ขั้นที่ 8. คลิก OK จะได้ผลการคำนวณเป็นดังนี้

<mark>같 Dutput1 - SPSS Viewer</mark> File <u>E</u> dit View Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp									
- <u>- + + - 0 </u>									
E Output □E T-Test É Title	T-Te	st	Gro	oup Statis	tics				
Notes					Std.	Std. Error			
Group Statistics		CODE	N	Mean	Deviation	Mean			
Independent Samples Ter	Х	1	9	64.0067	5.9877	1.9959			
1		2	16	58.9950	5.0008	1.2502			

ผลการคำนวณทั้งหมดคือ

T-Test

Group Statistics

	CODE	N	Mean	Std. Deviation	Std. Error Mean
Х	1	9	64.0067	5.9877	1.9959
	2	16	58.9950	5.0008	1.2502

Independent Samples Test

				Х
			Equal variances	Equal variances not
Levene's Test for	F		.800	assanica
Equality of Variances	Sig.		.380	
t-test for Equality of	t		2.242	2.128
Means	df		23	14.333
	Sig. (2-tailed)		.035	.051
	Mean Difference		5.0117	5.0117
	Std. Error Difference		2.2353	2.3551
	95% Confidence Interval	Lower	.3876	0286
	of the Difference	Upper	9.6357	10.0520

การนำผลการคำนวณของ SPSS ไปใช้งานต้องเลือกให้เหมาะสมกับข้อกำหนดของประชากร กรณีที่ 1. ภายใต้เงื่อนไขว่าประชากรมีการแจกแจงปกติและมีความแปรปรวนเท่ากัน ต้องใช้ผลสรุปใน Equal variances assumed ช่วงความเชื่อมั่น 95% ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ 0.3876 < $\mu_1 - \mu_2$ < 9.6357 กรณีที่ 2. ภายใต้เงื่อนไขว่าประชากรมีการแจกแจงปกติและมีความแปรปรวนไม่เท่ากัน ต้องใช้ผลสรุปใน Equal variances not assumed ช่วงความเชื่อมั่น 95% ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ คือ 0.0286 < $\mu_1 - \mu_2$ < 10.0520 หมายเหตุ ถ้าไม่มีการกำหนดว่าความแปรปรวนเท่ากัน หรือไม่เท่ากัน การสรุปผลทางด้านสถิติเกี่ยวกับความ แปรปรวนของประชากรทั้ง 2 ประชากรให้ดูจากค่าสถิติ levene ในตาราง Independent Samples Test

ถ้า Sig. ของค่า Leven's Test for Equality of Variances มีค่าน้อยกว่า $\alpha = 0.05$ แล้วเราสรุปได้ว่าประชากร 2 ชุดมีค่าความแปรปรวนไม่เท่ากัน โดยมีระดับนัยสำคัญ $\alpha = 0.05$

ที่มาของค่าสถิติตรวจสอบได้ด้วย MATHCAD ดังนี้

ตาราง Group Statistics

((56.92)				
	58.30				
	67.48				
	53.96		(a a)		
	62.00		57.7(
	59.61		57.70		
	52.02		/1.94		
1-2 -	61.60		61.//	where the magn (semple 1)	whor1 = 64,0067
sample2 :=	64.83	sample1 :=	58.00 71.(1	x ball 1 = mean(sample 1)	$x_{0a11} = 04.0007$
	58.55		/1.01	xbar2 := mean(sample2)	xbar2 = 58.995
	52.53		/1.52	n1 := length(sample1)	n1 = 9
	64.74		38.07	n2 := length(sample2)	n2 = 16
	55.51		(62.77)	s1 := Stdev(sample1)	s1 = 5.9877
	66.18			s2 := Stdev(sample2)	s2 = 5.0008
	55.51			Std Error Mean1 := <u>s1</u>	Std Error Mean1 = 1 9959
l	54.18)			$\sqrt{n1}$	
				Std_Error_Mean2 := $\frac{s2}{\sqrt{n2}}$	Std_Error_Mean2 = 1.2502

ตาราง Independent Samples Test กรณีที่ความแปรปรวนประชากรทั้งสองชุดเท่ากัน

$$sp := \sqrt{\frac{(n1-1)\cdot s1^{2} + (n2-1)\cdot s2^{2}}{n1+n2-2}} \qquad sp = 5.3647 \qquad t := \frac{xbar1 - xbar2}{sp \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}} \qquad t = 2.242$$

$$df := n1 + n2 - 2 \qquad df = 23$$

$$Sig := 1 - pt(2.242, 23) \qquad Sig = 0.0175 \qquad Sig_2_tailed := 2 \cdot Sig \qquad Sig_2_tailed = 0.0349$$

Mean_Difference := xbar1 - xbar2 \qquad Mean_Difference = 5.0117

$$Std_Error_Difference := sp \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}} \qquad Std_Error_Difference = 2.2353$$

$$alpha := 0.05 \qquad t_alpha_divide2 := qt \left(1 - \frac{alpha}{2}, 23\right) \qquad t_alpha_divide2 = 2.0687$$

Lower := (xbar1 - xbar2) - t_alpha_divide2 \cdot Std_Error_Difference = 0.3876

Upper := $(xbar1 - xbar2) + t_alpha_divide2 \cdot Std_Error_Difference$ Upper = 9.6357

ตาราง Independent Samples Test กรณีความแปรปรวนประชากรทั้งสองชุดไม่เท่ากัน

$$t := \frac{xbar1 - xbar2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}} \qquad t = 2.128 \qquad df := \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\left(\frac{s1^2}{n1}\right)^2 \cdot \left(\frac{1}{n1 - 1}\right) + \left(\frac{s2^2}{n2}\right)^2 \cdot \left(\frac{1}{n2 - 1}\right)} \quad df = 14.3325$$

Sig := 1 - pt(2.128, 14.3325) Sig = 0.0256 Sig_2_tailed := 2 · Sig Sig_2_tailed = 0.0511 Mean_Difference := xbar1 - xbar2 Mean_Difference = 5.0117 Std_Error_Difference := $\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}$ Std_Error_Difference = 2.3551 alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, df\right)$ t_alpha_divide2 = 2.1401 Lower := (xbar1 - xbar2) - t_alpha_divide2 · Std_Error_Difference Lower = -0.0286 Upper := (xbar1 - xbar2) + t_alpha_divide2 · Std_Error_Difference Upper = 10.0520

	9 ²	. 9				. 9
v ,	9 IA 0 I	/ I GI A \	• d	9 1	did i	ରା ୬ ସ
ຫຼວວຍວາ ເວັດ	ຫລາເລາໄຮາເວດທາວຢາ	(assimeters)	. ໑ເລ.໑ຓຠ໑ເລ໑/ 1	1919/0.9 1 5	9 90 61 79 19 17	119 910 991
	นยุษยุการทาเหตุเพต	เทนสถานหนุส	0 0 0 1 1 1 1 0 1 1 1	เหล่างเอ	บทพานผ	แบนพทนผ
		(

		5							
2.40	2.42	1.87	2.50	2.29	1.68	2.57	1.60	1.65	1.41
1.66	1.32	2.43	1.83	1.41					
	Ŷ		۷					<i></i>	2

ข้อมูลปริมาณน้ำฝน (หน่วยเป็นนิ่ว) ของตำบลที่ 2 ในช่วง 10 ปีที่ผ่านมาเป็นดังนี้

0.79 1.25 0.72 0.84 1.32 1.35 1.29 0.72 0.96 1.13

สมมติว่าข้อมูลมีการแจกแจงปกติและมีค่าความแปรปรวนประชากรแตกต่างกัน จงหาช่วงความเชื่อมั่น 95 % ของความแตกต่างของค่าเฉลี่ยของปริมาณน้ำฝน

วิธีทำ การวิเคราะห์ข้อมูลด้วย SPSS for Windows

- ขั้นที่ 1. สร้างแฟ้มข้อมูลที่ประกอบด้วย 2 ตัวแปร
- คือ code เป็นตัวแปรจำแนกกลุ่ม
 - x เป็นตัวแปรปริมาณน้ำฝน

และ Save เป็นแฟ้มข้อมูลชื่อ example8.sav

<u>File</u> <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	<u>Analyze G</u> raph						
	code	х	var						
1	1	2.40							
2	1	2.42							
3	1	1.87							

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Independent-Samples T Test

Define Groups..

Options...

ขั้นที่ 3.

คลิกที่ Independent-Samples T Test จะได้เมนูย่อยดังนี้

บทที่ 6 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์

ขั้นที่ 5. ต่อไปเลือกหมายเลขของกลุ่มในตัวแปร code ที่เราต้องการวิเคราะห์ข้อมูล คลิกที่ code[? ?] และคลิกที่ Define groups จะได้เมนูย่อยของการเลือกหมายเลขกลุ่มเป็นดังนี้

ขั้นที่ 6. นำเมาส์มาคลิกที่ช่อง Group 1 และ พิมพ์หมายเลข 1 ในช่อง Group 1 นำเมาส์มาคลิกที่ช่อง Group 2 และพิมพ์หมายเลข 2 ในช่อง Group 2

Define Groups	×
Use specified values	Continue
Group <u>1</u> :	Cancel
Group <u>2</u> :	Help
← <u>C</u> ut point:	

Define Groups	×
Use specified values	Continue
Group <u>1</u> : 1	Cancel
Group <u>2</u> : 2	Help
← <u>C</u> ut point:	

ขั้นที่ 7. คลิก Continue	\Independent-Samples T Test	×
จะกลับมาที่เมนูย่อย	<u>∲</u> ×	Paste
ที่ช่อง Grouping Variable จะเป็น		Reset
code[1 2]		Cancel
แสดงว่าเป็นการวิเคราะห์ข้อมลของ		Help
กลุ่มที่ 1 และ 2	<u>G</u> rouping Variable: code[1 2]	
	Define Groups	<u>O</u> ptions

ขั้นที่ 8. คลิก OK จะได้ผลการคำนวณดังนี้

👔 ch6 Example8 - SPSS Viewer								
<u>F</u> ile <u>E</u> dit <u>V</u> iew Insert Format Analyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
<u> </u>							╴┑╸	
⊡ <mark>E</mark> Output □ E T-Test □É Title	٦	ſ-Te	st	Gro	up Statis	tics		
Notes	Ι.					Std.	Std. Error	
→ i Group Statistics	•		CODE	N	Mean	Deviation	Mean	
independent Samples Te		Х	1	15	1.9360	.4491	.1160	
			2	10	1.0370	.2588	.0818	

ผลการคำนวณทั้งหมดคือ

T-Test

Group Statistics

				Std.	Std. Error
	CODE	Ν	Mean	Deviation	Mean
Х	1	15	1.9360	.4491	.1160
	2	10	1.0370	.2588	.0818

				Х
			Equal	Equal
			variances	variances not
			assumed	assumed
Levene's Test for	F		7.7688	
Equality of Variances	Sig.		.0105	
t-test for Equality of	t		5.7052	6.334
Means	df		23	22.671
	Sig. (2-tailed)		.000008259	.000001959
	Mean Difference		.8990	.8990
	Std. Error Difference		.1576	.1419
	95% Confidence Interval	Lower	.5730	.6052
	of the Difference	Upper	1.2250	1.1928

Independent Samples Test

สรุปช่วงความเชื่อมั่น 95 % ของความแตกต่างของค่าเฉลี่ยของปริมาณน้ำฝน คือ

```
0.6052 < \mu_2 - \mu_l < 1.1928
```

การเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นในการใช้งาน

ของคำสั่ง Analyze / Compare Means / Independent-Samples T Test

ตัวอย่างเช่นต้องการหาช่วงความเชื่อมั่น 99% ของผลต่างค่าเฉลี่ย $\mu_2 - \mu_1$

จาก ขั้นตอน 7.

เมื่อเลือกตัวแปร และกำหนดหมายเลขกลุ่ม เสร็จแล้ว

ndent-Samples T Test: Op Confidence Interval: 99

C Exclude cases listwise

• Exclude cases <u>a</u>nalysis by analysis

Missing Values

%

Continue

Cancel

Help

nt-Samples T Test

ขั้นที่ 7.2 ให้เปลี่ยนเปอร์เซ็นต์จาก 95% เป็น 99%

ขั้นที่ 7.3 คลิก Continue

จะกลับเมนูย่อย Independent-Samples T Test

ขั้นที่ 8. คลิก OK จะได้ผลการคำนวณใหม่ในส่วนของตาราง Independent-Samples Test ดังนี้

				Х
			Equal	Equal
			variances	variances not
			assumed	assumed
Levene's Test for	F		7.769	
Equality of Variances	Sig.		.010	
t-test for Equality of	t		5.705	6.334
Means	df		23	22.671
	Sig. (2-tailed)		.000008259	.000001959
	Mean Difference		.8990	.8990
	Std. Error Difference		.1576	.1419
	99% Confidence Interval	Lower	.4566	.5000
	of the Difference	Upper	1.3414	1.2980

Independent Samples Test

สรุปช่วงความเชื่อมั่น 99% ของผลต่างค่าเฉลี่ย $\mu_2 - \mu_1$ คือ (0.5000, 1.2980)

6.3 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติในการหาช่วงความเชื่อมั่น (1–α)100% ของผลต่างค่าเฉลี่ย μ₁ –μ₂ เมื่อประชากร 2 ชุด ไม่เป็นอิสระต่อกัน มีขั้นตอนการทำงานดังนี้ สุ่มตัวอย่างขนาด n จากประชากรชุดที่ 1 และ ประชากรชุดที่ 2 ได้ข้อมูลเป็น

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
x ₁	У1
x ₂	У2
x ₃	У3
:	:
x _n	Уn

ขั้นตอนการคำนวณ 1. คำนวณค่าผลต่างของตัวอย่าง d_i = $x_i - y_i$, i = 1, 2, ..., n

2. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง d

คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d

กรณี n $\geq~30$ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ คือ

$$\overline{d} - z_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + z_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}}$$

กรณี n < 30 และภายใต้ข้อสมมติว่าประชากรมีการแจกแจงปกติ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ คือ

$$\overline{d} - t_{\underline{\alpha}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + t_{\underline{\alpha}} \frac{s_d}{\sqrt{n}} \ \mathfrak{id} \theta \ df = n - 1$$

การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ ด้วย SPSS for Windows

1. ข้อมูลที่นำมาทำการวิเคราะห์มีการแจกแจงแบบปกติ(ถ้าขนาดของตัวอย่างเล็กกว่า 30)

2. สุ่มตัวอย่างขนาด n จากประชากรชุดที่ 1 และ ประชากรชุดที่ 2

3. คำนวณค่าผลต่างของตัวอย่าง d_i = x_i - y_i, i = 1, 2, ..., n

4. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง d

5. คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d

ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ คือ

$$\overline{d} - t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} \quad i i = n - 1$$

การหาช่วงความเชื่อมั่น (1-α)100% ของ μ₁ -μ₂ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน โดยใช้คำสั่ง Analyze / Compare Means / Paired – Samples T Test

ตัวอย่าง 6.3.1 จากตัวอย่างสุ่มของนิสิตที่เรียนสถิติ 10 คน ได้ข้อมูลคะแนนการสอบย่อยครั้งที่ 1 และ ครั้งที่ 2 ของนิสิต 10 คน เป็นดังนี้

คนที่	คะแนนครั้งที่ 1.	คะแนนครั้งที่ 2.
1	76	81
2	60	52
3	85	87
4	58	70
5	91	86
6	75	77
7	82	90
8	64	63
9	79	85
10	88	83

จงหาช่วงความเชื่อมั่น 98% ของค่าผลต่างที่แท้จริงในการสอบย่อย

วิธีทำ กำหนด μ₁ เป็นค่าเฉลี่ยของประชากรชุดที่ 1 และ μ₂ เป็นค่าเฉลี่ยของประชากรชุดที่ 2 การคำนวณด้วย SPSS for Windows

ขั้นที่ 1. สร้างแฟ้มข้อมูลโดยกำหนดให้มีตัวแปร 2 ตัวคือ

ตัวแปร test1 เป็นคะแนนสอบย่อยครั้งที่ 1

ตัวแปร test2 เป็นคะแนนสอบย่อยครั้งที่ 2 เสร็จแล้วบันทึกลงแฟ้ม example9.sav

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Paired-Samples T Test

📺 exam	ple9 - SPSS	6 Data Editor					
<u>F</u> ile <u>E</u> di	t <u>V</u> iew <u>D</u> a	ita <u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indo	w <u>H</u> elp
2 Lest1	a		Rego D <u>e</u> so Cust	orts criptive Sta om <u>T</u> ables	tistics		<u> </u>
	test1	test2	Com	pare <u>M</u> ean	IS	•	<u>M</u> eans
<u> </u>	76.0	20 01 0	<u>G</u> ene	eral Linear	Model	•	One- <u>S</u> ample T Test
	<u> </u>	10 81.0	- Corre	elate		•	Independent-Samples T Test
2	2 60.0	00 52.0) Bear	ession		•	Paired Samples T Test
	3 85.0	0 87.0) <u>n</u> egi	Tiegression			Called Samples 1 Test
	L 597	י חל חר	- L <u>og</u> li 1	near		′—	Une-way ANU VA

iii exa mp <u>F</u> ile <u>E</u> dit	le9 - SPSS D <u>V</u> iew <u>D</u> ata	a ta Editor ∐ransform <u>A</u>
2	8 🔍 🗠	Ca 🖳 🎽
1 : test1		76
	test1	test2
1	76.00	81.00
2	60.00	52.00
3	85.00	87.00
4	58.00	70.00
5	91.00	86.00
6	75.00	77.00
7	82.00	90.00
8	64.00	63.00
9	79.00	85.00
10	88.00	83.00

บทที่ 6 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์

คลิกที่ Paired-Samples T Test จะได้ เมนูย่อยของคำสั่ง Paired-Samples T Test ดังนี้ Current Selections Variable 1:	OK Paste Reset Cancel Heln
เมนูย่อยของคำสั่ง Paired-Samples T Test ดังนี้ Current Selections	Paste Reset Cancel Heln
Paired-Samples T Test ดังนี้	<u>R</u> eset Cancel Help
Pared-Samples 1 Test	Cancel Help
Current Selections	Help
, Current Selections	
Variable 1:	
	0-11
variaule 2:	<u>Uptions</u>
all Paired-Samples T Test	×
ขั้นที่ 4. การเลือกตัวแปร 🛛 🖝 Paired Yariables:	ок
คลิกที่ตัวแปร test1 👘 test2	Paste
ตัวแปร test1 จะมาอย่ที่	<u>R</u> eset
ตำแหน่ง Variable 1 ก่อน	Cancel
	Help
Current Selections	
\longrightarrow Variable 1: test1	
Variable 2:	Options
ขั้นที่ 5	
คลิกที่ตัวแปร test2	X
จะได้ Variable 2: test2 Paired Variables:	OK
♥ lest2	Paste
	<u>R</u> eset
	Cancel
	Help
1	
Current Selections	
Current Selections Variable 1: test1 Variable 2: test2	Ontingo
Current Selections \rightarrow Variable 1: test1 \rightarrow Variable 2: test2	<u>O</u> ptions
Current Selections → Variable 1: test1 → Variable 2: test2 ## Paired-Samples T Test	Options
^{Current} Selections → Variable 1: test1 → Variable 2: test2 ² ั้นที่ 6. คลิกที่ → ² test1 → Paired ¥ariables: → test1 → Paired ¥ariables:	Options
 Current Selections Variable 1: test1 Variable 2: test2 ชั้นที่ 6. คลิกที่ จะได้คู่ของตัวแปรที่ต้องการในช่อง 	<u>Options</u>
 Current Selections	Options × OK Paste <u>R</u> eset
 ^{Current Selections} → Variable 1: test1 → Variable 2: test2 ^{EX Paired-Samples I Test} ^{EX Paired-Samples I Test} ^{EX Paired-Samples I Test} ^{EX Paired-Samples I Test} 	<u>O</u> ptions → OK <u>P</u> aste <u>R</u> eset Cancel
 ² ^Uนที่ 6. คลิกที่ → variable 2: test2 ² ^Variable 2: test2 ² ^Variable 2: test2 ² ^Variable 2: test2 ² ^Variable 2: test2 ² ^Variables: variables: ² ^Variables: ² ^Variables: ² ^Variables: ² ^Variables: ² ^Variables: ³ ^Variables: ⁴ ^Variables: 	Options OK Paste Reset Cancel Help
 ^{Current Selections} → Variable 1: test1 → Variable 2: test2 st Paired Samples T Test st Paired Variables: ^{test1} - test2 ^{test2} (test1) ^{test1} - test2 ^{current Selections} 	Options OK Paste Reset Cancel Help
 → Variable 1: test1 → Variable 2: test2 ขั้นที่ 6. คลิกที่ → จะได้คู่ของตัวแปรที่ต้องการในช่อง Paired Variables: test1 - test2 ✓ Test test1 test2 test2 test2	Options OK Paste Reset Cancel Help

ขั้นที่ 7. คลิก OK จะได้ผลการคำนวณดังนี้

🎬 ch6 Example9 - SPSS Viewer								
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>A</u> nalyz	<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
⊡ <mark>E</mark> Output ⊡ E T-Test É Title	Т	-Test	F	aired Sa	mples 9	Statistics		
Notes	Ι.					Std.	Std. Erro	or
Paired Samples Statistics	 +			Mean	N	Deviation	Mean	
Paired Samples Correlatio		Pair 1	TEST1	75.8000	10	11.6409	3.681	12
Pared Samples Test			TEST2	77.4000	10	12.1765	3.850	05
			Pair	ed Samp	les Cor	relations		_
					N	Correlation	Sig.	
		Pair 1	TEST1 8	TEST2	10	.857	.001517	
I	I							-

ผลการคำนวณทั้งหมดคือ

T-Test

Paired Samples Statistics

				Std.	Std. Error
		Mean	N	Deviation	Mean
Pair 1	TEST1	75.8000	10	11.6409	3.6812
	TEST2	77.4000	10	12.1765	3.8505

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	TEST1 & TEST2	10	.857	.001517

Paired	Samp	les T	est
--------	------	-------	-----

			Pair 1
			TEST1 - TEST2
Paired Differences	Mean		-1.6000
	Std. Deviation		6.3805
	Std. Error Mean		2.0177
	95% Confidence Interval	Lower	-6.1644
	of the Difference	Upper	2.9644
t			793
df			9
Sig. (2-tailed)			.44818721

สรุป ช่วงความเชื่อมั่น 95% ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ คือ –6.1644 < $\mu_1-\mu_2$ < 2.9644

หมายเหตุ การแปลความหมายของตาราง Paired Sample Correlations

ตัวแปร test1 และ test2 มีค่าสหสัมพันธ์เชิงเส้นเท่ากับ 0.857

จากค่า Sig. = 0.001515 ซึ่งต่ำกว่า α = 0.05 เราสามารถสรุปผลทางด้านสถิติได้ว่าตัวแปร test1 และ test2 มีความสัมพันธ์กันในรูปแบบเชิงเส้นตรง ที่ระดับนัยสำคัญ α = 0.05

เพราะฉะนั้นคะแนนสอบครั้งที่ 1 และ 2 มีความสัมพันธ์กันในรูปแบบเชิงเส้นตรงที่ระดับนัยสำคัญ $\alpha = 0.05$

		en nu i mai jee n compare	intenno / Tuneo
Samples T Test	aft Paired-Samples T Test	5 W 11	×
ลาก ขับตลบ 6	test?	Paired Variables:	ОК
	W COL	1511 - 1512	<u>P</u> aste
เมื่อเลือกตัวแปร test1– test2			Reset
ไว้ที่ช่อง Paired Variables			
in bov rance variables			Cancer
เสร็จแล้ว			Help
	, Current Selections		
	Variable 1:		
9 I I	Variable 2:		<u>O</u> ptions

การเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นในการใช้งานของคำสั่ง Analyze / Compare Means / Paired -

ขั้นที่ 6.1 ให้คลิกที่ Options

จะได้เมนูย่อย Paired Samples T Test Options ขั้นที่ 6.2 ให้เปลี่ยนเปอร์เซ็นต์จาก 95% เป็น 98%

ขั้นที่ 6.3 คลิก Continue จอภาพจะกลับมาที่เมนูย่อย Paired-Samples T Test

ขั้นที่ 6.4 คลิก OK จะได้ ผลการคำนวณในส่วนของตาราง Paired Samples Test เป็นดังนี้

Paired Samples Test

			Pair 1
			TEST1 - TEST2
Paired Differences	Mean		-1.6000
	Std. Deviation		6.3805
	Std. Error Mean		2.0177
	98% Confidence Interval	Lower	-7.2928
	of the Difference	Upper	4.0928
t			793
df			9
Sig. (2-tailed)			.44818721

สรุปช่วงความเชื่อมั่น 98% ของผลต่างค่าเฉลี่ย $\mu_1-\mu_2$ คือ –7.2928 < $\mu_1-\mu_2$ < 4.0928

6.4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Compare Means / Means

จากตัวอย่าง 6.2.1 ทำการทดลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด n₁ = 9 จากประชากรชุดที่ 1 มีข้อมูลเป็นดังนี้

	61.36 57.	7.76 71.94	61.77 58.66	71.61	71.52	58.67	62.77
--	-----------	------------	-------------	-------	-------	-------	-------

ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้

56.92	58.30	67.48	53.96	62.00	59.61	52.02	61.60
64.83	58.55	52.53	64.74	55.51	66.18	55.51	54.18

โดยการใช้ คำสั่ง Analyze / Compare Means / Means

วิธีทำ ขั้นที่ 1. สร้างแฟ้มข้อมูล โดยกำหนดให้มีตัวแปร 2 ตัวคือ ตัวแปรจำแนกกลุ่มตัวอย่าง (code) และ ตัวแปรข้อมูล (x) แล้วบันทึกไว้ที่แฟ้มชื่อ example7.sav

9293			
🧰 ехатр	le7 - SPSS	5 D	ata Editor
<u>File</u> <u>E</u> dit	<u>V</u> iew <u>D</u> a	ata	<u>T</u> ransform <u>A</u>
<u>2</u>	a 🖳	K)	Ca 🖳 🎽
12 :			
	code		х
1		1	61.36
2		1	57.76
3		1	71.94
4		1	61.77
5		1	58.66
6		1	71.61
7		1	71.52
8		1	58.67
9		1	62.77
10		2	56.92

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Means

🧰 ехатр	le7 - SPSS I)ata Editor		
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	Transform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
12 :	<i>8</i> 🖳 🖄		Descriptive Statistics Custom <u>T</u> ables	
<u> </u>	code	x	Compare <u>M</u> eans	▶ <u>M</u> eans
1	1	61.3	<u>G</u> eneral Linear Model	One- <u>S</u> ample T Test
2	1	57.7	<u>U</u> orrelate	 Independent-Samples <u>1</u> Test Deixed Samples T Test
3	1	71.9	Loginear	<u>ne-Wai ANDVA</u>
<u>ہ</u> ا	I 1	617	Loginious	<u>o</u> lo highlio (A

ขั้นที่ 3. คลิกที่ Means จะได้เมนูย่อยของคำสั่ง Analyze / Compare Means / Means

en Means		×
● code	Dependent List:	OK Paste <u>R</u> eset Cancel
	Independent List:	Help Options

🚓 Means		×
	Dependent List:	OK Paste <u>R</u> eset
	Previous Layer 1 of 1 <u>N</u> ext Independent List:	Cancel Help
	Code	<u>O</u> ptions

ขั้นที่ 4. เลือกตัวแปร x มาไว้ที่ช่อง Dependent List และ เลือกตัวแปร code มาไว้ที่ช่อง Independent List

ขั้นที่ 5. เสร็จแล้วคลิก OK จะได้ผลบนจอภาพเป็นดังนี้

ผลการคำนวณที่ได้คือ

Means

Case Processing Summary

			Ca	ases		
	Inc	luded	Exc	luded	Т	otal
	Ν	Percent	Ν	Percent	Ν	Percent
X * CODE	25	100.0%	0	.0%	25	100.0%

Report

X			
CODE	Mean	Ν	Std. Deviation
1	64.0067	9	5.9877
2	58.9950	16	5.0008
Total	60.7992	25	5.7973

การเพิ่มเติมความสามารถในการคำนวณค่าสถิติต่าง ๆ ของคำสั่ง Analyze / Compare Means / Means

จากขั้นตอน 4. เมื่อเลือกตัวแปรเสร็จแล้ว

<u>D</u> ependent List:	OK <u>P</u> aste <u>R</u> eset
Previous Layer 1 of 1 Next	Cancel Help
Independent List:	Options

ขั้นที่ 4.1 ให้คลิก Options บนจอภาพจะขึ้นเมนูย่อยดังนี้

- 1. คลิกที่ค่าสถิติในช่อง Statistics เช่นค่า Variance
 - คลิกที่ ▶ จะทำให้ค่าสถิติ Variance มาอยู่ที่ช่อง Cell Statistics ในที่นี้จะขอเลือกค่าสถิติเพิ่มจากของเดิม
 - ~

คือ Variance, Minimum และ Maximum

- คลิกที่ช่อง Anova table and eta จะได้ตาราง Anova และ ค่าสถิติ eta เพื่อสรุปผล ค่าเฉลี่ย และความสัมพันธ์ของข้อมูล
- คลิกที่ Test for linearlity เพื่อคำนวณค่าสถิติ เกี่ยวกับความสัมพันธ์ของตัวแปร
- ขั้นที่ 4.2 คลิก Continue
- เพื่อกลับไปเมนู Means

<u>S</u> tatistics:		<u>Cell Statistics:</u>
Median Grouped Median Std. Error of Mean Sum Minimum Maximum Range First Last Variance Kurtosis Std. Error of Kurtosis _ Skewness Std. Error of Skewnes Harmonic Mean		Mean Number of Cases Standard Deviation
Statistics for First Laye	er —	
\Box Anova table and eta	l	
\Box <u>T</u> est for linearity		
Means: Options		
Means: Uptions Statistics: Median Grouped Median Std. Error of Mean Sum Range First Last Kurtosis Std. Error of Kurtosis Std. Error of Skewness Std. Error of Skewness Std. Error of Skewness Harmonic Mean Geometric Mean Percent of Total Sum Percent of Total N		<u>C</u> ell Statistics: Mean Number of Cases Standard Deviation Variance Minimum Maximum
Means: Options Statistics: Median Grouped Median Std. Error of Mean Sum Range First Last Kurtosis Std. Error of Kurtosis Std. Error of Skewness Harmonic Mean Geometric Mean Percent of Total Sum Percent of Total Sum Percent of Total N Statistics for First Laye I Anova table and eta		<u>C</u> ell Statistics: Mean Number of Cases Standard Deviation Variance Minimum Maximum
Means: Options Statistics: Median Grouped Median Std. Error of Mean Sum Range First Last Kurtosis Std. Error of Kurtosis Std. Error of Skewness Harmonic Mean Geometric Mean Percent of Total Sum Percent of Total Sum Percent of First Laye ✓ Anova table and eta ✓ Test for linearity		<u>C</u> ell Statistics: Mean Number of Cases Standard Deviation Variance Minimum Maximum

บทที่ 6 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์

ขั้นที่ 4.3 คลิก OK ซึ่งจะได้ผลการคำนวณทั้งหมดที่ได้คือ

Means

Case Processing Summary

	Cases					
	Inc	luded	Exc	luded	Т	otal
	Ν	Percent	Ν	Percent	Ν	Percent
X * CODE	25	100.0%	0	.0%	25	100.0%

Report

X						
CODE	Mean	N	Std. Deviation	Variance	Minimum	Maximum
1	64.0067	9	5.9877	35.853	57.76	71.94
2	58.9950	16	5.0008	25.008	52.02	67.48
Total	60.7992	25	5.7973	33.609	52.02	71.94

ANOVA Table^a

			Sum of Squares	df	Mean Square	F	Sig.
X * CODE	Between Groups	(Combined)	144.6728	1	144.6728	5.0268	.03489679
	Within Groups		661.9486	23	28.7804		
	Total		806.6214	24			

a. With fewer than three groups, linearity measures for X * CODE cannot be computed.

Measures of Association

	Eta	Eta Squared
X * CODE	.423505	.179356

การสรุปผลเกี่ยวกับสมมติฐานโดยใช้ข้อมูลในตาราง ANOVA

เกณฑ์ในการสรุปผล ถ้า Sig. < lpha แล้วค่าเฉลี่ยของประชากรทั้ง 2 ชุดไม่เท่ากัน ที่ระดับนัยสำคัญ lpha

เพราะว่า Sig. = 0.03489679 น้อยกว่า $\alpha = 0.05$

เพราะฉะนั้นค่าเฉลี่ยของประชากรทั้ง 2 ชุดไม่เท่ากัน ที่ระดับนัยสำคัญ $\alpha=0.05$

หมายเหตุ สูตรที่มาของค่าต่าง ๆ ในตาราง ANOVA ขอให้ดูในบทที่ 9 เรื่องการวิเคราะห์ความแปรปรวน

การสรุปผลเกี่ยวกับสมมติฐานโดยใช้ข้อมูลในตาราง Measures of Association

Eta เป็นค่าสถิติที่ใช้อธิบายความสัมพันธ์ของประชากรในกลุ่มที่ 1 และ 2 ว่ามีความสัมพันธ์กันมากหรือน้อย โดยมีสูตร EtaSquare = $\frac{\text{Sum of Squares Between Groups}}{\text{Sum of Square Within Groups}} = \frac{144.6728}{806.6214} = 0.179356$ และ ค่า Eta = 0.423505 เพราะฉะนั้นประชากรในกลุ่มที่ 1 และ 2 มีความสัมพันธ์

6.5 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่าเฉลี่ย μ ด้วยคำสั่ง

Analyze / Compare Means / One-Way ANOVA

จากตัวอย่าง 6.2.1 ทำการทดลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด n₁ = 9 จากประชากรชุดที่ 1 มีข้อมูลเป็นดังนี้

|--|

ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้

56.92	58.30	67.48	53.96	62.00	59.61	52.02	61.60
64.83	58.55	52.53	64.74	55.51	66.18	55.51	54.18

เราสามารถหาช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย μ จำแนกตามกลุ่ม

และทดสอบสมมติฐานว่าค่าเฉลี่ยเท่ากันหรือไม่เท่ากัน

โดยการใช้ คำสั่ง Analyze / Compare Means / One-Way ANOVA

วิธีทำ ขั้นที่ 1. สร้างแฟ้มข้อมูล

โดยกำหนดให้มีตัวแปร 2 ตัวคือ

ตัวแปรจำแนกกลุ่มตัวอย่าง (code)

และ ตัวแปรข้อมูล (x)

แล้วบันทึกไว้ที่แฟ้มชื่อ example7.sav

หรือเปิดแฟ้มที่ Save ไว้แล้ว

💼 examp	le7 - SPS	5 D	ata Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> a	ata	<u>T</u> ransform <u>A</u>
≅ ∎	a 💷	K)	
9:			
	code		х
1		1	61.36
2		1	57.76
3		1	71.94
4		1	61.77
5		1	58.66
6		1	71.61
7		1	71.52
8		1	58.67
9		1	62.77
10		2	56.92

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / One-Way ANOVA

ขั้นที่ 3. คลิกที่ One-Way ANOVA จะได้เมนูย่อยของคำสั่ง One-Way ANOVA ดังนี้

♦ code	D <u>e</u> pendent List:	0K
(#) X		<u>P</u> aste
		<u>R</u> eset
		Cancel
	Eactor:	Help
	<u>C</u> ontrasts Post <u>H</u> oc <u>O</u> ption	IS

Oneway

Descriptives

Х				
		1	2	Total
Ν		9	16	25
Mean		64.0067	58.9950	60.7992
Std. Deviation		5.9877	5.0008	5.7973
Std. Error		1.9959	1.2502	1.1595
95% Confidence	Lower Bound	59.4041	56.3302	58.4062
Interval for Mean	Upper Bound	68.6092	61.6598	63.1922
Minimum		57.76	52.02	52.02
Maximum		71.94	67.48	71.94

Test of Homogeneity of Variances

X			
Levene Statistic	df1	df2	Sig.
.800	1	23	.3803831 ^a
a. Footnote			

Χ					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	144.6728	1	144.6728	5.0268	.03489679
Within Groups	661.9486	23	28.7804		
Total	806.6214	24			

ANOVA

จากตาราง Descriptives จะได้ว่า

ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 1 คือ (59.4041, 68.6092) ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 2 คือ (56.3302, 61.6598) ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 1 และ 2 รวมกันคือ (58.4062, 63.1922) หมายเหตุ 1. การสรุปผลเกี่ยวกับสมมติฐานโดยใช้ข้อมูลในตาราง Test of Homogeneity of variances เกณฑ์ในการสรุปผล ถ้า Sig. < α แล้วความแปรปรวนของประชากรทั้ง 2 ชุดไม่เท่ากัน ที่ระดับนัยสำคัญ α เพราะว่า Sig. = 0.3803831 ไม่น้อยกว่า α = 0.05

เพราะฉะนั้นยอมรับว่าความแปรปรวนของประชากรทั้ง 2 ชุดเท่ากัน ที่ระดับนัยสำคัญ $\alpha=0.05$

2. การสรุปผลเกี่ยวกับสมมติฐานโดยใช้ข้อมูลในตาราง ANOVA

เกณฑ์ในการสรุปผล ถ้า Sig. < α แล้วค่าเฉลี่ยของประชากรทั้ง 2 ชุดไม่เท่ากัน ที่ระดับนัยสำคัญ α เพราะว่า Sig. = 0.03489679 น้อยกว่า α = 0.05

เพราะฉะนั้นค่าเฉลี่ยของประชากรทั้ง 2 ชุดไม่เท่ากัน ที่ระดับนัยสำคัญ $\alpha=0.05$

 สูตรที่มาของค่าต่าง ๆ ในตาราง ANOVA และ การทดสอบค่าเฉลี่ยของประชากรหลายกลุ่มเท่ากันโดยใช้ ผลการคำนวณจากตาราง ANOVA ขอให้อ่านในบทที่ 9 เรื่องการวิเคราะห์ความแปรปรวน

การทดสอบสมมติฐานเป็นการทำงานทางสถิติที่สำคัญ เราจะทำการทดสอบสมมติฐานเมื่อเรามีข้อสงสัย เกี่ยวกับลักษณะต่าง ๆ ของประชากรเช่น ประชากรมีค่าเฉลี่ย μ = 50 จริงหรือไม่ ค่าเฉลี่ยประชากรของประชา กร 2 ชุดเท่ากันหรือไม่ การฉีดวัคชีนป้องกันอหิวาต์กับการเป็นโรคอหิวาต์เกี่ยวข้องกันหรือไม่ การนับถือ ศาสนาและถิ่นที่อยู่เกี่ยวข้องกันหรือไม่ ฯลฯ

การทดสอบสมมติฐานเป็นการนำข้อมูลตัวอย่างซึ่งอาจได้มาจากแบบสอบถาม การทดลอง เมื่อได้ข้อ มูลตัวอย่างมาแล้วจึงทำการคำนวณค่าสถิติจากตัวอย่าง เพื่อนำมาช่วยในการตัดสินใจโดยใช้เหตุผลทางสถิติว่า จะยอมรับหรือปฏิเสธสมมติฐานที่เรากำหนดไว้ ตัวอย่างการทดสอบสมมติฐานแบบต่าง ๆ เช่น

การทดสอบสมมติฐานว่า $\mu = \mu_0$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\mu_1 = \mu_2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\mu_D = 0$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma^2 = \sigma_0^2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_2^2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ จริงหรือไม่ การทดสอบสมมติฐานว่าช้อมูลเป็นอิสระต่อกัน จริงหรือไม่

การทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงตามที่คาดไว้(การทดสอบภาวะสารูปสนิทดี) จริงหรือไม่ ในบทที่ 7 นี้เราจึงศึกษาเกี่ยวกับการทดสอบสมมติฐานแบบต่างๆ ทั้งหลักการขั้นตอนการทำงานทางทฤษฎี และ การนำ SPSS for Windows เข้ามาช่วยในการคำนวณ

124

7.1 การทดสอบสมมติฐาน H_0 : $\mu = \mu_0$

หลักการและขั้นตอนการทำงานทางทฤษฎีในหนังสือความน่าจะเป็นและสถิติ ซั้นที่ 1. ถ้าหมดสมมติรามหวัด 11 เมษาย

ชินที่ 1. กำหนดสมมติฐานหลัก
$$H_0: \mu = \mu_0$$

กำหนดสมมติฐานอื่น $H_1: \mu \neq \mu_0$
ชิ้นที่ 2. กำหนดระดับนัยสำคัญ α
ชิ้นที่ 3. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ย \overline{x} และค่าความแปรปรวนของตัวอย่าง s²
ชิ้นที่ 4. เลือกค่าสถิติที่เหมาะสม Z หรือ t
ชั้นที่ 5. คำนวณต่าสถิติ z_{h1x2m} หรือ t_{h1x2m} ตามที่เลือกในชั้นที่ 4. จากข้อมูลตัวอย่าง
ชั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต
6.1 กรณีใช้ค่า Z คำวิกฤตคือ $-z_{\underline{\alpha}}$ และ $z_{\underline{\alpha}}$ บริเวณวิกฤตคือ $Z < -z_{\underline{\alpha}}$ หรือ $Z > z_{\underline{\alpha}}$
6.2 กรณีใช้ค่า I คำวิกฤตคือ $-t_{\underline{\alpha}}$ และ $t_{\underline{\alpha}}$ บริเวณวิกฤตคือ $t < -t_{\underline{\alpha}}$ หรือ $Z > z_{\underline{\alpha}}$
6.2 กรณีใช้ค่า I คำวิกฤตคือ $-t_{\underline{\alpha}}$ และ $t_{\underline{\alpha}}$ บริเวณวิกฤตคือ $t < -t_{\underline{\alpha}}$ หรือ $I > t_{\underline{\alpha}}$
7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผล
7.1 กรณีใช้ค่า Z ถ้า $z_{h1x2m} < -z_{\underline{\alpha}}$ หรือ $z_{h1x2m} > z_{\underline{\alpha}}$ แล้วปฏิเสธ H₀
7.2 กรณีใช้ค่า I ถ้า $t_{h1x2m} < -t_{\underline{\alpha}}$ หรือ $t_{h1x2m} > t_{\underline{\alpha}}$ แล้วปฏิเสธ H₀
1. กรณีประชากรมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2
2.1 ตัวอย่างขนาด n ≥ 30 แทนค่า σ ด้วย s เลือก $Z = \frac{\overline{x} - \mu_0}{(\frac{S}{\sqrt{n}})}$
2.2 ตัวอย่างขนาด n < 30 เสีนก σ เลือก $z = \frac{\overline{x} - \mu_0}{(\frac{S}{\sqrt{n}})}$
3. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2
4. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2
ต้อย่างขนาด n ≥ 30 แทนค่า σ ด้วย s เลือก $Z = \frac{\overline{x} - \mu_0}{(\frac{S}{\sqrt{n}})}$
4. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2
ต้องใช้ตัวอย่างขนาด n ≥ 30 แทนค่า σ ด้วย s เลือก $Z = \frac{\overline{x} - \mu_0}{(\frac{S}{\sqrt{n}})}$

หลักการและขั้นตอนของการทดสอบสมมติฐานด้วย SPSS for Windows

ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\mu = \mu_0$ กำหนดสมมติฐานอื่น H_1 : $\mu \neq \mu_0$

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ย $\overline{\mathbf{x}}$ และค่าความแปรปรวนของตัวอย่าง \mathbf{s}^2
- ขั้นที่ 4. SPSS for Windows เลือกค่าสถิติ t เท่านั้น

ขั้นที่ 5. คำนวณค่าสถิติ t =
$$rac{x-\mu_0}{(rac{S}{\sqrt{n}})}$$
 ซึ่งเราเรียกว่า t_{คำนวณ} และ องศาความอิสระ df = n – 1

ขั้นที่ 6. คำนวณค่า Sig. (2-tailed) ของค่าสถิติ t_{คำนวณ}

Sig. (2-tailed) = 2 เท่าของพื้นที่ใต้โค้งที ทางหางด้านขวาที่ระยะ | t_{คำนวณ} | = 2 P(t > | t_{คำนวณ} |)

ขั้นที่ 7. การสรุปผลสามารถเลือกใช้เหตุผลได้ 2 วิธีคือ

- 1. โดยการเปรียบเทียบค่าสถิติ t_{คำนวณ} จากตัวอย่าง กับ ค่าวิกฤตจากตาราง โดยมีเกณฑ์การสรุปผลว่า ถ้า t_{คำนวณ} < $-t_{\frac{\alpha}{2}}$ หรือ $t_{_{คำนวณ}} > t_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0
- หรือ 2. โดยการเปรียบเทียบค่า Sig. (2-tailed) กับ ระดับนัยสำคัญ α

โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig. (2–tailed) < lpha แล้วปฏิเสธ ${
m H}_0$

หมายเหตุ กรณีเป็นการทดสอบแบบ 1 ทาง

	$H_1 : \mu < \mu_0$	$H_1: \mu > \mu_0$
ค่าวิกฤต Z	-z _α	zα
ບริເວณวิกฤต	$Z < -z_{\alpha}$	$Z > z_{\alpha}$
ค่าวิกฤต t	$-t_{\alpha}$	t_{α}
ບรີເວณวิกฤต	$t < -t_{\alpha}$	$t > t_{\alpha}$
สรุปโดยใช้ Sig	ຄ້ຳ t _{คำนวณ} < 0, Sig. (2-tailed) < 2α	ຄ້ຳ $t_{e_{1}} > 0$, Sig. $(2-tailed) < 2\alpha$
	แล้ว ปฏิเสธ H ₀	แล้ว ปฏิเสธ $ m H_0$

ตัวอย่าง 7.1.1 เท่าที่ผ่านมานิสิตใช้เวลาลงทะเบียนโดยเฉลี่ย 50 นาที ขณะนี้มหาวิทยาลัยกำลังทดลองให้ นิสิตลงทะเบียนเรียนโดยใช้ระบบคอมพิวเตอร์ เพื่อทดสอบว่าเวลาเฉลี่ยที่ใช้ในการลงทะเบียนโดยใช้ระบบ คอมพิวเตอร์มีค่าเท่ากับ 50 นาทีหรือไม่ จึงทำการสุ่มตัวอย่างการลงทะเบียนของนิสิต 12 คนได้ข้อมูลดังนี้ 41, 42, 47, 41, 54, 26, 26, 65, 34, 49, 29, 50

กำหนดระดับนัยสำคัญ 0.05

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\mu = 50$ กำหนดสมมติฐานอื่น H_1 : $\mu \neq 50$

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05
- ขั้นที่ 3. เข้าสู่ SPSS Data Editor

สร้างแฟ้มข้อมูลที่มีตัวแปร x เป็นเวลาที่ใช้ในการ

ลงทะเบียน และ Save ข้อมูลลงแฟ้มชื่อ example10.sav

- **ขั้นที่ 4.** เลือกค่าสถิติ t
- ขั้นที่ 4.1 วิเคราะห์ข้อมูลด้วยคำสั่ง

Analyze / Compare Means / One-Sample T Test

ขั้นที่ 4.2 คลิก One-Sample T Test จะได้ผลบนจอภาพเป็น

มาไว้ที่ Test Variable(s) เพราะว่ากำหนดสมมติฐานหลัก μ = 50 เพราะฉะนั้นในช่อง Test Value

ให้พิมพ์ 50 ตามที่กำหนดสมมติฐานหลักไว้

ขั้นที่ 4.4 คลิก OK จะได้ผลการคำนวณเป็น

ขั้นที่ 4.3 เลือกตัวแปร x

📅 ch7 example10 - SPSS Viewer <u>F</u>ile <u>E</u>dit <u>V</u>iew Insert F<u>o</u>rmat <u>A</u>nalyze <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp <u>eran 19 an </u> E Output T-Test E T-Test - 😭 Title - 🕞 Notes **One-Sample Statistics** Std. Error Std. 荷 One-Sample Statistics N Mean Mean Deviation One-Sample Test 12 42.0000 3.43 11.9011 One-Sample Test Test Value = 50 95% Confidence Interval of the Difference Sig. (2-tailed) Mean Difference Upper Lower -8.0000 -15.5616 -.4384 11 040

ผลการคำนวณทั้งหมดคือ

T-Test

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Х	12	42.0000	11.9011	3.4356

One-Sample Test

	Test Value = 50								
			Sig	Moon	95% Con Interval Differe	fidence of the			
			j sig.	Mean	Differe				
	t	df	(2-tailed)	Difference	Lower	Upper			
Х	-2.329	11	.040	-8.0000	-15.5616	4384			

ขั้นที่ 5. ผลการคำนวณของ SPSS ได้ว่า ค่าสถิติ เ_{คำนวณ} = −2.329 องศาความอิสระ = 11

ขั้นที่ 6. คำนวณค่า Sig(2 - tailed) ของค่าสถิติ t

ผลการคำนวณของ SPSS ได้ว่า Sig. (2–tailed) = 0.03996820

หมายเหตุ ตรวจสอบการคำนวณด้วย MATHCAD จะเห็นได้ว่าค่า

Sig. (2-tailed) = 0.03996820 มาจาก 2 เท่าของ Pvalue(-2.329)

ผลการคำนวณจากโปรแกรม MATHCAD

T-distribution

TOL := 0.0000001 v := 11 Pvalue(T) := $0.5 - \int_{0}^{|T|} h(t) dt$

$$h(t) := \left(\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \sqrt{\pi \cdot v}}\right) \left| \cdot \left[1 + \left(\frac{t^2}{v}\right)\right]^{-\frac{v+1}{2}}\right|$$

Sig_1_Tailed(T) := Pvalue(T)Sig_1_Tailed(-2.329) = 0.020Sig_2_Tailed(T) := 2·Pvalue(T)Sig_2_Tailed(-2.329) = 0.040

หรือโดยการคำนวณด้วยฟังก์ชันสำเร็จรูปของ Mathcad

One_tailed_Significant(T) := 1 - pt(|T|, 11)One_tailed_Significant(-2.329) = 0.020Two_Tailed_Significant(T) := 2·One_tailed_Significant(T)Two_Tailed_Significant(-2.329) = 0.040ขั้นที่ 7. สรุปผล แบบที่ 1. โดยการเปรียบเทียบ $t_{h_{112341}} = -2.329$ กับ ค่าวิกฤต $t_{0.025, df=11} = 2.201$ เพราะว่า $H_1 : \mu \neq 50$ เพราะฉะนั้นบริเวณวิกฤตคือ t < -2.201 หรือ t > 2.201 สรุปปฏิเสธ H_0 แบบที่ 2. โดยการเปรียบเทียบค่า Sig(2 - tailed) กับ ระดับนัยสำคัญ α เพราะว่า Sig(2 - tailed) = 0.02 < 0.05 = α เพราะฉะนั้นปฏิเสธ H_0 สรุปผลการทดสอบสมมติฐานจากข้อมูลที่เก็บมาได้ต้องปฏิเสธสมมติฐานที่กล่าวว่าเวลาเฉลี่ยที่ใช้ในการลงทะเบียนโดยใช้ระบบคอมพิวเตอร์มีค่าเท่ากับ 50 นาที ที่ระดับนัยสำคัญ 0.05

7.2 การทดสอบสมมติฐาน H₀ : μ₁ = μ₂ กรณีที่ประชากร 2 ชุดเป็นอิสระต่อกัน หลักการและขั้นตอนการทำงานทางทฤษฎีเกี่ยวกับการทดสอบสมมติฐาน

ขั้นที่ 1. กำหนดสมมติฐานหลัก
$$H_0: \mu_1 = \mu_2$$

กำหนดสมมติฐานอื่น $H_1: \mu_1 \neq \mu_2$
ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
ขั้นที่ 3. สุ่มตัวอย่างขนาด n_1 จากประชากรชุดที่ 1 หาค่าเฉลี่ยของตัวอย่าง \overline{x}_1
สุ่มตัวอย่างขนาด n_2 จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง \overline{x}_2
ขั้นที่ 4. เลือกค่าสถิติที่เหมาะสม Z หรือ t
ขั้นที่ 5. คำนวณค่าสถิติ z_{e_1u2u} หรือ t_{e_1u2u} ตามที่เลือกในขั้นที่ 4. จากข้อมูลตัวอย่าง
ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต
6.1 กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $Z < -z_{\frac{\alpha}{2}}$ หรือ $Z > z_{\frac{\alpha}{2}}$
ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่างกับค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า
7.1 กรณีใช้ค่า Z ถ้า $z_{e_1u2u} < -z_{\frac{\alpha}{2}}$ หรือ $z_{e_1u2u} > z_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0
7.2 กรณีใช้ค่า t ถ้า $t_{e_1u2u} < -z_{\frac{\alpha}{2}}$ หรือ $t_{e_1u2u} > z_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0
เกณฑ์การเลือกค่าสถิติที่เหมาะสมของขั้นที่ 4.

1. กรณี $n_1 \ge 30$ และ $n_2 \ge 30$

1.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน
$$\sigma_1^2$$
 และ σ_2^2

เลือกใช้ค่าสถิติ Z =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

1.2. กรณีประชากร 2 ชุดมีการแจกแจงปกติและไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และประมาณ σ_1^2 ด้วย s_1^2 หาค่าความแปรปรวนของตัวอย่าง s_2^2 และประมาณ σ_2^2 ด้วย s_2^2 เลือกใช้ค่าสถิติ $Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

2. กรณี n_1 < 30 หรือ n_2 < 30

2.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน
$$\sigma_1^2$$
 และ σ_2^2

เลือกใช้ค่าสถิติ Z =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 2.2หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2
- 2.2.1 ภายใต้ข้อกำหนด σ_1^2 = σ_2^2

เลือกใช้ค่าสถิติ t =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 เมื่อ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$

2.2.2 ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$

เลือกใช้ค่าสถิติ t =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad tio df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

หลักการและขั้นตอนการทดสอบสมมติฐานด้วย SPSS for Windows

- ชั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\mu_1 = \mu_2$ กำหนดสมมติฐานอื่น H_1 : $\mu_1 \neq \mu_2$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. สุ่มตัวอย่างขนาด n_1 จากประชากรชุดที่ 1, สุ่มตัวอย่างขนาด n_2 จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง \overline{x}_1 และ \overline{x}_2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2
- ขั้นที่ 4. เลือกค่าสถิติ เ เท่านั้น

ภายใต้ข้อกำหนด
$$\sigma_1^2 = \sigma_2^2$$
 เลือกใช้ค่าสถิติ $t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

เมื่อ
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 และ df = $n_1 + n_2 - 2$
ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$

เลือกใช้ค่าสถิติ t =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 เมื่อ df =
$$\frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

ขั้นที่ 5. คำนวณค่าสถิติ เ ซึ่งเราเรียกว่า t_{คำนวณ} และ องศาความอิสระ df ขั้นที่ 6. คำนวณค่า Sig. (2-tailed) ของค่าสถิติ t_{คำนวณ} Sig. (2-tailed) = 2 เท่าของพื้นที่ใต้โค้ง ทางหางด้านขวาที่ระยะ | t_{คำนวณ} | Sig = Area = 2 P(t > | t_{คำนวณ} |)

ขั้นที่ 7. การสรุปผลสามารถเลือกใช้เหตุผลได้ 2 วิธีคือ

- 1. โดยการเปรียบเทียบค่าสถิติ t จากตัวอย่าง กับ ค่าวิกฤตจากตาราง โดยมีเกณฑ์การสรุปผลว่า ถ้า $t_{_{
 m e^nu}2a}$ < $-t_{_{
 m a}}$ หรือ $t_{_{
 m e^nu}2a}$ > $t_{_{
 m a}}$ แล้วปฏิเสธ ${
 m H}_0$
- 2. โดยการเปรียบเทียบค่า Sig. (2-tailed) กับ ระดับนัยสำคัญ α หรือ โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig. (2–tailed) < α แล้วปฏิเสธ H₀

หมายเหตุ กรณีการทดสอบแบบ 1 ทาง

	$H_1 : \mu_1 - \mu_2 < d_0$	$H_1 : \mu_1 - \mu_2 > d_0$
ค่าวิกฤต Z	-z _α	zα
ບรີເວณวิกฤต	$Z < -z_{\alpha}$	$Z > z_{\alpha}$
ค่าวิกฤต t	$-t_{\alpha}$	t_{α}
ບรີເວณวิกฤต	$t < -t_{\alpha}$	$t > t_{\alpha}$
สรุปโดยใช้ Sig	ຄ້ຳ t _{คำนวณ} < 0, Sig. (2-tailed) < 2α	ຄ້ຳ t _{คำนวณ} > 0, Sig. (2-tailed) < 2 α
	แล้ว ปฏิเสธ $ m H_0$	แล้ว ปฏิเสธ $ m H_0$

ตัวอย่าง 7.2.1 โรงงานผลิตแป้งกระป้องมีเครื่องจักร 2 เครื่อง

 μ_1 เป็นค่าเฉลี่ยประชากรของน้ำหนักของแป้งที่บรรจุในกระป๋องที่ผลิตจากเครื่องจักรที่ 1 ให้

µ2 เป็นค่าเฉลี่ยประชากรของน้ำหนักของแป้งที่บรรจุในกระป๋องที่ผลิตจากเครื่องจักรที่ 2 ้เพื่อทำการทดสอบว่าค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องเท่ากันหรือไม่ จึงทำการสุ่มตัวอย่างแป้งกระป๋องจาก

้เครื่องจักรเครื่องที่ 1 และ 2 มาอย่างละ 100 กระป๋อง ข้อมูลเก็บไว้ที่แฟ้มข้อมูลชื่อ example11.sav ้จงทดสอบสมมติฐานว่าค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องเท่ากันหรือไม่ ที่ระดับนัยสำคัญ 0.01

ขั้นที่ 1. กำหนดสมมติฐานหลัก

ົວີธีทำ

 H_0 : $\mu_1 = \mu_2$ กำหนดสมมติฐานอื่น $H_1 : \mu_1 \neq \mu_2$

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.01$

ขั้นที่ 3. นำข้อมูลเข้าสู่ SPSS Data Editor

machine เป็นตัวแปรจำแนกกลุ่มของโรงงาน

weight เป็นตัวแปรเก็บค่าน้ำหนักแป้ง

ขั้นที่ 4. เลือกค่าสถิติ t เท่านั้น

ขั้นที่ 4.1 เลือกคำสั่ง Analyze / Compare Means / Independent-Samples T Test

	🛗 example11 - SPSS Data Editor									
Eil	e <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	∐ir	ndow <u>H</u> elp		
			Re <u>p</u> o Desc	Reports Descriptive Statistics		<u> 19 ko sa </u>				
12 :			Custo	Custom <u>T</u> ables		•				
È	machine weight		Comp	Compare <u>M</u> eans		•	<u>M</u> eans			
	1	1.00	6.073	<u>G</u> ene	eral Linear	Model	•	One- <u>S</u> ample T Test		
	1	1.00	0.073	<u>C</u> orre	Correlate		- F	Independent-Samples <u>T</u> Test		
	2	1.00	6.058	Bear	ession		• F	Paired-Samples T Test		
	3	1.00	6.102	Logia						
	4	1.00	6 126	Logii	icai		· -	One-way AND VA		

v Data

machine

1.00

1.00

ا 🕫 ե đů

weight

6.0730

6.0580

🛎 🖬 🎒 🛒

ขั้นที่ 4.2	ঋী Independent-Samples T Test		×
คลิก Independent–Samples T Test จะได้ผลบนจอภาพเป็น	machine weight w	<u>[est Variable(s):</u> Grouping Variable: Define Groups	OK Paste Reset Cancel Help
ขั้นที่ 4.3 เลือกตัวแปร weight มาไว้ที่ Test Variable(s) และ เลือกตัวแปร machine มาไว้ที่ Grouping Variable	Independent-Samples T Test	[est Variable(s):	OK Paste Reset Cancel Help Options
ขั้นที่ 4.4 คลิกที่ machine[? ?] และ คลิกที่ Define Groups จอภาพจะมีเม	นูย่อยเป็น	Define Groups © Use specified values Group 1: Group 2: C Cut point:	Continue Cancel Help
ขั้นที่ 4.5 การเลือกกลุ่มเพื่อทดสอบ ให้พิมพ์ 1 ในช่อง Group 1. และ พิมพ์ 2 ในช่อง Group 2.		Define Groups © Use specified values Group 1: 1 Group 2: 2 C Cut point:	Continue Cancel Help
	នៅ Independent-Samples T Test		x
ขั้นที่ 4.6 กด Continue จะเห็นได้ว่า ตรงตัวแปร machine จะกลายเป็น machine[1 2]		Test Variable(s): weight Grouping Variable: machine(1 2) Define Groups	OK Paste Reset Cancel Help

ขั้นที่ 4.7 คลิก OK จะได้ผลการคำนวณที่ SPSS Viewer เป็นดังนี้

🎬 ch7 example11 - SPSS Viewer								
<u>F</u> ile <u>E</u> dit <u>V</u> iew Insert Format <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
2 4 4 4 4 4 4 4 4 4 4								
⊡ <mark>E</mark> Output ⊡ <mark>E</mark> T-Test É Title	T-Test		Grou	p Statistics				
Notes					Std.	Std. Error		
Group Statistics		MACHINE	N	Mean	Deviation	Mean		
Independent Samples Te	WEIGHT	1.00	100	6.109930	.03993182	.00399318		
		2.00	100	6.140250	.05009816	.00500982		

ผลการคำนวณทั้งหมดคือ

T-Test

Group Statistics

				Std.	Std. Error
	MACHINE	Ν	Mean	Deviation	Mean
WEIGHT	1.00	100	6.109930	.03993182	.00399318
	2.00	100	6.140250	.05009816	.00500982

Independent Samples Test

				IGHT
			Equal	Equal
			variances	variances not
			assumed	assumed
Levene's Test for	F		7.964764	
Equality of Variances	Sig.		.005256	
t-test for Equality of	t		-4.732663	-4.732663
Means	df		198	188.620126
	Sig. (2-tailed)		.00000421	.00000434
	Mean Difference		03032000	03032000
	Std. Error Difference		.00640654	.00640654
	95% Confidence Interval	Lower	04295381	04295767
	of the Difference	Upper	01768619	01768233

การเลือกใช้ผลการวิเคราะห์ในกรณี Equal variances assumed หรือ Equal variances not assumed เกณฑ์ในการสรุปผลคือ ถ้า Sig. ของ ค่า Levene's Test for Equality of Variances มีค่าน้อยกว่า α แล้ว สรุปได้ว่าความแปรปรวนของประชากรทั้ง 2 ชุดมีค่าไม่เท่ากัน โดยมีระดับนัยสำคัญ α การสรุปผล เกี่ยวกับความแปรปรวน

เพราะว่า Sig. ของ ค่า Levene's Test for Equality of Variances เท่ากับ 0.005256 มีค่าน้อยกว่า α = 0.01 เพราะฉะนั้นแล้ว ความแปรปรวนของประชากรทั้ง 2 ชุดมีค่าไม่เท่ากัน โดยมีระดับนัยสำคัญ α = 0.01 ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$

ขึ้นที่ 5. เลือกใช้ค่าสถิติ t =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 เมื่อ df = $\frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$
จากการคำนวณของ SPSS ได้ว่า t_{คำนวณ} = -4.732663, df = 188.6201

ขั้นที่ 6. คำนวณค่า Sig. (2-tailed) ของค่าสถิติ t จากการคำนวณของ SPSS จะได้ค่า Sig. (2-tailed) = 0.0000043
ขั้นที่ 7. สรุปผล 1. โดยการเปรียบเทียบค่าสถิติ t_{คำนวณ} จากตัวอย่าง กับ ค่าวิกฤตจากตารางสถิติ จากตารางสถิติจะได้ค่า t_{0.005,df=198} = 2.6008873
เพราะว่ากำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂
เพราะฉะนั้นบริเวณวิกฤตคือ t < -2.6008873 หรือ t > 2.6008873 สรุปปฏิเสธ H₀
หรือ 2. โดยการเปรียบเทียบค่า Sig. (2-tailed) กับ ระดับนัยสำคัญ α
เพราะฉะนั้นต้องเปรียบเทียบค่า α = 0.01 กับค่าของ Sig. (2-tailed)
เพราะฉ่า Sig. (2-tailed) = 0.0000043 < 0.01 = α สรุปปฏิเสธ H₀

ผลสรุปค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องทั้ง 2 ประชากรมีค่าไม่เท่ากันที่ระดับนัยสำคัญ 0.01 เสริมความรู้ของการคำนวณค่าทางสถิติด้วย MATHCAD

1 $xl = \begin{bmatrix} 1 & 6.073 \\ 2 & 6.058 \\ 3 & 6.102 \\ 4 & 6.126 \\ \hline 5 & 6.162 \\ \hline 99 & 6.16 \\ \hline$ 96 6.159 6.094 $x2 = \begin{array}{|c|c|c|c|} \hline 2 & 6.075 \\ \hline 3 & 6.13 \\ \hline 4 & 6.16 \\ \hline \end{array}$ 97 6.125 $x2 = \frac{97}{98}$ 6.16 99 6.203 6.156 6.138 xbar1 := mean(x1) xbar1 = 6.10993n1 = 100n1 := length(x1)xbar2 := mean(x2) xbar2 = 6.14025n2 := length(x2)n2 = 100s1 := Stdev(x1)s1 = 0.0399318245 s2 := Stdev(x2)s2 = 0.0500981612Std_Error_Mean1 := $\frac{s1}{\sqrt{n1}}$ Std_Error_Mean1 = 0.003993182 Std_Error_Mean2 := $\frac{s^2}{\sqrt{n^2}}$ Std_Error_Mean2 = 0.005009816 Equal variances assumed Mean Difference := xbar1 - xbar2 Mean Difference = -0.03032sp := $\sqrt{\frac{(n1-1)\cdot s1^2 + (n2-1)\cdot s2^2}{n1+n2-2}}$ sp = 0.0453010837Std_Error_Difference := $sp \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}$ Std_Error_Difference = 0.0064065407 $t := \frac{xbar1 - xbar2}{sp \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}} \qquad t = -4.7326633 \qquad df := n1 + n2 - 2 \qquad df = 198$

การหาค่า $t_{0.005 \text{ df}=198}$ และ Sig. (2-tailed)

alpha := 0.01 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, df\right)$ t_alpha_divide2 = 2.600887278 เพราะฉะนั้น $t_{0.005, df=198} = 2.600887278$

Sig := 1 - pt(|-4.7326633, 198)Sig = 0.0000021055Sig_2_tailed := $2 \cdot Sig$ Sig_2_tailed = 0.000004211

เพราะฉะนั้น Sig. (2-tailed) = 2(0.0000021055) = 0.000004211การคำนวณ 95% Confidence Interval of the Difference of Mean alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{\text{alpha}}{2}, \text{df}\right)$ t_alpha_divide2 = 1.9720174778 Lower := (xbar1 - xbar2) - t_alpha_divide2 · Std_Error_Difference Lower = -0.04295381 Upper := (xbar1 - xbar2) + t_alpha_divide2 · Std_Error_Difference Upper = -0.01768619

Equal variances not assumed $t := \frac{xbar1 - xbar2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}} \quad t = -4.7326633$ $df := \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\left(\frac{s1^2}{n1}\right)^2 \cdot \left(\frac{1}{n1 - 1}\right) + \left(\frac{s2^2}{n2}\right)^2 \cdot \left(\frac{1}{n2 - 1}\right)} \quad df = 188.6201257062$ $Mean_Difference := xbar1 - xbar2 \qquad Mean_Difference = -0.03032$ $Std_Error_Difference := \sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}} \qquad Std_Error_Difference = 0.0064065407$ nrsmin $t_{0.005, df = 188.62}$ use Sig. (2-tailed) alpha := 0.01 (q = 1 + q = 2)

t_alpha_divide2 := $qt\left(1 - \frac{alpha}{2}, df\right)$ t_alpha_divide2 = 2.6021453165 iw57=a=uu t_{0.005, df=188.620} = 2.6021453165 Sig := 1 - pt(|-4.732663\$, df) Sig = 0.00000217

Sig_2_tailed := 2.Sig Sig_2_tailed = 0.0000043378

เพราะฉะนั้น Sig. (2-tailed) = 2(0.00000217) = 0.0000043378
การคำนวณ 95% Confidence Interval of the Difference of Mean

alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, df\right)$ t_alpha	a_divide2 = 1.9726206787
$Lower := (xbar1 - xbar2) - t_alpha_divide2 \cdot Std_Error_Difference$	Lower = -0.04295767
Upper := (xbar1 - xbar2) + t_alpha_divide2 · Std_Error_Difference	Upper = -0.01768233

หมายเหตุ ในกรณีที่เราต้องการทดสอบ สมมติฐานหลัก H₀ : μ₁ – μ₂ = k แย้งกับ H₁ : μ₁ – μ₂ ≠ k สามารถทำได้โดยนำเรื่องของการเปลี่ยนค่าตัวแปรมาช่วย ตัวอย่างเช่น จากตัวอย่าง 7.2.1 เราต้องการทดสอบ H₀ : μ₁ – μ₂ = 0.02 แย้งกับ H₁ : μ₁ – μ₂ ≠ 0.02 กำหนดระดับนัยสำคัญ 0.01

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : μ₁ – μ₂ = 0.02 กำหนดสมมติฐานอื่น H₁ : μ₁ – μ₂ ≠ 0.02 ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.01

🛅 examp	le11 - SPSS	Data Editor				
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>G</u> raph			
19:						
	machine	weight	var			
1	1.00	6.0730				

ขั้นที่ 3. นำแฟ้ม example11.sav ข้อมูลเข้าสู่ SPSS Data Editor

- การ copy ตัวแปร weight ไปเป็นตัวแปรใหม่ชื่อ newweigh
- ขั้นที่ 3.1 คลิกเมาส์ที่ชื่อตัวแปร weight

ขั้นที่ 3.2 เลือกคำสั่ง Edit และ Copy

ขั้นที่ 3.3 คลิกเมาส์ที่ Column ของตัวแปรที่ยังว่างทางด้านขวา จะขึ้นแถบสีดำในช่องตัวแปรที่ว่าง

ขั้นที่ 3.4 เลือกคำสั่ง Edit / Paste จะได้ผลดังนี้ เปลี่ยนชื่อตัวแปร var00001 เป็น newweigh

จะได้ข้อมูลของตัวแปร weight และ newweigh เหมือนกัน

🛅 example11 - SPSS Data Editor						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform ¿	<u>A</u> nalyze <u>G</u> raph:		
		machine	weight	newweigh		
	1	1.00	6.0730	6.0730		
	2	1.00	6.0580	6.0580		

🛗 example11 - SPSS Data Editor						
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u> <u>G</u> raph			
2	a 🖳 🗠		10 🕅 🔛			
1 : weight		6.	073			
	machine	weight	var			
1	1.00	6.073	ו			

🛄 e:	🧱 example11 - SPSS Data Editor						
<u>F</u> ile	<u>E</u> dit	<u>⊻</u> iew <u>D</u> a	ata	<u>T</u> ransf	orm	Analyze	<u>G</u> raph
₽ 1:	*						
		machine	9	weig	ght	Va	ar:
	1	1.0	20	6.	0730		

🚞 еха	mp	le11 - 9	FSS	Data Edit	or		
<u>F</u> ile <u>E</u>	dit	⊻iew	<u>D</u> ata	<u>T</u> ransform	Ē	<u>Analyze</u>	<u>G</u> raph
		mach	ine	weight		var00	0001
	1		1.00	6.07	30	6	.0730

การเพิ่มค่า newweigh อีก 0.02 เฉพาะกลุ่มเครื่องจักรเครื่องที่ 1 ขั้นที่ 3.5 เลือกคำสั่ง Transform / Compute จะได้เมนูย่อยเป็น

😹 Compute Variable			×
Target Variable:		Numeric <u>E</u> xpression:	
	=		
Type& <u>L</u> abel ⊛machine			~
è weight Ir newweigh		+ < > 7 8 9 Eunctions: - <= >= 4 5 6 ABS(numexpr) * = ^= 1 2 3 ANY(test.value,value,) // & 1 0 ARSIN(numexpr) *** ~ () Delete CDFNORM(zvalue) CDF.BERNOULLI(q,p) CDF.BERNOULLI(q,p)	•
		<u></u>	
		OK Paste Reset Cancel Help	

3. เราต้องการบวกเพิ่มเฉพาะน้ำหนักของกลุ่มที่ 1 เพราะฉะนั้นให้คลิกที่ If จะได้เมนูย่อย

2. พิมพ์ machine = 1 ในช่องสี่เหลี่ยมด้านล่าง

ขั้นที่ 3.7 คลิก Continue และ OK ตามลำดับ เมื่อมีคำถามว่าต้องการเปลี่ยนค่าตัวแปรจริงไม่ ให้คลิก OK

SPSS for Windows
Change existing variable?
OK Cancel

จะได้ว่าข้อมูล newweigh กลุ่มที่ 1 ทุกตัวถูกบวกเพิ่ม 0.02 แต่ข้อมูล newweigh กลุ่มที่ 2 ยังเป็นค่าเดิม

🛗 examp	le11 plus 02	to machine	e1 - SPSS D	ata Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	<u>∖</u> nalyze <u>G</u> rap	ohs <u>U</u> tilities
🖻 🖬	a 🔍 🗠		- 0	📲 👘 🗄
16 :				
	machine	weight	newweigh	var
1	1.00	6.0730	6.0930	
2	1.00	6.0580	6.0780	
100	1.00	6.1230	6.1430	
101	2.00	6.0940	6.0940	
102	2.00	6.0750	6.0750	

เสร็จแล้ว save ไว้ที่ชื่อ example11_plus_02_to_machine1.sav

ขั้นที่ 4. เลือกค่าสถิติ t เท่านั้น

ขั้นที่ 4.1 เลือกคำสั่ง Analyze / Compare Means / Independent-Samples T Test

T-Tests

Group Statistics

				Std.	Std. Error
	MACHINE	Ν	Mean	Deviation	Mean
NEWWEIGH	1.00	100	6.129930	.039932	.003993
	2.00	100	6.140250	.050098	.005010

Independent Samples Test

			NEWV	VEIGH
			Equal variances assumed	Equal variances not assumed
Levene's Test for	F		7.964764	
Equality of Variances	Sig.		.005256	
t-test for Equality of	t		-1.610854	-1.610854
Means	df		198	188.620
	Sig. (2-tailed)		.108805	.108884
	Mean Difference		010320	010320
	Std. Error Difference		.006407	.006407
	95% Confidence Interval		022954	022958
	of the Difference	Upper	.002314	.002318

ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$

ขั้นที่ 6. จากตาราง Independent Samples Test

t_{คำนวณ} = -1.610854 และ Sig. (2-tailed) = 0.108884

ขั้นที่ 7. เพราะว่ากำหนดสมมติฐานอื่น H_1 : $\mu_1 - \mu_2 \neq 0.02$

เพราะฉะนั้นต้องเปรียบเทียบค่า α = 0.01 กับค่าของ Sig. (2-tailed)

เพราะว่า Sig. (2-tailed) = 0.108884 > 0.01 = α เพราะฉะนั้นยอมรับ H_0

สรุปค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องทั้ง 2 ประชากรแตกต่างกันไม่เกิน 0.02 ที่ระดับนัยสำคัญ 0.01

7.3 การทดสอบสมมติฐาน H₀ : μ₁= μ₂ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติ กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน ในการทดสอบ สมมติฐาน H₀ : μ₁ = μ₂ หรือ การทดสอบสมมติฐาน H₀ : μ_D = d₀ มีขั้นตอนการทำงานดังนี้

ขั้นที่ **1**. กำหนดสมมติฐานหลัก
$$H_0$$
 : $\mu_D = d_0$

กำหนดสมมติฐานอื่น ${
m H}_{
m l}$: $\mu_{
m D}$ ≠ ${
m d}_0$

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. สุ่มตัวอย่างขนาด n จากประชากรชุดที่ 1 และ ประชากรชุดที่ 2 ได้ข้อมูลเป็น

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
x ₁	У1
x2	У2
x ₃	У3
:	:
x _n	y _n

ขั้นตอนการคำนวณ

1. คำนวณค่าผลต่างของตัวอย่าง d_i = x_i - y_i, i = 1, 2, ... , n

2. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง d

คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d

ขั้นที่ 4. เลือกค่าสถิติที่เหมาะสม Z หรือ t

กรณี n ≥ 30 เลือกใช้ค่าสถิติ Z =
$$\frac{\overline{d} - d_0}{\frac{s_d}{\sqrt{n}}}$$

กรณี n < 30 และภายใต้ข้อสมมติว่าผลต่างของข้อมูลมีการแจกแจงปกติ

เลือก t =
$$\frac{\overline{d} - d_0}{\frac{s_d}{\sqrt{n}}}$$
 เมื่อ df = n - 1

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง

138

หรือ 2. โดยการเปรียบเทียบค่า Sig. (2-tailed) กับ ระดับนัยสำคัญ
$$\alpha$$

โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig. (2-tailed) < α แล้วปฏิเสธ H_0

	${\rm H}_1$: $\mu_D < d_0$	$\mathrm{H}_1 : \mu_D > d_0$
ค่าวิกฤต Z	-z _α	zα
ບรີເວ໙ວີກฤต	$Z < -z_{\alpha}$	$Z > z_{\alpha}$
ค่าวิกฤต เ	$-t_{\alpha}$	t _α
ບรີເວ໙ວີກฤต	$t < -t_{\alpha}$	$t > t_{\alpha}$
สรุปโดยใช้ Sig	ຄ້ຳ t _{คำนวณ} < 0, Sig. (2-tailed) < 2α	ถ้ำ $t_{\text{คำนวณ}} > 0$, Sig. $(2-\text{tailed}) < 2 \alpha$
	แล้ว ปฏิเสธ $ m H_0$	แล้ว ปฏิเสธ $ m H_0$

หมายเหตุ กรณีเป็นการทดสอบแบบ 1 ทาง

ตัวอย่าง 7.3.1 จากตัวอย่างสารที่มีแร่เหล็ก 5 ตัวอย่างนำมาวิเคราะห์หาปริมาณเหล็ก 2 วิธี คือใช้รังสีเอ็กซ์ และ สารเคมี โดยแบ่งออกเป็น 2 กลุ่มตัวอย่างย่อยและใช้วิธีการวิเคราะห์หาปริมาณเหล็กได้ข้อมูลดังนี้

ตัวอย่างที่	1	2	3	4	5
วิธีวิเคราะห์ด้วยรังสีเอ็กซ์	2.0	2.0	2.3	2.1	2.4
วิธีวิเคราะห์ด้วยสารเคมี	2.2	1.9	2.5	2.3	2.4

ให้ μ1 เป็นค่าเฉลี่ยประชากรของปริมาณเหล็กที่วิเคราะห์ด้วยรังสีเอ็กซ์

μ₂ เป็นค่าเฉลี่ยประชากรของปริมาณเหล็กที่วิเคราะห์ด้วยสารเคมี

สมมติว่าประชากรมีการแจกแจงปกติ จงทดสอบว่าการทดสอบสองวิธีให้ผลเหมือนกันที่ระดับนัยสำคัญ 0.05

วิธีทำ การวิเคราะห์ด้วย SPSS for Windows

- ขั้นที่ **1**. กำหนดสมมติฐานหลัก H_0 : $\mu_D = 0$ กำหนดสมมติฐานอื่น H_1 : $\mu_D \neq 0$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. สุ่มตัวอย่างขนาด n คำนวณค่า \overline{D} และ s_d
- ขั้นที่ 4. นำข้อมูลเข้ามาทำการวิเคราะห์เพื่อหาค่าสถิติ t
- ขั้นที่ 4.1 สร้างแฟ้มมูลใน SPSS Data Editor

กำหนดตัวแปร xray เป็นตัวแปรปริมาณแร่เหล็กโดยใช้วิธีวิเคราะห์ด้วยรังสีเอ็กซ์

chem เป็นตัวแปรปริมาณแร่เหล็กโดยใช้วิธีวิเคราะห์ด้วยสารเคมี

และ Save แฟ้มข้อมูลชื่อ example12.sav

ม้ส่	a ° °			
ขั้นที่ 4.2	เลือกคำสง Analyze	/ Compare Means	/ Paired-Samples T	Test

จอภาพจะขึ้นเมนูของคำสั่ง Analyze / Compare Means / Paired-Samples T Test

Paired-Samples T Test		2
❀ ×ray ❀ chem	 Paired <u>V</u> ariables:	OK
		Paste
		<u>R</u> eset
		Cancel
		Help
Current Selections		
Variable 1:		
Variable 2:		Options

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>
~	a 🔍 🗠	
13 :		
	xray	chem
1	2.00	2.20
2	2.00	1.90
3	2.30	2.50
4	2.10	2.30
5	2.40	2.40

example12 - SPSS Data Edito

เลือกตัวแปร Variable 1 เป็น xray โดยการคลิกที่ตัวแปร xray จะเห็นว่าที่ช่อง Current Selections จะกลายเป็น Variable 1 : xray และ Variable 2 : จะยังไม่มีตัวแปร

เลือกตัวแปร Variable 2 เป็น chem โดยการคลิกที่ตัวแปร chem จะเห็นว่าที่ช่อง Current Selections จะกลายเป็น Variable 2 : chem

Current Selections
Variable 1: ×ray
Variable 2:

Current Selections				
Variable 1:	×ray			
Variable 2:	chem			

ขั้นที่ 4.4 คลิกที่ 🕩 เพื่อย้ายคู่ของตัวแปร xray - chem มาไว้ที่ช่อง Paired-Variables

Paired-Samples T Test			
<pre> ★ ×ray </pre>	_	Paired ⊻ariables:	ок
⊕) cnem		×ray – cnem	Paste
			<u>R</u> eset
			Cancel
			Help
Current Selections			
Variable 1:			
Variable 2:			<u>O</u> ptions

ขั้นที่ 4.5 คลิก OK จะได้ผลการคำนวณเป็นดังนี้

🎬 ch7 example12 - SPSS Viewer							
<u>File Edit V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
F B B B B B	<u>- R @ -</u>		+ +	<u> </u>	<u> </u>		
⊡ <mark>E</mark> Output ⊡ E T-Test É Title	T-Test		Paired	Sample	s Statistics		
Notes			Mean	N	Std. Deviation	Std. Error Mean	
Paired Samples Statistics	Pair 1	XRAY	2.1600	5	.181659	.081240	
Paired Samples Correlation		CHEM	2.2600	5	.230217	.102956	
Pared Samples Test							

ผลการคำนวณทั้งหมดคือ

T-Test

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	XRAY	2.1600	5	.181659	.081240
	CHEM	2.2600	5	.230217	.102956

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	XRAY & CHEM	5	.789076	.112533

Paired Samples Test

				Pair 1
				XRAY - CHEM
P	aired Differences	Mean		100000
		Std. Deviation		.141421
		Std. Error Mean		.063246
		95% Confidence Interval	Lower	275598
		of the Difference	Upper	.075598
t				-1.581139
d	lf			4
S	ig. (2-tailed)			.18900366

ขั้นที่ 4. เลือกค่าสถิติ t

- ขั้นที่ 5. จากตาราง Paired Samples Test จะได้ $t_{_{
 m eff}}$ = 1.581139 และ องศาความอิสระ df = 4
- ขั้นที่ 6. คำนวณค่า Sig. (2-tailed) ของค่าสถิติ t จากตาราง Sig. (2-tailed) = 0.18900366
- ขั้นที่ 7. สรุปผล
 - 1. จากการเปิดตาราง $t_{0.025,df=4} = 2.776$ บริเวณวิกฤตคือ t < -2.776 หรือ t > 2.776 เพราะว่า $t_{
 m e^{1}u_{2}u_{2}}$ = 1.581 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น สรุป ยอมรับ H_{0}
- หรือ 2. โดยการเปรียบเทียบค่า Sig. (2-tailed) กับ α

เพราะว่า Sig. (2-tailed) = 0.18900366 > 0.05 = α เพราะฉะนั้นยอมรับ H $_0$ หมายเหตุ การคำนวณด้วย MATHCAD

ORIGIN:= 1

xray :=	$\begin{pmatrix} 2.0 \\ 2.0 \\ 2.3 \\ 2.1 \end{pmatrix}$ che	$em := \begin{pmatrix} 2 \\ 1 \\ 2 \\ 2 \end{pmatrix}$	2.2) 9 2.5 2.3	n := length(xray)	n = 5
mean_x	(2.4 <i>)</i> (ray := mean	(2 n(xray)	2.4)	$mean_xray = 2.16$	
mean_chem := mean(chem)			$mean_chem = 2.26$		
Std_Deviation_xray := Stdev(xray)			Std_Deviation_xray = 0.181659		
Std_Deviation_chem := Stdev(chem)			Std_Deviation_chem = 0.23021		
correlation := corr(xray, chem)			correlation $= 0.789076$		

การคำนวณค่าผลต่าง d

d := xray - chem

$$d = \begin{pmatrix} -0.2 \\ 0.1 \\ -0.2 \\ -0.2 \\ 0 \end{pmatrix} \qquad dbar := mean(d) \qquad dbar = -0.1$$

$$Std_Deviation := Stdev(d) \qquad Std_Deviation = 0.141421$$

$$Std_Error_Mean := \frac{Std_Deviation}{\sqrt{n}} \qquad Std_Error_Mean = 0.063246$$

การคำนวณค่าสถิติ t

$$t := \frac{dbar - 0}{\frac{Std_Deviation}{\sqrt{n}}} \qquad t = -1.5811388301 \qquad df := n - 1 \qquad df = 4$$

การคำนวณค่า Sig. (2-tailed)

$$\mathbf{v} := \mathbf{df} \qquad \mathbf{h}(\mathbf{t}) := \frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right) \cdot \sqrt{\pi \cdot \mathbf{v}}} \cdot \left(1 + \frac{\mathbf{t}^2}{\mathbf{v}}\right)^{-\frac{\mathbf{v}+1}{2}}$$

Significant := 0.5 -
$$\int_{0}^{\left[-1.5811388301\right]} \mathbf{h}(\mathbf{t}) \, \mathbf{dt}$$

Significant = 0.0945018292

หรือโดยการใช้คำสั่งสำเร็จรูป pt ของ Mathcad

Sig :=
$$1 - pt(|-1.581138830|, df)$$
Sig = 0.0945018292 Sig_2_tailed := $2 \cdot Sig$ Sig_2_tailed = 0.1890036585

การคำนวณ 95% Confidence Interval of the Difference

alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, df\right)$	t_alpha_divide2 = 2.776445
$Lower := dbar - t_alpha_divide2 \cdot Std_Error_Mean$	Lower = -0.27559781
Upper := dbar + t_alpha_divide2 · Std_Error_Mean	Upper = 0.07559781

หมายเหตุ การทดสอบ H_0 : $\mu_D = d_0$ แย้งกับ H_1 : $\mu_D \neq d_0$ เมื่อ $d_0 \neq 0$ เช่น $d_0 = 0.5$ สามารถทำได้ตามขั้นตอนดังนี้

- ขั้นที่ **1.** กำหนดสมมติฐานหลัก H_0 : $\mu_D = 0.5$ กำหนดสมมติฐานอื่น H_1 : $\mu_D \neq 0.5$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3.** สุ่มตัวอย่างขนาด n
- ขั้นที่ 4. น้ำข้อมูลเข้ามาทำการวิเคราะห์ เพื่อหาค่าสถิติ t

ขั้นที่ 4.1

นำแฟ้มมูล example12.sav เข้ามาใน SPSS Data Editor สร้างตัวแปร newchem ให้มีค่าเท่ากับ chem + 0.05

🛅 examp	le12 - SPSS	Data Editor	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	<u>Analyze G</u> raph
🖻 🖬	a 🔍 🗠		🗕 🛛 🦛
16 :			
	xray	chem	var
1	2.00	2.20	
2	2.00	1.90	
3	2.30	2.50	
4	2.10	2.30	
5	2.40	2.40	

9995			
exam	ole12 - SPSS	Data Editor	
<u>File E</u> dit	<u>V</u> iew <u>D</u> ata	Iransform <u>A</u>	<u>Analyze</u> <u>G</u> raph
28	8 🔍 🗠		- <u>R</u>
16 :			
	xray	chem	newchem
1	2.00	2.20	2.25
2	2.00	1.90	1.95
3	2.30	2.50	2.55
4	2.10	2.30	2.35
5	2.40	2.40	2.45

 ★ xray ♦ chem ♦ newsham 	_	Paired <u>V</u> ariables:	OK
A newchem			Paste
			<u>R</u> eset
			Cancer
			Help
-Current Selections			
Variable 1:			
Variable 2:			Options

ขั้นที่ 4.2 เลือกคำสั่ง Analyze / Compare Means / Paired-Samples T Test

ขั้นที่ 4.3 เลือกคู่ของตัวแปรเพื่อทดสอบเป็น xray- newchem

Paired	⊻ariables:	ОК
×ray	– newchem	<u>P</u> aste

ขั้นที่ 4.4 คลิก OK จะได้ผลการคำนวณทั้งหมดคือ

T-**T**est

Paired Samples Statistics

				Std.	Std. Error
		Mean	N	Deviation	Mean
Pair 1	XRAY	2.1600	5	.1817	.081240
	NEWCHEM	2.3100	5	.2302	.102956

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair 1 XRAY & NEWCHEM	5	.789076	.112533

Paired Samples Test

			Pair 1
			XRAY - NEWCHEM
Paired Differences	Mean		150000
	Std. Deviation		.141421
	Std. Error Mean		.063246
	95% Confidence Interval	Lower	325598
	of the Difference	Upper	.025598
t			-2.371708
df			4
Sig. (2-tailed)			.07667814

เพราะว่า Sig. (2-tailed) = 0.07667814 > 0.05 = α เพราะฉะนั้นยอมรับ H $_0$: μ_D = 0.5

7.4 การทดสอบสมมติฐาน H_0 : $\sigma^2 = \sigma_0^2$

หลักการและขั้นตอนการทำงานทางทฤษฎีของความน่าจะเป็นและสถิติ

- ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : σ² = σ₀² กำหนดสมมติฐานอื่น H₁ : σ² ≠ σ₀² ขั้นที่ 2. กำหนดระดับนัยสำคัญ α ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าความแปรปรวนของตัวอย่าง s²
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์
- ขั้นที่ 5. คำนวณค่าสถิติไคสแควร์ $\chi^2_{{
 m enu}_{20}} = \frac{(n-1)s^2}{\sigma_0^2}$

ขั้นที่ 6. เปิดตารางสถิติหาค่าวิกฤต $\chi^2_{1-\frac{\alpha}{2}}$ และ $\chi^2_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $\chi^2 < \chi^2_{1-\frac{\alpha}{2}}$ หรือ $\chi^2 > \chi^2_{\frac{\alpha}{2}}$

ขั้นที่ 7. การสรุปผล ถ้า $\chi^2_{_{
m fru}_{
m nu}}$ < $\chi^2_{_{
m l}-\frac{lpha}{2}}$ หรือ $\chi^2_{_{
m fru}_{
m nu}}$ > $\chi^2_{\frac{lpha}{2}}$ แล้วปฏิเสธ ${
m H}_0$

ตัวอย่าง 7.4.1 ผู้ผลิตอ้างว่าอายุการใช้งานของแบตเตอรีมีการแจกแจงปกติ และมีส่วนเบี่ยงเบนมาตรฐาน เป็น 0.9 ปี เพื่อทดสอบคำกล่าวอ้างของผู้ผลิตจึงทำการสุ่มตัวอย่างแบตเตอรีออกมา 10 ลูกได้อายุใช้งานดังนี้

	5.25	3.76	5.36	3.67	6.05	3.89	3.39	6.12	6.49	6.03
--	------	------	------	------	------	------	------	------	------	------

จงทดสอบสมมติฐาน σ^2 = 0.81 ที่ระดับนัยสำคัญ 0.05

- วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : σ^2 = 0.81 กำหนดสมมติฐานอื่น H_1 : σ^2 ≠ 0.81
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. สุ่มตัวอย่างขนาด 10 คำนวณค่าความแปรปรวนของตัวอย่าง s²
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์
- ขั้นที่ 5. คำนวณค่าสถิติไคสแควร์ $\chi^2_{
 m \acute{e}nu2m} = rac{(n-1)s^2}{\sigma_0^2}$
- ผลการคำนวณด้วย MATHCAD

data :=
$$\begin{pmatrix} 5.25 \\ 3.76 \\ 5.36 \\ 3.67 \\ 6.05 \\ 3.89 \\ 3.39 \\ 6.12 \\ 6.49 \\ 6.03 \end{pmatrix}$$
 $\sigma := 0.9$
 $n := length(data)$
 $n = 10$
 $s = 1.2$
 $s = 1.2$
 $chisquare := \frac{(n-1) \cdot s^2}{\sigma^2}$
 $chisquare = 16.001$

เพราะฉะนั้น $\chi^2_{
m \acute{h}^1u2a}$ = 16.001

- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.025}$ = 19.023 , $\chi^2_{0.975}$ = 2.7 เมื่อ df = 10 1 = 9 บริเวณวิกฤตคือ χ^2 < 2.7 หรือ χ^2 > 19.023
- ข**ึ้นที่ 7.** โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต เพราะว่า $\chi^2_{
 m n_{nu}}$ ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น ยอมรับ H₀
- 7.5 การทดสอบสมมติฐาน H₀ : σ₁² = σ₂²
 หลักการและขั้นตอนการทำงานทางทฤษฎีของความน่าจะเป็นและสถิติ
 ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : σ₁² = σ₂²
 กำหนดสมมติฐานอื่น H₁ : σ₁² ≠ σ₂²
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α

ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด
$${
m n}_1$$
 และ ${
m n}_2$ คำนวณค่าความแปรปรวนของตัวอย่าง ${
m s}_1^2,~{
m s}_2^2$

ขั้นที่ **4**. เลือกค่าสถิติเอฟ F =
$$\frac{s_1^2}{s_2^2}$$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตเอฟที่มีองศาอิสระ $v_1 = n_1 - 1$ และ $v_2 = n_2 - 1$ ค่าวิกฤตคือ f และ f ปริเวณวิกฤตคือบริเวณ F < f F หรือ F > f $\frac{\alpha}{2}$

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต
ถ้า f_{คำนวณ} < f
$$_{1-rac{lpha}{2}}$$
 หรือ f $_{
m e^nuวu}$ > f $_{rac{lpha}{2}}$ แล้วปฏิเสธ H $_0$

ตัวอย่าง 7.5.1 วัตถุ 5 ชิ้นได้รับการปฏิบัติแบบที่ 1 ได้ผลการทดลองเป็นดังนี้
 1.024 0.972 1.004 0.986 1.015
 วัตถุ 6 ชิ้นได้รับการปฏิบัติแบบที่ 2 ได้ผลการทดลองเป็นดังนี้

1.017 0.991 1.018 1.018 0.983 0.975
จงทดสอบสมมติฐาน H₀ :
$$\sigma_1^2 = \sigma_2^2$$
 แย้งกับ H₁ : $\sigma_1^2 \neq \sigma_2^2$

กำหนดระดับนัยสำคัญ 0.1

ີວີຣີ້ກຳ

- ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น H_1 : $\sigma_1^2 \neq \sigma_2^2$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.1$
- ชั้นที่ 3. ทำการสุ่มตัวอย่างขนาด $n_1 = 5$ และ $n_2 = 6$ คำนวณค่าความแปรปรวนของตัวอย่าง s_1^2 , s_2^2

การคำนวณด้วย MATHCAD

$$x1 := \begin{pmatrix} 1.024 \\ 0.972 \\ 1.004 \\ 0.986 \\ 1.015 \end{pmatrix} x2 := \begin{pmatrix} 1.017 \\ 0.991 \\ 1.018 \\ 1.018 \\ 0.983 \\ 0.983 \\ 0.975 \end{pmatrix} r_{-compute} := \frac{s1^{2}}{s2^{2}} r_{-compute} = 1.162927$$

ขั้นที่ 4. เลือกค่าสถิติเอฟ

ขั้นที่ 5. คำนวณค่าสถิติเอฟ
$$f_{e_{1}} = \frac{s_{1}^{2}}{s_{2}^{2}} = 1.162927$$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตเอฟที่มีองศาอิสระ $v_1 = n_1 - 1 = 4$ และ $v_2 = n_2 - 1 = 5$ ค่าวิกฤตคือ $f_{0.05,(4,5)} = 5.199$ และ $f_{0.95,(4,5)} = \frac{1}{f_{0.05,(5,4)}} = \frac{1}{6.26} = 0.1597444$

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต เพราะว่า _{f_{ตำบาญ} ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้นยอมรับ _{H0}}

หลักการและขั้นตอนของการวิเคราะห์ด้วย SPSS for Windows

- ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น H_1 : $\sigma_1^2 \neq \sigma_2^2$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n_1 และ n_2 จากประชากรแต่ละชุด
- ขั้นที่ 4. เลือกค่าสถิติ Levene
- ขั้นที่ 5. คำนวณค่าสถิติ Levene และค่า Sig
- ขั้นที่ 6. ทำการวิเคราะห์ข้อมูลโดย SPSS for Windows
- ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่า Sig กับ ค่านัยสำคัญ α ถ้า Sig < α แล้วปฏิเสธ H₀

จากตัวอย่าง 7.5.1 ต้องสร้างแฟ้มข้อมูลแบบ 2 ตัวแปรคือ ตัวแปร code จำแนกกลุ่มประชากร และตัวแปร x เก็บข้อมูลที่วัดได้จากการทดลอง

การทดสอบสมมติฐาน H_0 : $\sigma_1^2 = \sigma_2^2$ แย้งกับ H_1 : $\sigma_1^2 \neq \sigma_2^2$ กำหนดระดับนัยสำคัญ 0.1

ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น H_1 : $\sigma_1^2 \neq \sigma_2^2$

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ $\alpha = 0.1$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด $n_1 = 5$ และ $n_2 = 6$
- ขั้นที่ 4. เลือกค่าสถิติ Levene
- ขั้นที่ 5. คำนวณค่าสถิติ Levene และค่า Sig
- ขั้นที่ 6. สร้างแฟ้มข้อมูลโดยมี ตัวแปร code เป็นตัวแปรจำแนกกลุ่ม ตัวแปร x เป็นตัวแปรข้อมูลที่ต้องการวิเคราะห์
- เสร็จแล้ว Save ข้อมูลไว้ที่แฟ้มข้อมูลชื่อ example13.sav

ขั้นที่ 6.1 เลือกคำสั่ง Analyze / Compare Means / One-Way ANOVA

🧰 examp	ole13 - SPSS	Data Edito	r					
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u>	raphs	<u>U</u> tilities	<u>W</u> in	dow	<u>H</u> elp
2 	a 🔍 🗠		Re <u>p</u> orts D <u>e</u> scripti Custom]	ive Stat <u>T</u> ables	tistics	•	t	<u>s</u>
	code	х	Compare	e <u>M</u> eans	s	•	M	eans
1	1.00	1.02	<u>G</u> eneral Correlate	Linear I	Model	1	0	ne- <u>S</u> ample T Test dependent Semples T Test
2	1.00	.97	<u> </u>	ion				aired Samples T. Test
3	1.00	1.00	Loglinea	r			 	ne.Wai ANOVA
1	1 1 1 1 1 1 1	00	Loginea				- 2	ne mey ane ma

ขั้นที่ 6.2 คลิกที่คำสั่ง One-Way ANOVA จะได้เมนูย่อยเป็น

📽 One-Way ANOVA		X
Code	- D <u>e</u> pendent List:	OK
		Paste
		<u>R</u> eset
		Cancel
	Eactor:	Help
	·	
	<u>C</u> ontrasts Post <u>H</u> oc <u>O</u> ptions	

ขั้นที่ 6.3 เลือกตัวแปร x ไปไว้ที่ Dependent List เลือกตัวแปร code ไปไว้ที่ Factor

₩R One-Way ANOVA		×
	Dependent List:	ОК
	× ×	<u>P</u> aste
		<u>R</u> eset
		Cancel
	Eactor: ♦ code	Help
	<u>Contrasts</u> Post <u>H</u> oc <u>O</u> ptions	

148

🛅 examp	le13 - SPSS	Data Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r
2	a 🔍 🗠	
15 :		
	code	х
1	1.00	1.024
2	1.00	.972
3	1.00	1.004
4	1.00	.986
5	1.00	1.015
6	2.00	1.017
7	2.00	.991
8	2.00	1.018
9	2.00	1.018
10	2.00	.983
11	2.00	.975

...

ข้าส่		A 11		ער	ដ
ขนท	6.4	คลกปม	Options	เดเ	มนเปน
		•			~ ~

One-Way ANOVA: Options X Statistics Continue □ Descriptive Cancel □ Homogeneity-of-variance Help □ Means plot Help ✓ Missing Values ⓒ Exclude cases analysis by analysis ○ Exclude cases listwise

ขั้นที่ 6.5 คลิกที่ Homogeneity of variance

ขั้นที่ 6.6 คลิก Continue และ OK จะได้ผลการคำนวณเป็น

🎬 ch7 example13 test sigma - SPSS	Viewe	ſ			
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>A</u> naly	ze <u>G</u> ra	iphs <u>U</u> tilities <u>W</u> indow	<u>H</u> elp		
- 1		! @ 📠 🗉 🔄	+ +	- 00	<u>, </u>
Output E Oneway	0	Dneway			
Title		Test of Ho	mogeneity	of Variance	s
→ 🛱 Test of Homogeneity of Variances	→	X			
ANOVA		Levene Statistic	df1	df2	Sig.
-		.007021	1	9	.935056

ผลการคำนวณทั้งหมดคือ

Oneway

Test of Homogeneity of Variances

Х			
Levene Statistic	df1	df2	Sig.
.007021	1	9	.935056

ANOVA

Х

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.000000485	1	.000000	.000117	.991604
Within Groups	.0037281333	9	.000414		
Total	.0037281818	10			

จากตารางผลการคำนวณค่า Levene Statistics = 0.007021 และ Sig = 0.935056 ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่า Sig = 0.935056 กับระดับนัยสำคัญ α = 0.1 เพราะว่า Sig = 0.935056 > α = 0.1 เพราะฉะนั้น ยอมรับ H₀ : $\sigma_1^2 = \sigma_2^2$

7.6 การทดสอบภาวะสารูปสนิทดี

การทดสอบภาวะสารูปสนิทดีเป็นการทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงความน่าจะเป็นตามที่คาดไว้หรือ ไม่เช่น ข้อมูลมีการแจกแจงทวินามจริงหรือไม่ ข้อมูลมีการแจกแจงปกติจริงหรือไม่ ข้อมูลมีการแจกแจงปัวส์ ซองจริงหรือไม่ ข้อมูลมีการแจกแจงตามอัตราส่วนที่คาดไว้จริงหรือไม่

หลักการและขั้นตอนการทำงานทางทฤษฎีของความน่าจะเป็นและสถิติ

ขั้นที่ **1.** กำหนดสมมติฐานหลัก H₀ : ข้อมูลมีการแจกแจงความน่าจะเป็นตามที่คาดไว้ กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่มีการแจกแจงความน่าจะเป็นตามที่คาดไว้

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_i , i = 1, 2, 3, ... , k
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i และค่าสถิติไคสแควร์ $\chi^2_{_{
m e_1 u 2 a u}} = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{lpha} เมื่อ df = k – จำนวนพารามิเตอร์ที่ต้องประมาณค่า – 1 บริเวณวิกฤตคือ $\chi^2 > \chi^2_{lpha}$

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ถ้า $\chi^2_{_{
m enu}
m 2a}$ > $\chi^2_{_{
m a}}$ แล้วปฏิเสธ ${
m H}_0$

ตัวอย่าง 7.6.1 การทดลองโยนเหรียญ 3 อัน 240 ครั้ง ให้ x เป็นจำนวนหัวที่ได้ในการโยนเหรียญแต่ละ ครั้งผลการทดลองบันทึกไว้ที่แฟ้มข้อมูลชื่อ example14.sav

้จงทดสอบสมมติฐานว่า เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดระดับนัยสำคัญ 0.05

วิธีทำ การคำนวณโดย MATHCAD

- **ขั้นที่ 1.** กำหนดสมมติฐานหลัก H₀ : เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดสมมติฐานอื่น H₁ : เหรียญทั้งสามอันไม่มีความเที่ยงตรง
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ้ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต ₀₁
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i ภายใต้เงื่อนไขที่กำหนดว่าเหรียญทั้งสามอันมีความเที่ยงตรง เพราะฉะนั้น x = 0, 1, 2, 3 มีการแจกแจงแบบทวินาม ดังนั้นค่าความถี่ที่คาดว่าจะได้คือ

Х	P(X = x)	ei
0	$\frac{1}{8}$	$\frac{1}{8}(240) = 30$
1	$\frac{3}{8}$	$\frac{3}{8}(240) = 90$
2	$\frac{3}{8}$	$\frac{3}{8}(240) = 90$
3	$\frac{1}{8}$	$\frac{1}{8}(240) = 30$
		240

150

การคำนวณโดยใช้ MATHCAD ทำได้ดังนี้

ORIGIN:= 1

$$o := \begin{pmatrix} 24 \\ 98 \\ 95 \\ 23 \end{pmatrix} \quad e := \begin{pmatrix} 30 \\ 90 \\ 90 \\ 90 \\ 30 \end{pmatrix} \quad k := 4 \quad chisquare := \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \quad chisquare = 3.822$$

- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.05}$ = 7.815 , df = 3 บริเวณวิกฤตคือ χ^2 > 7.815
- ขั้นที่ 7. โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต เพราะว่า χ²_{ดำนวณ} > 7.815 เพราะฉะนั้นยอมรับ H₀

หลักการและขั้นตอนการทำงานด้วย SPSS for Windows

ขั้นที่ 1.	กำหนดสมมติฐานหลัก	${ m H}_0$: ข้อมูลมีการแจกแจงความน่าจะเป็น	ตามที่คาดไว้
	กำหนดสมมติฐานอื่น	\mathbf{H}_{1} : ข้อมูลไม่มีการแจกแจงความน่าจะเป็	ป็นตามที่คาดไว้
ขั้นที่ 2.	กำหนดระดับนัยสำคัญ $lpha$		ΙΛ
ขั้นที่ 3.	ทำการสุ่มตัวอย่างเพื่อหาค่	ำสังเกต _{oi}	1
ขั้นที่ 4.	เลือกค่าสถิติไคสแควร์		T Chi-square
ขั้นที่ 5.	คำนวณค่าความถี่ที่คาดว่าจ	จะได้ e _i	Area = Sig
	ค่าสถิติ $\chi^2_{_{\text{ถ}านวณ}} = \sum_{i=1}^{k} \frac{(o_i)^2}{i}$	$\frac{-e_i^2}{e_i^2}$ และค่า Sig ของ $\chi^2_{_{ m e_1}\mu_2\alpha}$	1 1 มู _{ต่ำนวณ}
ขั้นที่ 6.	เปิดตารางสถิติเพื่อหาค่าวิ	กฤต χ^2_{lpha} , df = k – จำนวนพารามิเตอร์ที	ี่ต้องประมาณค่า – 1
	บริเวณวิกฤตคือ χ^2 > χ^2_0	2 x	
ขั้นที่ 7.	สรุปผลทำได้ 2 แบบคือ	1. ปฏิเสธ H_{0} ถ้า $\chi^{2}_{_{ m e^{1}}\mathrm{u}\mathrm{2}\mathrm{a}}$ > χ^{2}_{a}	
	หรือ	อ 2. ปฏิเสธ H ₀ ถ้า Sig < α	
จากตัวอย่า 1.* เรียงร่	ง 7.6.1. การทดลองโยนเห	เรียญ 3 อัน 240 ครั้ง ระเมแต่วะเครื่า ยวการทดกการเริ่มชื่อไว้ที่แ	มื้อตัวขาวชีว อาการปล 1.4 อากา
เท x เบนจ จงทดสอบ	กนานทาทเดเนการเยนเท สมมติจานว่าเหรียญทั้งสาม	วบญแตละควง ผลการทตลองบนทการทแ อันมีความเที่ยงตรง กำหนดระดับนัยสำคัเ	พมขอมูลขอ example 14.sav ป 0.05
	ag		U

วิธีทำ การวิเคราะห์ข้อมูลด้วย SPSS for Windows

- ขั้นที่ **1.** กำหนดสมมติฐานหลัก H₀ : เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดสมมติฐานอื่น H₁ : เหรียญทั้งสามอันไม่มีความเที่ยงตรง
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3.** ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต ₀,

หมายเหตุ การเก็บข้อมูล

ครั้งที่ 1 ขึ้นหัว 2 ครั้ง ครั้งที่ 2 ขึ้นหัว 3 ครั้ง :

ครั้งที่ 240 ขึ้นหัว 3 ครั้ง

บันทึกแฟ้มชื่อ example14.sav

ขั้นที่ 4. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i

ขั้นที่ 5.1 เลือกคำสั่ง Analyze / Nonparametric Tests / Chi-Square

ขั้นที่ 5.2 คลิกที่ Chi-Square จะได้เมนูย่อย

	<u>T</u> est Variable List:	OK
_		Paste
	▶	<u>R</u> eset
		Cancel
Expected Range	Expected Values	Help
☞ <u>G</u> et from data	All categories equal	
← Use <u>specified range</u>	⊂ <u>V</u> alues:	
Lower:	<u>A</u> dd	
Upper:	Change	Exact
	Remove	<u>O</u> ptions

🛅 examp	le14 - 9	SPSS	Data Editor	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Ê
2	a	i ko		٩
6:				-
	х		var	
1		2		
2		3		
3		0		
4		2		
5		2		
239		2		
240		3		

ขั้นที่	5.3	เลือกตัวแปร x	มาไว้ที่ช่อง	Test Variable List

	<u>Lest Variable List:</u>	OK Paste
	•	Rese
		Cance
Expected Range	Expected Values	Help
🖲 <u>G</u> et from data	All categories equal	
⊂ Use <u>s</u> pecified range	⊂ <u>V</u> alues:	
Lower:	∆dd	
Upper:	<u>C</u> hange R <u>e</u> move	Exact Options

หมายเหตุ ความหมายของ Options ที่ต้องเลือกให้เหมาะสมกับการทดสอบ

- Expected Range

 Get from data หมายความว่าให้เลือกกลุ่มของข้อมูลจากข้อมูลทั้งหมด
 Use specified range ใช้กำหนดช่วงข้อมูลที่ต้องการโดยระบุค่าต่ำสุดและสูงสุด

 Expected Value

 All categories equal หมายความว่าค่าคาดคะเน หรือสัดส่วน ของทุกกลุ่มเท่ากัน
 Values ให้เรากำหนดค่าความถี่ที่คาดไว้หรือค่าสัดส่วน ด้วยการพิมพ์เข้าไปใหม่
- ขั้นที่ 5.4 เพราะว่าเราต้องการใช้ข้อมูลทุกตัวในแฟ้ม

เพราะฉะนั้นเลือก Option 🖸 Get from data

เพราะว่าความน่าจะเป็นที่จะขึ้นหัว 0, 1, 2, 3 เหรียญ

มีค่าเป็น $\frac{1}{8}$, $\frac{3}{8}$, $\frac{3}{8}$, $\frac{1}{8}$ เพราะฉะนั้นสัดส่วนของกลุ่มที่ 1, 2, 3, 4 คือ $\frac{1}{8}$: $\frac{3}{8}$: $\frac{3}{8}$: $\frac{1}{8}$ = 1 : 3 : 3 : 1 เพราะฉะนั้นต้องเลือก Option \odot Values

Expected Range
🖲 <u>G</u> et from data
⊂ Use <u>s</u> pecified range
Lower:
Upper:

ขั้นที่ 5.5 พิมพ์ค่าสัดส่วนตัวแรกคือ 1 ลงในช่อง Values : ผลบนจอภาพที่ช่อง Expected values จะเป็นดังนี้ จะเห็นว่าปุ่ม Add จะเปลี่ยนจากสีเทาจางๆ เป็นสีดำ

ขั้นที่ 5.6 คลิก Add ตัวเลข 1 จะเข้าในช่องสี่เหลี่ยมด้านล่าง

Expected Values						
c	C All categor <u>i</u> es equal					
G	<u>¥</u> alues:					
	Add					
	<u>C</u> hange					
	R <u>e</u> move					
		,				

-E:	xnected Val	ues					
~							
¢	All categor	ies equal					
6	<u>¥</u> alues:	1					
	<u>A</u> dd						
	<u>C</u> hange						
	R <u>e</u> move						

ในทำนองเดียวกัน	พิมพ์ 3 ในช่อง Values แล้วคลิก Add
	พิมพ์ 3 ในช่อง Values แล้วคลิก Add
	พิมพ์ 1 ในช่อง Values แล้วคลิก Add
ผลบนจอภาพที่ช่อง E	xpected Values จะเป็นดังนี้

หมายเหตุ

1. ถ้าต้องการลบตัวเลขสัดส่วน ให้คลิกที่ตัวเลขนั้นแล้วกด Remove

2. ถ้าต้องการแก้ไขตัวเลขสัดส่วน ให้คลิกที่ตัวเลข แล้วพิมพ์ค่าใหม่ในช่อง Values แล้วกด Change

ขั้นที่ 6. คลิก OK จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

NPar Tests

Chi-Square Test

Frequencies

X							
	Observed N	Expected N	Residual				
0	24	30.0	-6.0				
1	98	90.0	8.0				
2	95	90.0	5.0				
3	23	30.0	-7.0				
Total	240						

Test Statistics

	Х
Chi-Square ^a	3.822222
df	3
Asymp. Sig.	.281312

a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 30.0.

จากตาราง Test Statistics $\chi^2_{\text{ถ้านวณ}} = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i} = 3.822222$, df = 3 และ Asymp. Sig. = 0.281312

154

Expected Values					
ē <u>V</u> a	lues:				
	<u>A</u> dd	1			
0	hange	3			
R	<u>e</u> move	1			

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.05}$ = 7.815 , df = 3 บริเวณวิกฤตคือ χ^2 > 7.815

ขั้นที่ 7. เพราะว่า $\chi^2_{_{
m efu20a}}$ < 7.815 เพราะฉะนั้นยอมรับ H $_0$ หรือ เพราะว่า Sig = 0.281312 มากกว่า 0.05 เพราะฉะนั้นยอมรับ H $_0$

หมายเหตุ ค่า Sig = พื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้ง Chi square, df = 3 ที่ระยะ 3.822222 จากการคำนวณด้วย Mathcad

7.7 การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกันหรือไม่

ในกรณีที่เราต้องการทดสอบความสัมพันธ์ของตัวแปรตั้งแต่ 2 ตัวเกี่ยวข้องกันหรือไม่ ตัวอย่างเช่น

- การฉีดวัคซีนป้องกันอหิวาต์ กับ การเป็นโรคอหิวาต์ เกี่ยวข้องกันหรือไม่
- การนับถือศาสนา และ ถิ่นที่อยู่ เกี่ยวข้องกันหรือไม่

หลักการและขั้นตอนการทำงานทางทฤษฎีความน่าจะเป็นและสถิติในการทดสอบความเป็นอิสระ

ขั้นที่ 1. กำหนดสมมติฐาน H₀ : เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกัน

H₁ : เหตุการณ์ A และเหตุการณ์ B ไม่เป็นอิสระต่อกัน

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ α
- ้ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต _{o_{ii}}
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์
- ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_{ii} และค่าสถิติไคสแควร์

โดยทำการแจกแจงความถี่เพื่อหาค่า o_{ij} และ $e_{ij} = \frac{R_i C_j}{N}$ เมื่อ i = 1, 2, 3, ..., r และ j = 1, 2, 3, ..., c

	A ₁	A_2	A ₃ A _c	
B ₁	o ₁₁	o ₁₂	o ₁₃ o _{1c}	R ₁
B ₂	o ₂₁	o ₂₂	o ₂₃ o _{2c}	R ₂
:	:			:
:	:			:
Br	o _{r1}	o _{r2}	o _{r3} o _{rc}	R _r
	C ₁	C ₂	C ₃ C _c	Ν

หมายเหตุ e_{ii} ควรมีค่ามากกว่าหรือเท่ากับ 5 และ N ควรมีค่ามากกว่าหรือเท่ากับ 50

$$\chi^2_{$$
คำนวณ = $\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$ และ องศาความอิสระ $\nu = (r-1)(c-1)$

- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{α} , df = (r 1)(c 1) และบริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$
- ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่างกับค่าวิกฤต

ถ้า
$$\chi^2_{_{
m enu}2a}$$
 > $\chi^2_{_{
m a}}$ แล้วปฏิเสธ ${
m H}_0$

หลักการและขั้นตอนการทดสอบสมมติฐานด้วย SPSS for Windows

- **ขั้นที่ 1.** กำหนดสมมติฐานหลัก H₀ : ข้อมูลเป็นอิสระต่อกัน กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่เป็นอิสระต่อกัน
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_{ij}
- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์
- **ขั้นที่ 5.** คำนวณค่าความถี่ที่คาดว่าจะได้ e_{ij} และค่าสถิติไคสแควร์ $\chi^2_{คำนวณ} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$ และค่า Sig (ค่านัยสำคัญของค่าสถิติ $\chi^2_{คำนวณ}$)

- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{lpha} , df = (r-1)(c-1) และบริเวณวิกฤตคือ χ^2 > χ^2_{lpha}
- ขั้นที่ 7. สรุปผลมี 2 วิธีคือ 1. ถ้า $\chi^2_{_{
 m e^1u}2a}$ > $\chi^2_{_{
 m a}}$ แล้วปฏิเสธ ${
 m H}_0$ 2. ถ้า Sig < α แล้วปฏิเสธ ${
 m H}_0$

ตัวอย่าง 7.7.1 แฟ้มข้อมูล example15.sav บันทึกข้อมูลเพื่อศึกษาความสัมพันธ์ระหว่างการนับถือศาสนา และถิ่นที่อยู่

การนับถือศาสนาจำแนกเป็น 3 กลุ่ม คือ โปรเทศตัน คาธอลิก และ ยิว

ถิ่นที่อยู่อาศัยจำแนกเป็น 2 กลุ่ม คือ ฝั่งตะวันออก และ ฝั่งตะวันตก

้จงทดสอบสมมติฐานว่า การนับถือศาสนาและถิ่นที่อยู่มีความสัมพันธ์กันหรือไม่ กำหนดนัยสำคัญ 0.05

วิธีทำ การคำนวณโดย SPSS for Windows

- **ขั้นที่ 1.** กำหนดสมมติฐานหลัก H₀ : การนับถือศาสนาและถิ่นที่อยู่อาศัย ไม่มีความสัมพันธ์กัน กำหนดสมมติฐานอื่น H₁ : การนับถือศาสนาและถิ่นที่อยู่อาศัย มีความสัมพันธ์กัน
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

การคำนวณโดย SPSS for Windows

ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_{ii}

เมื่อสุ่มตัวอย่างมาแล้วต้องสร้าง แฟ้มข้อมูลประกอบด้วย 2 ตัวแปร

x เป็นตัวแปรจำแนก ถิ่นที่อยู่ โดยมีค่า Value Label : 1 = ฝั่งตะวันออก และ 2 = ฝั่งตะวันตก

y เป็นตัวแปรจำแนก ศาสนา โดยมีค่า Value Label : 1 = โปรเทสตัน, 2 = คาธอลิก และ 3 = ยิว แฟ้มข้อมูลที่สร้างแล้วชื่อ example15.sav 🛅 example15 - SPSS Data Editor <u>E</u>dit <u>V</u>iew <u>D</u>ata <u>T</u>ransform

id

1

2

1

- ขั้นที่ 4. เลือกค่าสถิติไคสแควร์
- ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_{ii}

และค่าสถิติไคสแควร์ $\chi^2_{_{-nucul}} = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$

ขั้นที่ 5.1

เลือก Analyze / Descriptive Statistics / Crosstabs

	L		1	2	3		
	2		2	1	2		
	3		3	1	3		
		•					
🛗 example15 - SPSS Data Edit	or						
<u>File Edit View Data Transform</u>	Analyze	<u>G</u> raphs	<u>U</u> tilitie	s <u>W</u> indow	<u>H</u> elp		
	 Repo	rts		ा । कि	ല ചെപ്പ		
	D <u>e</u> sc	Descriptive Statistics		<u> </u>			
12 :	Custom Tables			•	Descriptives		

Compare Means

General Linear Mode

id

12

🛎 🗐 🔍 🗠 🔤 📥 📴 🎮

	📾 Crosstabs	×
ขั้นที่ 5.2 คลิกที่ Crosstabs จะได้เมนูดังนี้	♥ Id	Row(s): OK Paste Column(s): Cancel Help Previous Layer 1 of 1
	☐ Display clustered <u>b</u> ar ch	narts
	∏ Suppress <u>t</u> ables	
	Exact	<u>Statistics</u> C <u>e</u> lls <u>F</u> ormat
ขั้นที่ 5.3	ነቂያ Crosstabs	×
เลือกตัวแปร x ไปไว้ที่ช่อง Row(s) เลือกตัวแปร v	♠ id	Row(s): → Area [x] OK Paste Reset Reset
ไปไว้ที่ช่อง Column(s)		Cancel Help
		Previous Layer 1 of 1
	☐ Display clustered <u>b</u> ar ch	narts
	☐ Suppress <u>t</u> ables	
	Event	Statiation Calla Format

<u>A</u>nalyze <u>G</u>raph

Explore

ขั้นที่ 5.9 คลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

Crosstabs

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N Percent		Ν	Percent	Ν	Percent
Area * Regionalism	1000	100.0%	0	.0%	1000	100.0%

Area * Regionalism Crosstabulation

			Reg	Regionalism		
			Protestant	Christ	Jew	Total
Area	East	Count	182	215	203	600
		Expected Count	201.6	210.6	187.8	600.0
	West	Count	154	136	110	400
		Expected Count	134.4	140.4	125.2	400.0
Total		Count	336	351	313	1000
		Expected Count	336.0	351.0	313.0	1000.0

1

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.069321 ^a	2	.017692
Likelihood Ratio	8.053133	2	.017835
Linear-by-Linear Association	7.773600	1	.005302
N of Valid Cases	1000		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 125.20.

้หมายเหตุ Remark ท้ายตาราง Chi–Square Tests เตือนว่าค่าคาดคะเนทุกเซลล์มีค่ามากกว่า 5 ทำให้ค่าไคส แควร์ที่คำนวณได้มีความน่าเชื่อถือสามารถนำไปสรุปผลการทดสอบได้

จากตาราง Chi-Square Tests $\chi^2_{_{\phi_1 u 2 u u}} = \sum_{i=1}^2 \sum_{j=1}^3 \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 8.069321$, df = 2 และ Sig = 0.017692 ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.05} = 5.991$, df = 2 และบริเวณวิกฤตคือ $\chi^2 > 5.991$ ขั้นที่ 7. แบบที่ 1 เพราะว่า $\chi^2_{_{\phi_1 u 2 u u}} > 5.991$ เพราะฉะนั้นปฏิเสธ H₀ แบบที่ 2 เพราะว่า Sig < 0.05 เพราะฉะนั้นปฏิเสธ H₀

หมายเหตุ ความหมายและที่มาของค่า Asymp. Sig. (2-sided) = 0.017692 การคำนวณด้วย MATHCAD

$$v := 2 \qquad f(x) := \left(\frac{1}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)} \right) \cdot x^{\left(\frac{v}{2}\right) - 1} \cdot e^{-\frac{x}{2}} \cdot e^{-\frac{v}{2}}$$

Sig := 1 - $\int_{0}^{8.069321} f(x) dx$ Sig = 0.017692
Sig := 1 - pchisq(8.069321,2) Sig = 0.017692

หมายเหตุ ในกรณีที่ข้อมูลแจกแจงความถี่แล้ว การคำนวณโดยใช้ MATHCAD ทำได้ดังนี้

$$\begin{aligned} \text{ORIGIN:= 1} \quad \text{r:= 2} \quad \text{i:= 1..r} \quad \text{c:= 3} \quad \text{j:= 1..c} \quad \text{o:=} \begin{pmatrix} 182 & 215 & 203 \\ 154 & 136 & 110 \end{pmatrix} \quad \text{N:=} \sum_{i=1}^{r} \sum_{j=1}^{c} \text{o}_{(i,j)} \\ \text{N=1000} \quad \text{R}_{i} := \sum_{j=1}^{c} \text{o}_{(i,j)} \quad \text{R} = \begin{pmatrix} 600 \\ 400 \end{pmatrix} \quad \text{C}_{j} := \sum_{i=1}^{r} \text{o}_{(i,j)} \quad \text{C} = \begin{pmatrix} 336 \\ 351 \\ 313 \end{pmatrix} \quad \text{e}_{(i,j)} := \frac{\text{R}_{i} \cdot \text{C}_{j}}{\text{N}} \\ \text{e} = \begin{pmatrix} 201.6 & 210.6 & 187.8 \\ 134.4 & 140.4 & 125.2 \end{pmatrix} \quad \text{chisquare} := \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left[\text{o}_{(i,j)} - \text{e}_{(i,j)} \right]^{2}}{\text{e}_{(i,j)}} \quad \text{chisquare} = 8.06932 \end{aligned}$$

7.8 การทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงปกติจริงหรือไม่

การทำงานทางด้านสถิติส่วนใหญ่สมมติว่าข้อมูลมีการแจกแจงปกติ แต่ถ้าเรามีข้อสงสัยว่าข้อมูลมีการแจกแจง ปกติจริงหรือไม่ สามารถทำการทดสอบสมมติฐานได้ดังนี้

ขั้นที่ 1. กำหนดสมมติฐาน H₀ : ข้อมูลมีการแจกแจงปกติ

H₁ : ข้อมูลไม่ได้มีการแจกแจงปกติ

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- ขั้นที่ 4. เลือกค่าสถิติ Kolmogorov หรือ Shapiro-Wilk ถ้าขนาดตัวอย่างมากกว่า 50 ใช้ค่าสถิติ Kolmogorov ถ้าขนาดตัวอย่างน้อยกว่าหรือเท่ากับ 50 ใช้ค่าสถิติ Kolmogorov หรือ Shapiro-Wilk
- ขั้นที่ 5. คำนวณค่าสถิติที่ต้องการ
- ขั้นที่ 6. การสรุปผลใช้การเปรียบเทียบค่า Sig กับค่านัยสำคัญ α
- ขั้นที่ 7. การสรุปผล ถ้า Sig < α แล้วปฏิเสธ H $_0$

ตัวอย่าง 7.7.1 จากแฟ้มข้อมูล example4.sav

จงทดสอบว่าข้อมูลระดับคะแนน (grade) มีการแจกแจงปกติ กำหนดนัยสำคัญ 0.05

ົວີຣ໌້ກຳ

- ขั้นที่ **1.** กำหนดสมมติฐาน H₀ : ระดับคะแนน (grade) มีการแจกแจงปกติ H₁ : ระดับคะแนน (grade) ไม่ได้มีการแจกแจงปกติ
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- การคำนวณโดย SPSS for Windows
- ขั้นที่ 4. เพราะว่าขนาดตัวอย่าง N = 50 เพราะฉะนั้นเลือกค่าสถิติ Kolmogorov
- ขั้นที่ 5. เปิดแฟ้มข้อมูล example4.sav ใน SPSS Dtat Editor

🛅 ei	xampi	le4 - SF	PSS Da	ita Editor					
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>D</u> ata	Transform	Analyze	<u>G</u> raphs	<u>U</u> tilities \	⊻indow _	<u>H</u> elp
<mark>☞∎를 ♥ ∽ ∝ ⊑ ⊵ ぬ <u>#</u>Ě ≣‡≣ %⊘ 15:</mark>									
<u> </u>		id	sex	age	educ	status	income	grade	bonus
	1	1	1	37	2	4	5500	3.78	11000.00
	2	2	2	29	3	1	4100	3.89	12300.00

ขั้นที่ 5.1 เลือกคำสั่ง Analyze / Descriptive Statistics / Explore

🛅 example4 - SPSS Data Editor		
<u>File Edit V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
	Reports	∙ പ⊟െ പെപി
	Descriptive Statistics	Erequencies
15 :	Custom <u>T</u> ables	 <u>D</u>escriptives
id sex ane e	Compare <u>M</u> eans	Explore
	<u>G</u> eneral Linear Model	<u>C</u> rosstabs

ขั้นที่ 5.2 คลิกที่ Explore จะได้เมนูย่อยเป็น

Explore			
*	Dependent List:		0K
(♠) sex (♠) age			Paste
I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			<u>R</u> eset
🚸 income 🌸 grade	Eactor List:		Cancel
🛞 bonus			Help
	Label <u>C</u> ases by:	-	
Display			
₢ Both C Statistics C Plots	<u>Statistics</u> Plots	Options	

ขั้นที่ 5.3 เลือกตัวแปร grade มาไว้ที่ช่อง Dependent List

		B	
🗰 id		Dependent List:	ОК
#> sex		Image of the second	
₩ ayc ▲ Level of education ledu			Paste
★ status		I	<u>R</u> eset
🛊 income		<u>F</u> actor List:	
🕏 bonus			Cancel
			Help
		Label <u>C</u> ases by:	
Display	_	,	
● <u>B</u> oth ← St <u>a</u> tistics ← Plo <u>t</u> s		<u>S</u> tatistics P <u>l</u> ots <u>O</u> ption	ns

ขั้นที่ 5.4 คลิกปุ่ม Options จะได้เมนูย่อยเป็น

Boxplots Factor levels together	Descriptive ☑ Stem-and-leaf	Continue
C Dependents together		Cancel
⊂ <u>N</u> one		Help
Normality plots with test Spread vs. Level with Lev	s ene Test	
[°] N <u>o</u> rmality plots with test Spread vs. Level with Lev	s ene Test	
´ N <u>o</u> rmality plots with test Spread vs. Level with Lev で Non <u>e</u>	s ene Test	
「N <u>o</u> rmality plots with test Spread vs. Level with Lev ぐ Non <u>e</u> ぐ <u>P</u> ower estimation	s ene Test	
Normality plots with test Spread vs. Level with Lev Non <u>e</u> Power estimation Iransformed Power:	s ene Test Natural log <u>*</u>	

ขั้นที่ 5.5 เลือก Normallity plots with tests

$\mathbf{\nabla}$	✓ Normality plots with tests			
⊳S	pread vs.	Leve	el with Levene Test ——	
6	Non <u>e</u>			
-	_	-	-	

ขั้นที่ 5.6 คลิก Continue และ OK ตามลำดับจะได้ผลการวิเคราะห์บนจอภาพเป็นดังนี้

ผลการคำนวณที่ใช้ในการสรุปผลเราใช้ข้อมูลจากตาราง

Explore

Case Processing Summary

	Cases					
	Valid		Mis	ssing	Total	
	N Percent		Ν	Percent	Ν	Percent
GRADE	50	100.0%	0	.0%	50	100.0%

Descriptives

			Statistic	Std. Error
GRADE	Mean		2.9980	.0672
	95% Confidence	Lower Bound	2.8630	
Interval for Mean	Upper Bound	3.1330		
	5% Trimmed Mean		2.9896	
	Median		2.8900	
	Variance		.226	
	Std. Deviation		.4750	
	Minimum		2.12	
	Maximum		3.89	
	Range		1.77	
	Interquartile Range		.8150	
	Skewness		.478	.337
	Kurtosis		888	.662

Tests of Normality

	Kolmo	gorov-Sr	nirnov ^a	Sh	apiro-W	ilk
	Statistic	df	Sig.	Statistic	df	Sig.
GRADE	.156879	50	.003534	.918523	50	.010000*

**. This is an upper bound of the true significance.

a. Lilliefors Significance Correction

GRADE Stem-and-Leaf Plot

Frequency Stem & Leaf

1.00	2.1
1.00	2.3
10.00	2.4445555555
12.00	2.666666777777
3.00	2.888
6.00	3.000000
4.00	3.2223
4.00	3.4445
6.00	3.666677
3.00	3.888

Stem width: 1.00 Each leaf: 1 case(s)

และตารางอื่น ๆ แต่ตารางที่สำคัญในการสรุปผลว่าข้อมูลมีการแจกแจงปกติจริงหรือไม่คือตาราง

Tests of	of N	orma	lity
----------	------	------	------

	Kolmo	gorov-Sı	mirnov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
GRADE	.156879	50	.003534	.918523	50	.010000*	

**. This is an upper bound of the true significance.a. Lilliefors Significance Correction

- ขั้นที่ 6. ค่าสถิติ Kolmogorov มีค่าเท่ากับ 0.156879 และมีค่า Sig = 0.003534
- ขั้นที่ 7. เพราะว่า Sig = 0.003534 น้อยกว่าค่านัยสำคัญ α = 0.05 ดังนั้นปฏิเสธ $_{
 m H_0}$ เพราะฉะนั้น ระดับคะแนน (grade) ไม่ได้มีการแจกแจงปกติ

164

บทที่ 8 สหสัมพันธ์และการถดถอยเชิงเส้น

ตัวแปรทางด้านสถิติที่เกิดจากการเก็บข้อมูลเช่น จากบริษัทประกัยภัย ตัวแปรอาจเป็น รายได้ ผลกำไร ค่าโฆษณา เบี้ยประกันภัย ฯลฯ เมื่อพบว่ามีตัวแปรที่ได้จากหน่วยทดลองตั้งแต่ 2 ตัวขึ้นไปจึงเกิดความสนใจว่า ตัวแปรเหล่านี้จะมีความสัมพันธ์กันหรือไม่ ถ้ามีความสัมพันธ์กันจะอยู่ในรูปใด การศึกษาเรื่องนี้จัดอยู่ในเรื่อง ของการถดถอยซึ่งมีทั้งที่เป็นเส้นตรงและไม่เป็นเส้นตรง ในบทนี้จึงเป็นการศึกษาเกี่ยวกับ **การถดถอยเชิงเส้น** เชิงเดียว (simple linear regression) และ สหสัมพันธ์ (correlation)

การถดถอยเชิงเส้นเชิงเดียว (simple linear regression) ประกอบด้วยตัวแปรอิสระ 1 ตัว และตัวแปร ตาม 1 ตัว รูปแบบของสมการความสัมพันธ์เชิงเส้นเชิงเดียวมีได้หลายรูปแบบเช่น

• y = a + bx
 • lny = a + b lnx
 • y = a + b lnx
 • lny = a + bx
 การถดถอยแบบพหุคูณ (Multiple regression) ประกอบด้วยตัวแปรอิสระมากกว่า 1 ตัว และตัวแปร
 ตาม 1 ตัว รูปแบบของสมการความสัมพันธ์พหุคูณ เช่น

• $y = a + b_1 x_1 + b_2 x_2 + ... + b_n x_n$

การถดถอยแบบไม่เชิงเส้น (Non linear regression) ประกอบด้วยตัวแปรอิสระ 1 ตัว และตัวแปร ตาม 1 ตัว รูปแบบของสมการความสัมพันธ์แบบไม่เชิงเส้น เช่น

• $y = ax^2 + bx + c$

สหสัมพันธ์ (Simple correlation) เป็นการศึกษาระดับความสัมพันธ์และทิศทางความสัมพันธ์ของตัว แปรตั้งแต่ 2 ตัวแปรขึ้นไปโดยที่รูปแบบความสัมพันธ์อาจเป็น

> • y = a + bx • $\ln y = a + b \ln x$ • $y = ax^2 + bx + c$ • $y = a + b \ln x$ • $\ln y = a + bx$ • $y = a + b_1x_1 + b_2x_2 + ... + b_nx_n$

8.1 การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว(Simple Linear Regression) และสหสัมพันธ์ (Correlation)

ให้ X เป็นตัวแปรอิสระ และ Y เป็นตัวแปรตาม โดยมีความสัมพันธ์ที่แท้จริงของ X, Y คือ $\mu_{Y|x} = \alpha + \beta x$ β เรียกว่า สัมประสิทธิ์การถดถอย (regression coefficients) และ α เรียกว่า ระยะตัดแกน (Intercept) ในทางสถิติเราจะใช้ข้อมูลตัวอย่างประมาณความสัมพันธ์ $\mu_{Y|x} = \alpha + \beta x$ ด้วย $\hat{y} = a + bx$ สหสัมพันธ์ (correlation) เป็นตัวบอกระดับและทิศทางของความสัมพันธ์ระหว่างตัวแปรใช้สัญลักษณ์แทน ด้วย ρ โดยใช้ข้อมูลตัวอย่างเราจะประมาณค่า ρ ด้วย r

หมายเหตุ 1. – $1 \le \rho \le 1$

2. | ρ | มีค่ามาก แสดงว่า X และ Y มีความสัมพันธ์กันมาก

3. ρ = 0 แสดงว่า X และ Y ไม่มีความสัมพันธ์

4. $\rho > 0$ แสดงว่าถ้า X มีค่าเพิ่มขึ้น แล้ว Y มีค่าเพิ่มขึ้น หรือ ถ้า X มีค่าลดลง แล้ว Y มีค่าลดลง

- 5. ho < 0 แสดงว่าถ้า X มีค่าเพิ่มขึ้น แล้ว Y มีค่าลดลง หรือ ถ้า X มีค่าลดลง แล้ว Y มีค่าเพิ่มขึ้น
- 6. b และ r จะมีเครื่องหมายเหมือนกัน
- 7. b สามารถบอกอัตราการเพิ่มหรือลดของตัวแปรตาม Y เทียบกับตัวแปรอิสระ X ได้

การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียวและสหสัมพันธ์

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติจากข้อมูลที่เก็บมาได้

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
x ₁	У1
x ₂	У2
:	:
x _n	Уn

ขั้นตอนการคำนวณ ค่า a และ b ที่ทำให้ $\hat{y} = a + bx$ และ สัมประสิทธิ์สหสัมพันธ์ r

ขึ้นที่ 1. คำนวณค่า
$$\sum_{i=1}^{n} x_i$$
, $\sum_{i=1}^{n} y_i$, $\sum_{i=1}^{n} x_i y_i$, $\sum_{i=1}^{n} x_i^2$, $\sum_{i=1}^{n} y_i^2$
ขั้นที่ 2. คำนวณค่า b = $\frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$ และ $a = \overline{y} - b\overline{x}$
 $r = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{\sqrt{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2}}$

166

บทที่ 8 สหสัมพันธ์และการถดถอยเชิงเส้น

ตัวอย่างเช่น

Χ	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00
Y	4.80	5.70	7.00	8.30	10.90	12.40	13.10	13.60	15.30

เราสามารถหาสมการ $\hat{y} = a + bx$ และค่า r ตามขั้นตอนการคำนวณดังนี้

การคำนวณด้วย MATHCAD

แบบที่ 1. คำนวณค่าตามสูตร

ORIGIN:= 1

$$x := \begin{pmatrix} 1.50 \\ 1.80 \\ 2.40 \\ 3.00 \\ 3.90 \\ 4.40 \\ 4.80 \\ 5.00 \end{pmatrix}$$

$$y := \begin{pmatrix} 4.80 \\ 5.70 \\ 7.00 \\ 8.30 \\ 10.90 \\ 12.40 \\ 13.10 \\ 13.60 \\ 15.30 \end{pmatrix}$$

n := length(x) n = 9

$$b := \frac{n \cdot \sum_{i=1}^{n} x_i \cdot y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \qquad b = 2.93028 \qquad a := mean(y) - b \cdot mean(x) \qquad a = 0.256947$$

$$r := \frac{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i\right)}{\sqrt{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \sqrt{n \cdot \sum_{i=1}^{n} (y_i)^2 - \left(\sum_{i=1}^{n} y_i\right)^2} \qquad r = 0.991089$$

แบบที่ 2. ใช้ฟังก์ชัน slope(x,y), intercept(x,y) และ corr(x, y) ของ MATHCAD

b := slope(x, y)	b = 2.93028
a := intercept(x, y)	a = 0.256947
r := corr(x, y)	r = 0.991089

แบบที่ 3. การคำนวณค่า b และ r

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \qquad S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} \\ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n} \qquad b = \frac{S_{xy}}{S_{xx}} \quad uaz \quad r = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}} \\ S_{xx} := \sum_{i=1}^{n} (x_i)^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \qquad S_{xx} = 13.1 \qquad S_{yy} := \sum_{i=1}^{n} (y_i)^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} \qquad S_{yy} = 114.515556 \\ S_{xy} := \sum_{i=1}^{n} x_i \cdot y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n} \qquad S_{xy} = 38.386667 \\ b := \frac{S_{xy}}{S_{xx}} \quad b = 2.93028 \quad r := \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}} \quad r = 0.991089$$

แผนภาพการกระจายของข้อมูลเป็นดังนี้

แผนภาพการกระจายของข้อมูลและสมการเส้นถดถอย $\hat{y} = a + bx$

การเขียนกราฟของแผนภาพการกระจายด้วยโปรแกรม SPSS for Windows

ขั้นที่ 1. สร้างแฟ้มข้อมูลประกอบด้วย 2 ตัวแปร

ใน SPSS Data Editor เสร็จแล้ว Save ไว้ที่ชื่อ example16.sav

ขั้นที่ 2. เลือกคำสั่ง Graphs

และเลือกที่คำสั่ง Scatter จะได้เมนูย่อยเป็นดังนี้

🧰 examp	🗰 example16.sav - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	<u>Inalyze</u>	<u>G</u> raphs	<u>U</u> tilities	₩i				
	a 🔍 🗠	<u>G</u> allery Interactive		,						
12 :		Мар		۲						
	х	У	٧ā	<u>B</u> ar						
1	1.50	4.80		Line.						
2	1.80	5.70		<u>A</u> rea						
3	2.40	7.00		Pi <u>e</u>	Pi <u>e</u>					
4	3.00	8.30		<u>H</u> igh	<u>H</u> igh-Low					
5	3.50	10.90		Pare	to					
6	3.90	12.40		Cont	rol					
7	4.40	13.10				-				
8	4.80	13.60		Bo <u>x</u> p	lot					
9	5.00	15.30		Error	Bar					
10				<u>S</u> cat	ter					
11				Histo	gram					

ขั้นที่ 3.

ขั้นที่ 4.

เลือกรูปแบบกราฟเป็น Simple เสร็จแล้วคลิกปุ่ม Define จะได้เมนูย่อยเป็น

เลือกตัวแปร x ไว้ที่ X Axis เลือกตัวแปร y ไว้ที่ Y Axis

	X Axis:	_ <u>R</u>
	,	
	Set Markers by:	H
	Label Cases by:	_
	,	
ns from:		
_		
	Y Axis:	_
	<u>X</u> Axis:	
	() () () () () () () () () ()	 Ca
	Set Markers by:	н
	Label Cases by:	_
		Label Cases by: Label Cases by: Label Cases by: Titles Options Y Axis: X Axis: X Axis: X Axis: Set Markers by: Label Cases by:

ขั้นที่ 5. คลิก OK จะได้กราฟของแผนภาพการกระจายที่ SPSS Viewer

กราฟของแผนภาพการกระจายที่ได้คือ

การคำนวณหาสมการถดถอยและสหสัมพันธ์ด้วย SPSS for Windows

ขั้นที่ 1. สร้างแฟ้มข้อมูลประกอบด้วย 2 ตัวแปร ใน SPSS Data Editor

เสร็จแล้ว Save ไว้ที่ชื่อ example16.sav

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform	<u>Analyze</u> <u>G</u> raphs
2	a 🔍 🗠		<u>⊨ [?</u> M
12 :			
	х	у	var
1	1.50	4.80	
2	1.80	5.70	
3	2.40	7.00	
4	3.00	8.30	
5	3.50	10.90	
6	3.90	12.40	
7	4.40	13.10	
8	4.80	13.60	
9	5.00	15.30	

ขั้นที่ 2. เลือกคำสั่ง Analyze / Regression / Linear

💼 examp	le16.sav - Sl	PSS Data E	ditor						
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> r	raphs	<u>U</u> tilities	<u>₩</u> ind	ow <u>H</u> elp		
12 :	a 🔍 🗠	Re <u>p</u> orts D <u>e</u> scripti Custorn]	Re <u>p</u> orts D <u>e</u> scriptive Statistics Custom <u>T</u> ables			<u> </u>	0		
	х	у	Compare <u>M</u> eans <u>G</u> eneral Linear Model Complete				var	var	
1	1.50	4.8							
2	1.80	5.7	<u>C</u> urrelate Begression				Linear		
3	2.40	7.0			,	Curve Es	timation		
4	3 00	83				. —	24.10 20	anador h	

หมายเหตุ หากต้องการเฉพาะค่า a, b และ r ให้คลิก OK จะได้ผลการวิเคราะห์ทันที แต่ถ้าต้องการให้มีการเขียนกราฟให้คลิก Plots

หรือ ต้องการหาช่วงความเชื่อมั่น ของค่าพารามิเตอร์ α และ β ให้คลิกที่ปุ่ม Statistics ขั้นที่ 5. คลิกปุ่ม Statistics จะได้เมนูย่อยเป็นดังนี้

Regression Coefficients ▼ Estimates Γ Co <u>n</u> fidence intervals Γ Co <u>v</u> ariance matrix	₩ Model fit □ R squared change □ Descriptives □ Part and partial correlations □ Collinearity diagnostics	Continu Cancel Help
Residuals ┌─ D <u>u</u> rbin-Watson		
Casewise diagnostics	3 standard deviations	

ขั้นที่ 5. เลือก Confidence Intervals เพื่อหาช่วงความเชื่อมั่นของค่าพารามิเตอร์ α และ β

マ <u>Estimates</u> マ <u>Con</u> fidence intervals て Co <u>v</u> ariance matrix	 ✓ Model fit 	Continu Cancel Help
Residuals		
┌ D <u>u</u> rbin-Watson		
☐ <u>Casewise diagnostics</u>		
.	3 ctandard deviations	

ขั้นที่ 6. คลิก Continue เพื่อกลับไปที่เมนู Linear Regression

🚓 Linear Regression			×
() () () () () () () () () ()		Dependent:	0К
		w)	<u>P</u> aste
	Previous	Block 1 of 1 <u>N</u> ext	Reset
		Independent(s):	Cancel
		(♣)×	Help
		Method: Enter 💌	
		S <u>e</u> lection Variable:	
		R <u>u</u> le	
		<u>C</u> ase Labels:	
<u>W</u> LS >>	<u>S</u> tatistics	Plots Save Option	ıs

ขั้นที่ 7. คลิก OK จะได้ผลการคำนวณเป็นดังนี้

<mark>₩ ch8 example16.spo - SPSS Viewer</mark> <u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>A</u> nalyze <u>G</u>	araphs ∐tilities <u>W</u> indow <u>H</u> elp
■●▲▲ ●●▲ ●● ● ● ● + + - ■<	
□ -E Output □ -E Regression → (□) Title □ -Notes	Regression Variables Entered/Removed ^b
Model Summary	Variables Variables Model Entered Removed Method
	a. All requested variables entered. b. Dependent Variable: Y

ผลการคำนวณทั้งหมดคือ

Regression

Variables Entered/Removed^b

	Variables	Variables	
Model	Entered	Removed	Method
1	Xa		Enter
-	~	•	2.100

a. All requested variables entered.

b. Dependent Variable: Y

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.991089 ^a	.982257	.979722	.538766

a. Predictors: (Constant), X

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	112.4837	1	112.4837	387.5163	.00000022 ^a
	Residual	2.0319	7	.2903		
	Total	114.5156	8			

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients^a

		Мо	del
		-	L
		(Constant)	Х
Unstandardized	В	.256947	2.930280
Coefficients	Std. Error	.532353	.148855
Standardized	Beta		.991089
t		.482662	19.685433
Sig.		.6440636339	.0000002181
95% Confidence	Lower Bound	-1.001867	2.578293
Interval for B	Upper Bound	1.515761	3.282267

a. Dependent Variable: Y

การวิเคราะห์เกี่ยวกับสัมประสิทธิ์การถดถอยให้ดูในช่องตัวแปร x ของตาราง Coefficients

b = 2.930280 และ ช่วงความเชื่อมั่น 95 % ของค่า β คือ 2.578293 < β < 3.282267 การวิเคราะห์เกี่ยวกับสัมประสิทธิ์ระยะตัดแกนให้ดูในช่อง Constant ของตาราง Coefficients

a = 0.256947 และ ช่วงความเชื่อมั่น 95 % ของค่า α คือ –1.001867 < α < 1.515761 หมายเหตุ ค่าสหสัมพันธ์ r ให้ดูที่ตาราง Model Summary จะได้ค่าสหสัมพันธ์เฉพาะขนาดของตัวเลข เพราะว่าเครื่องหมายของ r และ b เหมือนกัน เพราะฉะนั้นเครื่องหมายของ r ให้ดูจากเครื่องหมายของ b เพราะฉะนั้นสหสัมพันธ์ r = -0.991089

ที่มาของค่าสถิติในตาราง Coefficients ค่าสถิติในช่องของตัวแปร X จากข้อมูล

ORIGIN:= 1

$$x := \begin{pmatrix} 1.5 \\ 1.8 \\ 2.4 \\ 3.0 \\ 3.5 \\ 3.9 \\ 4.4 \\ 4.8 \\ 5.0 \end{pmatrix}$$

$$y := \begin{pmatrix} 4.8 \\ 5.7 \\ 7.0 \\ 8.3 \\ 10.9 \\ 12.4 \\ 13.1 \\ 13.6 \\ 13.6 \\ 15.3 \end{pmatrix}$$

$$n := length(x) \quad n = 9$$

$$mean(x) = 3.366666667$$

$$mean(y) = 10.12222222$$

Unstandardized Coefficients B คือค่าสัมประสิทธิ์ของการถดถอยเชิงเส้น b ที่คำนวณจากสูตร

$$b := \frac{n \cdot \sum_{i=1}^{n} x_i \cdot y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \quad b = 2.9302799 \quad a := mean(y) - b \cdot mean(x) \quad a = 0.25694656$$

Unstandardized Coefficients Std. Error คือส่วนเบี่ยงเบนมาตรฐานของค่าสถิติ b ที่คำนวณจากสูตร $\sigma_b = \frac{S}{\sqrt{S_{xx}}}$ โดยมีขั้นตอนการคำนวณที่สำคัญดังนี้

$$S_{xx} := \sum_{i=1}^{n} (x_i)^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \quad S_{xx} = 13.1 \quad S_{yy} := \sum_{i=1}^{n} (y_i)^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} \quad S_{yy} = 114.5156$$

$$S_{xy} := \sum_{i=1}^{n} x_i \cdot y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \cdot \left(\sum_{i=1}^{n} y_i\right)}{n} \quad S_{xy} = 38.3867$$

$$SSE := \sum_{i=1}^{n} (y_i - a - b \cdot x_i)^2 \quad SSE = 2.03187786 \quad SSE := S_{yy} - b \cdot S_{xy} \quad SSE = 2.03187786$$

$$S_square := \frac{SSE}{n-2} \quad S_square = 0.29026827 \quad S := \sqrt{\frac{SSE}{n-2}} \quad S = 0.5387655$$

$$Sigma := \frac{S}{\sqrt{S_{xx}}} \quad Sigma = 0.14885524$$

Standardized Coefficients Beta ในกรณีของความสัมพันธ์เชิงเส้นตรงค่าของ Standardized Coefficients Beta (X) มีค่าเท่ากับค่าสัมประสิทธิ์สหสัมพันธ์

ค่า t ได้มาจากสูตร $t = \frac{b}{(\frac{S}{\sqrt{S_{XX}}})}, t = 19.68543311$

ค่า Sig คือ 2 เท่าของพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้ง t เมื่อ df = n - 2 = 7

$$\mathbf{v} := 7 \quad \mathbf{h}(\mathbf{t}) := \frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right) \cdot \sqrt{\pi \cdot \mathbf{v}}} \cdot \left(1 + \frac{\mathbf{t}^2}{\mathbf{v}}\right)^{-\frac{\mathbf{v}+1}{2}} \qquad \text{Sig} := 0.5 - \int_0^{19.68543311} \mathbf{h}(\mathbf{t}) \, \mathrm{dt} \quad \text{Sig} = 0.000000109$$

หรือคำนวณโดยใช้ฟังก์ชันสำเร็จรูป pt ของ Mathcad

Significant := 1 - pt(19.685433117) Significant = 0.000000109

Significant_2_tailed := 2. Significant Significant_2_tailed = 0.00000022

95% Confidence interval for B หมายถึงช่วงความเชื่อมั่น 95% ของค่าพารามิเตอร์ β มีสูตรเป็น

$$b - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{S_{XX}}} < \beta < b + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{S_{XX}}}$$

Std_Error_of_b := $\frac{S}{\sqrt{S_{XX}}}$
Std_Error_of_b = 0.14885524
alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, 7\right)$ t_alpha_divide2 = 2.36462425
Lower := b - t_alpha_divide2 · Std_Error_of_b Lower = 2.57829318
Upper := b + t_alpha_divide2 · Std_Error_of_b Upper = 3.28226661

ค่าสถิติในช่องของ Constant

Unstadardized Coefficients B คือค่าระยะตัดแกน Y จากสมการ $\hat{y} = a + bx$ $a := mean(y) - b \cdot mean(x)$ a = 0.25694656

Unstadardized Coefficients Std. Error คือส่วนเบี่ยงเบนมาตรฐานของค่าสถิติ a

ที่ดำนวณจากสูตร
$$\sigma_a = s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}$$

Std_Error_of_a := S. $\sqrt{\frac{\sum_{i=1}^{n} (x_i)^2}{n \cdot S_{XX}}}$ Std_Error_of_a = 0.53235263

ค่า t ได้มาจากสูตร $t = \frac{a}{\sqrt{\sum_{i=1}^{n} x_i^2}}$, t = 0.48266234

ค่า Sig คือ 2 เท่าของพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้งที ที่ระยะ t = 0.48266234 (จากที่คำนวณได้)
 เมื่อ df = n - 2 = 7

$$\mathbf{v} \coloneqq 7 \qquad \mathbf{h}(t) \coloneqq \frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right) \cdot \sqrt{\pi \cdot \mathbf{v}}} \cdot \left(1 + \frac{t^2}{\mathbf{v}}\right)^{-\frac{\mathbf{v}+1}{2}} \qquad \text{Sig} \coloneqq 0.5 - \int_0^{0.48266234} \mathbf{h}(t) \, \mathrm{dt} \qquad \text{Sig} = 0.3220318163$$

หรือคำนวณโดยใช้ฟังก์ชันสำเร็จรูป pt ของ Mathcad

Significant := $1 - pt(0.482662347)$	Significant = 0.3220318163
Significant 2 tailed := 2. Significant	Significant_2_tailed = 0.64406363

95% Confidence interval for B หมายถึงช่วงความเชื่อมั่น 95% ของค่าพารามิเตอร์ α มีสูตรเป็น

$$a - t_{\frac{\alpha}{2}}s\sqrt{\frac{\sum_{i=1}^{n}x_{i}^{2}}{nS_{XX}}} < \alpha < a + t_{\frac{\alpha}{2}}s\sqrt{\frac{\sum_{i=1}^{n}x_{i}^{2}}{nS_{XX}}}$$
Std_Error_of_a := S.
$$\sqrt{\frac{\sum_{i=1}^{n}(x_{i})^{2}}{n \cdot S_{XX}}}$$
Std_Error_of_a = 0.53235263
alpha := 0.05 t_alpha_divide2 := qt $\left(1 - \frac{alpha}{2}, 7\right)$ t_alpha_divide2 = 2.36462425
Lower := a - t_alpha_divide2 · Std_Error_of_a Lower = -1.00186737
Upper := a + t_alpha_divide2 · Std_Error_of_a Upper = 1.5157605

ที่มาของค่าสถิติในตาราง Model Summary

R = ค่าสัมประสิทธิ์สหสัมพันธ์เป็นตัวเลขที่บอกระดับและทิศทางของความสัมพันธ์ระหว่างตัวแปร หมายเหตุ เครื่องหมายของ r และ b ต้องเหมือนกัน

สูตรของค่า R คือ r =
$$\frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{\sqrt{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2}} = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}, r = 0.9910887$$

หรือใช้ฟังก์ชัน corr(x,y) ของ MATHCAD จะได้ว่า R = corr(x, y), R = 0.9910887

R Square เป็นค่าสัมประสิทธิ์การตัดสินใจ ได้มาจากค่า \mathbb{R}^2 เป็นตัวเลขที่ใช้ในการอธิบายว่า สมการเส้นถด ถอย $\hat{y} = a + bx$ มีความเหมาะสมที่จะนำไปใช้ในการอธิบายความสัมพันธ์ได้ดีหรือไม่ กล่าวคือ

 \mathbf{R}^2 มีค่าเข้าใกล้ 1 แสดงว่าสมการเส้นถดถอย $\hat{\mathbf{y}} = \mathbf{a} + \mathbf{b}\mathbf{x}$ มีความเหมาะสมดีมาก

 R^2 มีค่าเข้าใกล้ 0 แสดงว่าสมการเส้นถดถอย $\, \hat{\mathrm{y}} = \mathrm{a} + \mathrm{bx}\,$ ไม่มีความเหมาะสม

ตัวอย่างการแปลความหมาย

 $R^2 = 0.1$ สมการเส้นถดถอย $\hat{y} = a + bx$ ใช้อธิบายการเปลี่ยนแปลงของค่า y ได้ 10 % $R^2 = 0.98226$ สมการเส้นถดถอย $\hat{y} = a + bx$ ใช้อธิบายการเปลี่ยนแปลงของค่า y ได้ 98.226%Adjusted R Squares เป็นค่าที่ใช้ในการปรับปรุงค่าของ R Squares ในกรณีที่ค่าของ n มีน้อย ๆ

สูตรของ Adjust R Square =
$$1 - \frac{(n-1)}{(n-2)} \left[\frac{\sum_{i=1}^{n} (y_i - \hat{y}_1)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2} \right]$$

ขั้นตอนการคำนวณของ MATHCAD

 $ycap(x) := a + b \cdot x$ $Adjust_R_Square := 1 - \frac{n-1}{n-2} \cdot \left[\frac{\sum_{i=1}^{n} (y_i - ycap(x_i))^2}{\sum_{i=1}^{n} (y_i - mean(y))^2} \right]$ $Adjust_R_Square = 0.979722$

ที่มาของค่าสถิติในตาราง ANOVA

ANOVATABLE				
SOV	SS	DF	MS	F
REGRESSION	SSR	1	MSR = SSR	MSR MSE
ERROR	SSE	n – 2	$MSE = \frac{SSE}{n-2}$	
TOTAL	SST	n – 1		

$SST := S_{yy}$	SST = 114.515556	$SSR := b \cdot S_{XY}$	SSR = 112.48367769
SSE := SST - SSR	SSE = 2.03187786	MSR := SSR	MSR = 112.48367769
$MSE := \frac{SSE}{n-2}$	MSE = 0.29026827	$F := \frac{MSR}{MSE}$	F = 387.51627662

ค่า Sig เป็นค่าที่คำนวณมาจากพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้งเอฟ ที่มีองศาความอิสระ v₁ = 1 และ v₂ = 7 ที่ระยะ F = 387.5163 จากค่าในตารางที่คำนวณได้ การคำนวณค่า Sig ของค่าสถิติ F ด้วย Mathcad

$$v1 := 1 \quad v2 := 7 \quad \text{TOL} := 0.0000001$$

$$h(f) := \frac{\Gamma\left(\frac{v1 + v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right) - 1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1 + \left(\frac{v1}{v2}\right) \cdot f\right]^{\frac{v1 + v2}{2}}}$$

$$\frac{v1 + v2}{r}$$

$$\frac{v1$$

หมายเหตุ ค่า F และ Sig ในตาราง ANOVA ใช้ในการทดสอบสมมติฐาน H₀ : β=0 แย้งกับ H₁ : β≠0 หรือสมมติฐาน H₀ : ρ=0 แย้งกับ H₁ : ρ≠0 โดยมีเกณฑ์ในการสรุปผลคือ ถ้า Sig จากตาราง ANOVA มีค่าน้อยกว่า α แล้วปฏิเสธ H₀ โดยมีนัยสำคัญการทดสอบ α

8.2 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าสัมประสิทธิ์การถดถอย β และระยะตัดแกน α

เราสามารถประมาณค่าของ β และ α โดยใช้ช่วงความเชื่อมั่นที่มีสูตรดังนี้ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของสัมประสิทธิ์การถดถอย β คือ

$$b - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} < \beta < b + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} \qquad (df = n - 2)$$

ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของระยะตัดแกน α คือ

$$a - t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}}} < \alpha < a + t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}}} \qquad (df = n - 2)$$

ตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป(ไมโครกรัมต่อ ลูกบาศก์เมตร) กับปริมาณน้ำฝน (หน่วย 0.01 นิ้ว) ได้ข้อมูลดังนี้

ปริมาณน้ำฝน	ปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป
4.30	126.00
4.50	121.00
5.90	116.00
5.60	118.00
6.10	114.00
5.20	118.00
3.80	132.00
2.10	141.00
7.50	108.00

จงหา 1. สัมประสิทธิ์การถดถอยเชิงเส้น b และ a และ สมการของเส้นถดถอยเชิงเส้น \hat{y} = a + bx 2. สัมประสิทธิ์สหสัมพันธ์เชิงเส้น r 🛅 example17 - SPSS Data Edit 3. ช่วงความเชื่อมั่น 95% ของค่า β และ ช่วงความเชื่อมั่น 95% ของค่า α <u>E</u>dit <u>V</u>iew <u>D</u>ata <u>T</u>ransform <u>e</u> 🛛 🖉 K) 1 วิธีทำ ขั้นที่ 1. สร้างแฟ้มข้อมูลประกอบด้วย 2 ตัวแปร ตัวแปร rain แทนปริมาณน้ำฝน rain air 126.00 4.30 ตัวแปร air แทนปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป 4.50 121.00 116.00 5.90 เสร็จแล้ว Save ไว้ที่ชื่อ example17.sav 118.00 5.60 114.00 5 6.10 ขั้นที่ 2. เลือกคำสั่ง Analyze / Regression / Linear 118.00 6 5.20 3.80 132.00 8 2.10 141.00 🛗 example17 - SPSS Data Edi 7.50 108.00 <u>File Edit View Data Iransform Analyze Graphs Utilities</u> <u>W</u>indow <u>H</u>elp Re<u>p</u>orts 28 8 3 10 🖪 🕅 5 Descriptive Statistics Custom <u>T</u>ables Compare Means rain air var vai General Linear Model 4.30 126.0 Correlate 4.50 121.0 Regre: Linear 5.90 116.0 Curve Estimation. Loglinea 5.60 118.0 ขั้นที่ 3. Linear Regression คลิกที่ Linear จะได้เมนู Dependent: �<mark>rain</mark> ∉air 0K Paste Previous | Block 1 of 1 <u>R</u>eset Next

 $\left| \right\rangle$

Independent(s):

Method: Enter

Case Labels:

Selection Variable:

•

R<u>u</u>le...

Cancel

Help

- ขั้นที่ 7. คลิก Continue จะกลับไปเมนูของคำสั่ง Analyze / Regression / Linear
- ขั้นที่ 8. คลิก OK จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
AIR	121.5556	10.0264	9
RAIN	5.0000	1.5516	9

Correlations

		AIR	RAIN
Pearson Correlation	AIR	1.000000	978658
	RAIN	978658	1.000000
Sig. (1-tailed)	AIR		.0000022896
	RAIN	.0000022896	
Ν	AIR	9	9
	RAIN	9	9

	Variables	Variables	
Model	Entered	Removed	Method
1	RAIN ^a		Enter

a. All requested variables entered.

b. Dependent Variable: AIR

Model	Summary
-------	---------

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.97865836 ^a	.95777219	.95173965	2.20261338

a. Predictors: (Constant), RAIN

ANOVA^b

		Sum of				
Model		Squares	df	Mean Square	F	Sig.
1	Regression	770.262	1	770.262	158.768	.00000458 ^a
	Residual	33.961	7	4.852		
	Total	804.222	8			

a. Predictors: (Constant), RAIN

b. Dependent Variable: AIR

หมายเหตุ จากตาราง ANOVA

เพราะว่า Sig = 0.0000045792 < 0.05 เพราะฉะนั้นสรุปได้ว่า ρ≠0 ที่ระดับนัยสำคัญ 0.05 เพราะฉะนั้นปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไปกับปริมาณน้ำฝนมีความสัมพันธ์กันในรูปแบบเชิงเส้น

		Мо	del	
		1		
		(Constant)	RAIN	
Unstandardized	В	153.175	-6.324	
Coefficients	Std. Error	2.615	.502	
Standardized	Beta		979	
t		58.583	-12.600	
Sig.		.000000001	.0000045792	
95% Confidence	Lower Bound	146.993	-7.511	
Interval for B	Upper Bound	159.358	-5.137	

Coefficients^a

a. Dependent Variable: AIR

จากตาราง Coefficients จะได้ผลการวิเคราะห์ข้อมูลคือ

- 1. สัมประสิทธิ์การถดถอยเชิงเส้น b = -6.324 ระยะตัดแกน a = 153.175 สมการของเส้นถดถอยเชิงเส้น $\hat{y} = a + bx$ คือ $\hat{y} = 153.175 - 6.324$ x
- 2. จากตาราง Model Summary สัมประสิทธิ์สหสัมพันธ์ r = −0.97865836
- 3. ช่วงความเชื่อมั่น 95% ของค่าสัมประสิทธิ์การถดถอย β คือ –7.511 < β < –5.137 ช่วงความเชื่อมั่น 95% ของค่าระยะตัดแกน α คือ 146.993 < α < 159.358

การทดสอบสมมติฐาน H₀ : ρ = 0 8.3

การทดสอบสมมติฐานเกี่ยวกับความสัมพันธ์ของประชากร 2 ชุดว่ามีความสัมพันธ์กันในรูปแบบเชิงเส้น หรือไม่มีขั้นตอนในการทำงานดังนี้

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า r
- ขั้นที่ 4. เลือกค่าสถิติที่เหมาะสมคือ t

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง
$$t_{\text{คำนวณ}} = r \sqrt{\frac{n-2}{1-r^2}}$$
, df = n - 2
คำนวณค่า Sig ของค่าสถิติ $t_{\text{сспол.}}$ เมื่อ Sig = P(t > $|t_{\text{ccnor.}}|$)

- ขั้นที่ 6. เปิดตารางสถิติหาค่าวิกฤตคือ $t_{\frac{\alpha}{2}}$ และ $t_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $t < -t_{\frac{\alpha}{2}}$ หรือ $t > t_{\frac{\alpha}{2}}$
- ชั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ถ้า $t_{_{
 m e}n_{1}n_{2}n_{2}}$ <- $t_{\frac{\alpha}{2}}$ หรือ $t_{_{
 m e}n_{1}n_{2}n_{2}}$ > $t_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0

แบบที่ 2 โดยการเปรียบเทียบค่า Sig ของค่าสถิติ $t_{_{
m enu}2}$ กับค่านัยสำคัญ α

ถ้า Sig < $\frac{\alpha}{2}$ แล้วปฏิเสธ H₀

หมายเหตุ t =
$$r \sqrt{\frac{n-2}{1-r^2}}$$
 และ t = $\frac{b}{(\frac{S}{\sqrt{S_{xx}}})}$ เป็นค่าเดียวกัน

กรณีของการทดสอบแบบ 1 ข้าง

	$H_1 : \rho < 0$	$H_1 : \rho > 0$
ค่าวิกฤต	$-t_{\alpha}$, $n-2$	$t_{\alpha}, n-2$
ບรີເວ໙ວີກฤต	$t < -t_{\alpha \ , n-2}$	$t > t_{\alpha, n-2}$
ปฏิเสธ H ₀	ถ้ำ t _{คำนวณ} < 0 และ Sig < α	ถ้ำ t _{คำนวณ} > 0 และ Sig < α

จากตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไปกับปริมาณน้ำ ้ฝน จงทดสอบว่า ปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป กับ ปริมาณน้ำฝนไม่มีความสัมพันธ์กันที่ระดับนัย สำคัญ 0.05

ົງສີ່ຳ ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_0 : \rho = 0$ กำหนดสมมติฐานอื่น H_1 : $\rho \neq 0$

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและนำข้อมูลเข้าสู่การคำนวณด้วย SPSS
- ขั้นที่ 4. เลือกค่าสถิติที่เหมาะสมคือ t
- ขั้นที่ 5. จากผลการคำนวณของ SPSS ข้างต้น

Coefficients^a

		Model		
		1	L	
		(Constant)	RAIN	
Unstandardized	В	153.175	-6.324]
Coefficients	Std. Error	2.615	.502	
Standardized	Beta		979	
t		58.583	-12.600	\leftarrow
Sig.		.000000001	.0000045792	$\left \leftarrow\right $
95% Confidence	Lower Bound	146.993	-7.511	
Interval for B	Upper Bound	159.358	-5.137	

a. Dependent Variable: AIR

จากตาราง Coefficient จะได้
1.
$$t_{คำนวณ} = r \sqrt{\frac{n-2}{1-r^2}} = -12.600, df = 7$$

2. Sig = 0.0000045792

ขึ้นที่ 6. ค่าวิกฤตคือ – $t_{0.025} = -2.365$ และ $t_{0.025} = 2.365$ บริเวณวิกฤตคือ t < -2.365 หรือ t > 2.365ขั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $t_{_{คำนวณ}}$ อยู่ในบริเวณวิกฤต เพราะฉะนั้นปฏิเสธ H_0 แบบที่ 2 เพราะว่า Sig = 0.0000045792 $< \frac{\alpha}{2} = 0.025$ เพราะฉะนั้นปฏิเสธ H_0

เพราะฉะนั้นปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไปกับปริมาณน้ำฝนมีความสัมพันธ์กัน

การทดสอบสมมติฐาน H₀ : ρ = 0 โดยใช้ค่าสถิติเอฟจากตาราง ANOVA

การทดสอบสมมติฐานเกี่ยวกับความสัมพันธ์ของประชากร 2 ชุดว่ามีความสัมพันธ์กันในรูปแบบเชิงเส้น หรือไม่มีขั้นตอนในการทำงานดังนี้

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. สุ่มตัวอย่าง
- ขั้นที่ 4. เลือกใช้ค่าสถิติเอฟ
- ขั้นที่ 5. คำนวณค่าสถิติเอฟจากตาราง ANOVA

คำนวณค่าผลบวกต่าง ๆ ที่สำคัญ S_{yy} , S_{xx} , S_{xy} ในการทำตาราง ANOVA

SST =
$$\sum y_i^2 - \frac{(\sum y_i)^2}{n} = S_{yy}$$
, SSR = $bS_{xy} = b^2 S_{xx}$, SSE = SST - SSR

ANOVA TABLE					
SOV	SS	DF	MS	F	Sig
Regression	SSR	1	MSR	f _{คำนวณ} = <u>MSR</u> MSE	P(F > f _{คำนวณ})
Residual	SSE	n – 2	MSE		
Total	SST	n – 1			

ขั้นที่ 6. ค่าวิกฤตคือ $f_{\alpha,(v_1,v_2)}$ บริเวณวิกฤตคือ $F > f_{\alpha,(v_1,v_2)}$ เมื่อ $v_1 = 1$, $v_2 = n-2$

ขั้นที่ 7. สรุปผล แบบที่ 1 ถ้า $f_{
m e^n}_{
m nun} > f_{lpha,(v_1,v_2)}$ แล้วปฏิเสธ H_0

แบบที่ 2 ถ้า Sig < α แล้วปฏิเสธ H $_0$

จากการคำนวณของ SPSS for Windows เราได้ตาราง ANOVA เป็น

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	770.262	1	770.262	158.768	.00000458 ^a
	Residual	33.961	7	4.852		
	Total	804.222	8			

a. Predictors: (Constant), RAIN

b. Dependent Variable: AIR

ขั้นที่ 6. ค่าวิกฤตคือ $f_{0.05,(1,7)} = 5.59$ บริเวณวิกฤตคือ F > 5.59

ขั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $f_{
m e^1ucau}$ = 158.768 > 5.59 เพราะฉะนั้นปฏิเสธ H_0 แบบที่ 2 ถ้า Sig = 0.00000458 < α = 0.05 เพราะฉะนั้นปฏิเสธ H_0

8.4 การทดสอบสมมติฐาน H_0 : $\beta = \beta_0$

เนื่องจากค่าสหสัมพันธ์เป็นการบอกระดับและทิศทางความสัมพันธ์ของตัวแปร แต่ไม่สามารถบอก อัตราการเปลี่ยนแปลงได้ ส่วนค่าสัมประสิทธิ์การถดถอย β สามารถบอกอัตราการเปลี่ยนแปลงของค่าตัวแปร ได้ เช่น y = 2 + 3x แสดงว่าถ้าค่า x เพิ่ม 1 หน่วยแล้วค่าของ y จะเพิ่มค่า 3 หน่วย ดังนั้นเราจึงศึกษาเกี่ยวกับ การทดสอบสมมติฐาน β = β₀

หลักการและขั้นตอนการทดสอบสมมติฐานกรณี $\beta_0=0$

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : β = 0 กำหนดสมมติฐานอื่น H₁ : β ≠ 0 ขั้นที่ 2. กำหนดระดับนัยสำคัญ α

- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า b, s, S_{xx}
- ขั้นที่ 4. เลือกค่าสถิติที

ขั้นที่ 5. คำนวณค่า
$$t_{\text{คำนวณ}} = \frac{b}{(\frac{s}{\sqrt{S_{XX}}})}, df = n - 2 \, \text{และ Sig} = P(t > \left| t_{\text{คำนวณ}} \right|)$$

ขั้นที่ 6. เปิดตารางสถิติหาค่าวิกฤต – t
$$_{\frac{\alpha}{2}}$$
 และ t $_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ t < – t $_{\frac{\alpha}{2}}$ หรือ t > t $_{\frac{\alpha}{2}}$

ขั้นที่ 7. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

ถ้า $t_{\theta_1 u_2 a u} < -t_{\frac{\alpha}{2}}$ หรือ $t_{\theta_1 u_2 a u} > t_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0 แบบที่ 2 ถ้า Sig $< \frac{\alpha}{2}$ แล้วปฏิเสธ H_0

หมายเหตุ ในกรณีที่ $\beta_0 = 0$ เราทำการทดสอบแบบเดียวกับการทดสอบ $\rho = 0$

ในทางทฤษฎีสามารถพิสูจน์ได้ว่า t = r
$$\sqrt{rac{n-2}{1-r^2}}$$
 และ t = $rac{b}{(rac{S}{\sqrt{S_{xx}}})}$ เป็นค่าเดียวกัน

กรณีของการทดสอบแบบ 1 ข้าง

	$H_1 : \beta < 0$	$H_1 : \beta > 0$
ค่าวิกฤต	$-t_{\alpha,n-2}$	$t_{\alpha,n-2}$
ບรີເວณวิกฤต	$t < -t_{\alpha \ , n-2}$	$t > t_{\alpha, n-2}$
ปฏิเสธ H ₀	ถ้ำ t _{คำนวณ} < 0 และ Sig < α	ถ้ำ t _{คำนวณ} > 0 และ Sig < α

จากตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป (y) กับ ปริมาณน้ำฝน (x) จงทดสอบว่า สมการถดถอย y = α + βx มีค่าสัมประสิทธิ์การถดถอย β = 0 ที่ระดับนัยสำคัญ 0.05

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : β = 0 กำหนดสมมติฐานอื่น H_1 : β ≠ 0

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า b, s, S_{xx}
- ขั้นที่ 4. เลือกค่าสถิติที

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง
$$t_{
m e^nucou}=rac{b}{(rac{s}{\sqrt{S_{xx}}})},\,{
m df}=n-2$$

		Mod	del]
		1	L	
		(Constant)	RAIN	
Unstandardized	В	153.175	-6.324]
Coefficients	Std. Error	2.615	.502	
Standardized	Beta		979	
t		58.583	-12.600	$\leftarrow 1$
Sig.		.000000001	.0000045792	$\leftarrow 2$
95% Confidence	Lower Bound	146.993	-7.511	
Interval for B	Upper Bound	159.358	-5.137	

Coefficients^a

a. Dependent Variable: AIR

จากตาราง Coefficient จะได้
$$t_{_{
m e^1ucal}} = \frac{b}{(\frac{s}{\sqrt{S_{xx}}})} = -12.600, df = 7 และ Sig = 0.0000045792$$

ชั้นที่ 6. ค่าวิกฤตคือ – $t_{0.025} = -2.365$ และ $t_{0.025} = 2.365$ บริเวณวิกฤตคือ t < -2.365 หรือ t > 2.365 ชั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $t_{_{
m ค^1u}20}$ อยู่ในบริเวณวิกฤต เพราะฉะนั้นปฏิเสธ H₀ แบบที่ 2 เพราะว่า Sig = 0.0000045792 < $\frac{\alpha}{2}$ = 0.025 เพราะฉะนั้นปฏิเสธ H₀ เพราะฉะนั้นสมการถดถอย y = α + βx มีค่าสัมประสิทธิ์การถดถอย β ≠ 0 ที่ระดับนัยสำคัญ 0.05 หลักการและขั้นตอนการทดสอบสมมติฐานกรณี β₀ ไม่เท่ากับ 0

- ชั้นที่ **1**. กำหนดสมมติฐานหลัก H_0 : β = β₀ กำหนดสมมติฐานอื่น H_1 : β ≠ β₀
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่าโดยการนำข้อมูลเข้าสู่โปรแกรม SPSS
- ขั้นที่ 4. เพราะว่าผลการคำนวณของ SPSS ไม่ให้ค่า t = $\frac{b-\beta_0}{(\frac{s}{\sqrt{S_{xx}}})}$ ออกมาโดยตรง

เพราะฉะนั้นเราจึงใช้ช่วงความเชื่อมั่นของ β ช่วยในการสรุปสมมติฐาน

- ขั้นที่ 5. ให้หาช่วงความเชื่อมั่น (1-α)100% ของค่า β
- ขั้นที่ 6. ไม่มีการเปิดตารางสถิติเพื่อหาค่าวิกฤต
- ขั้นที่ 7. สรุปผลโดยการดูว่า β_0 อยู่ในช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า β ที่หาได้หรือไม่ ถ้า β_0 อยู่ในช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า β ที่หาได้ แล้ว ยอมรับ H_0

จากตัวอย่างข้อมูล

Χ	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00
Y	4.80	5.70	7.00	8.30	10.90	12.40	13.10	13.60	15.30

สมมติความสัมพันธ์ของตัวแปรในรูปแบบเชิงเส้นคือ $y = \alpha + \beta x$

จงทดสอบสมมติฐานว่า β = 2.5 แย้งกับ β ≠ 2.5 ที่ระดับนัยสำคัญ 0.05

ີວີຣີ້ກຳ

- ขั้นที่ 1. กำหนดสมมติฐานหลัก ${
 m H}_0$: eta= 2.5
- กำหนดสมมติฐานอื่น H₁ : β ≠ 2.5
- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่าโดยการนำข้อมูลเข้าสู่โปรแกรม SPSS
- . ขั้นที่ 4. เพราะว่าผลการคำนวณของ SPSS ไม่ให้ค่า t = $\frac{b-\beta_0}{(\frac{s}{\sqrt{S_{xx}}})}$ ออกมาโดยตรง

เพราะฉะนั้นเราจึงใช้ช่วงความเชื่อมั่นของ β ช่วยในการสรุปสมมติฐาน

ขั้นที่ 5. เพราะว่า H_1 : β ≠ $β_0$ เพราะฉะนั้น ให้หาช่วงความเชื่อมั่น 95% ของค่า β

การหาช่วงความเชื่อมั่น 95% ของ β

ขั้นที่ 5.1 นำข้อมูลเข้าสู่ example16.sav ที่สร้างไว้เข้าสู่ SPSS Data Editor

ขั้นที่ 5.2 เลือกคำสั่ง Analyze / Regression / Linear

🧰 examp	le16 - SPSS	Data Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>
2	a 🔍 🗠	
13 :		
	х	у
1	1.50	4.80
2	1.80	5.70
3	2.40	7.00
4	3.00	8.30
5	3.50	10.90
6	3.90	12.40
7	4.40	13.10
8	4.80	13.60
9	5.00	15.30

 ◆ X ★ y 	Dependent:	OK
	Previous Block 1 of 1 Next	Rese
	Independent(s):	Cance
		Help
	Method: Enter -	
	S <u>e</u> lection Variable:	R <u>u</u> le
	Case Labels:	_
<u>w</u> ls >>	<u>S</u> tatistics P <u>l</u> ots S <u>a</u> ve	Options

ขั้นที่ 5.3 คลิกที่ Linear จะได้เมนูของคำสั่งดังนี้

ขั้นที่ 5.4 เลือกตัวแปร x เป็นตัวแปรอิสระไปไว้ที่ช่อง Independent(s) เลือกตัวแปร y เป็นตัวแปรตามไปไว้ที่ช่อง Dependent

📽 Linear Regression			×
() () () () () () () () () ()		Dependent:	ОК
		⊛ y	<u>P</u> aste
	Pre <u>v</u> ious	Block 1 of 1 <u>N</u> ext	Reset
		Independent(s):	Cancel
		*×	Help

ขั้นที่ 5.5 คลิกที่ปุ่ม Statistics จะได้เมนูย่อยเป็น

✓ Estimates ✓ Confidence intervals	Model Int	Continue Cancel Help
Co <u>v</u> ariance matrix Residuals	☐ Collinearity diagnostics	
☐ Durbin-Watson ☐ Casewise diagnostics		
C Outliers outside C All cases	3 standard deviations	

- **₽** Estimates
- Confidence intervals
- ☐ Covariance matrix
- ขั้นที่ 5.6 คลิกในกรอบสี่เหลี่ยมหน้าช่อง Confidence intervals
- ขั้นที่ 5.7 คลิก Continue และ OK ตามลำดับ

จะได้ผลการคำนวณดังนี้

Regression

Variables Entered/Removed[®]

Model Entered Removed Method 1 X ^a Enter		Variables	Variables	
1 X ^a Enter	Model	Entered	Removed	Method
	1	Xa		Enter

a. All requested variables entered.

b. Dependent Variable: Y

Model Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.99108867 ^a	.98225675	.97972200	.53876550

a. Predictors: (Constant), X

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	112.484	1	112.484	387.516	.0000002181ª
	Residual	2.032	7	.290		
	Total	114.516	8			

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients^a

		Model		
			1	
		(Constant)	Х	
Unstandardized	В	.256947	2.9303	
Coefficients	Std. Error	.532353	.1489	
Standardized	Beta		.9911	
t		.482662	19.6854	
Sig.		.644064	.0000002181	
95% Confidence	Lower Bound	-1.001867	2.5783	
Interval for B	Upper Bound	1.515761	3.2823	

a. Dependent Variable: Y

ขั้นที่ 6. ไม่มีการเปิดตารางสถิติเพื่อหาค่าวิกฤต

ขั้นที่ 7. ช่วงความเชื่อมั่น 95% ของ β คือ (2.578, 3.282)

เพราะว่า 2.5 ไม่อยู่ในช่วงความเชื่อมั่น 95% ของ eta เพราะฉะนั้นปฏิเสธ ${
m H}_0$

การทดสอบสมมติฐาน H_0 : α = 0 (ระยะตัดแกน = 0)

- ชั้นที่ **1**. กำหนดสมมติฐานหลัก $H_0: \alpha = 0$ กำหนดสมมติฐานอื่น $H_1: \alpha \neq 0$
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า a, s, S_{xx}

ขั้นที่ 4. เลือกค่าสถิติที

ขึ้นที่ 5. คำนวณค่า
$$t_{_{\phi_1 u_2 u_4}} = \frac{a}{s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}}}}, df = n - 2$$
 และ $Sig = P(t > |t_{_{\phi_1 u_2 u_4}}|)$

ขั้นที่ 6. เปิดตารางสถิติหาค่าวิกฤต –
$$t_{\alpha}$$
 และ t_{α} บริเวณวิกฤตคือ $t < -t_{\alpha}$ หรือ $t > t_{\alpha}$

้ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

ถ้า
$$t_{_{
m e}\eta_{1}\eta_{2}\eta_{2}} < -t_{\frac{\alpha}{2}}$$
 หรือ $t_{_{
m e}\eta_{1}\eta_{2}\eta_{2}} > t_{\frac{\alpha}{2}}$ แล้วปฏิเสธ H_0
แบบที่ 2 ถ้า Sig < $\frac{\alpha}{2}$ แล้วปฏิเสธ H_0

หมายเหตุ กรณีของการทดสอบแบบ 1 ข้าง

	H_1 : $\alpha < 0$	H_1 : $\alpha > 0$
ค่าวิกฤต	$-t_{\alpha,n-2}$	$t_{\alpha,n-2}$
ບรີເວณวิกฤต	$t < -t_{\alpha \ , n-2}$	$t > t_{\alpha, n-2}$
ปฏิเสธ H ₀	ถ้ำ t _{คำนวณ} < 0 และ Sig < α	ถ้ำ t _{คำนวณ} > 0 และ Sig < α

จากตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป (y) กับ ปริมาณน้ำฝน (x) จงทดสอบว่า สมการถดถอย y = α + βx มีระยะตัดแกน α = 0 ที่ระดับนัยสำคัญ 0.05 วิธีทำ

- ขั้นที่ **1**. กำหนดสมมติฐานหลัก H_0 : α = 0 กำหนดสมมติฐานอื่น H_1 : α ≠ 0
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า a, s, S_{xx}
- ขั้นที่ 4. เลือกค่าสถิติที

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง $t_{e_{i_1}} = \frac{a}{s \sqrt{\sum_{i=1}^{n} x_i^2}}, df = n - 2$

จากตาราง Coefficient จะได้ $t_{_{\phi_{1}u_{2}u_{2}}} = \frac{a}{s\sqrt{\sum_{i=1}^{n} x_{i}^{2}}} = 58.583, df = 7$ และ Sig = 0.0000000001

ขั้นที่ 6. ค่าวิกฤตคือ – $t_{0.025} = -2.365$ และ $t_{0.025} = 2.365$ บริเวณวิกฤตคือ t < -2.365 หรือ t > 2.365ขั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $t_{\text{คำนวณ}}$ อยู่ในบริเวณวิกฤต เพราะฉะนั้นปฏิเสธ H_0 แบบที่ 2 เพราะว่า Sig = 0.0000000001 $< \frac{\alpha}{2} = 0.025$ เพราะฉะนั้นปฏิเสธ H_0 เพราะฉะนั้นสมการถดถอย $y = \alpha + \beta x$ มีค่าสัมประสิทธิ์การถดถอย $\alpha \neq 0$ ที่ระดับนัยสำคัญ 0.05 หลักการและขั้นตอนการทดสอบสมมติฐานกรณี α₀ ไม่เท่ากับ 0

ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_0: \alpha = \alpha_0$ กำหนดสมมติฐานอื่น $H_1: \alpha \neq \alpha_0$

ขั้นที่ 2. กำหนดระดับนัยสำคัญ α

ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่าโดยการนำข้อมูลเข้าสู่โปรแกรม SPSS

ขั้นที่ 4. เพราะว่าผลการคำนวณของ SPSS ไม่ให้ค่า t =
$$\frac{a - \alpha_0}{s \sqrt{\sum_{i=1}^{n} x_i^2}}$$
 ออกมาโดยตรง

เพราะฉะนั้นเราจึงใช้ช่วงความเชื่อมั่นของ α ช่วยในการสรุปสมมติฐาน

- ขั้นที่ 5. ให้หาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า α
- ขั้นที่ 6. ไม่มีการเปิดตารางสถิติเพื่อหาค่าวิกฤต
- ขั้นที่ 7. สรุปผลโดยการดูว่า α_0 อยู่ในช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า α ที่หาได้หรือไม่ ถ้า α_0 อยู่ในช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า α ที่หาได้ แล้ว ยอมรับ H_0

จากตัวอย่างข้อมูล

Χ	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00
Y	4.80	5.70	7.00	8.30	10.90	12.40	13.10	13.60	15.30

สมมติความสัมพันธ์ของตัวแปรในรูปแบบเชิงเส้นคือ $y = \alpha + \beta x$

จงทดสอบสมมติฐานว่า α = 150 แย้งกับ α ≠ 150 ที่ระดับนัยสำคัญ 0.05

วิธีทำ กำหนดสมมติฐานหลัก H_0 : α = 150

กำหนดระดับนัยสำคัญ 0.05

จากตาราง Coefficients ช่วงความเชื่อมั่น 95% ของ α คือ (146.993, 159.358) เพราะว่า 150 อยู่ในช่วงความเชื่อมั่น 95% ของ α เพราะฉะนั้นยอมรับ H_0

8.5 การเลือกรูปแบบความสัมพันธ์ที่เหมาะสมกับข้อมูล

ความสัมพันธ์แบบเชิงเดียว ซึ่งประกอบด้วยตัวแปรอิสระ 1 ตัว และตัวแปรตาม 1 ตัว รูปแบบของสมการ ความสัมพันธ์เชิงเส้นเชิงเดียวอาจมีรูปแบบเป็น

- 1. y = a + bx
- 2. $\ln y = a + b \ln x$
- 3. $y = a + b \ln x$
- 4. $\ln y = a + bx$

เมื่อเรามีข้อมูลและต้องการรู้ว่ารูปแบบใดเหมาะสมกับข้อมูล สามารถใช้โปรแกรม MATHCAD ช่วยในการ เขียนกราฟและคำนวณค่าสหสัมพันธ์ได้ดังนี้ จากตัวอย่าง 8.2.1

เราสามารถเขียนแผนภาพการกระจาย 4 รูปแบบและคำนวณค่าสหสัมพันธ์ได้ดังนี้

การคำนวณด้วย MATHCAD

slope(rain, air) = -6.323988	intercept(rain, air) = 153.175493
slope $\left(\operatorname{rain}, \overline{\ln(\operatorname{air})} \right) = -0.051097$	intercept $\left(\overrightarrow{rain}, \overrightarrow{ln(air)} \right) = 5.052922$
slope $\left(\overrightarrow{\ln(rain)}, air\right) = -26.616482$	intercept $(\overrightarrow{\ln(rain)}, air) = 162.986181$
slope $\left(\overrightarrow{\ln(rain)}, \overrightarrow{\ln(air)}\right) = -0.213116$	intercept $\left(\overrightarrow{\ln(rain)}, \overrightarrow{\ln(air)}\right) = 5.129167$

ູູປແບບ	ชื่อรูปแบบใน SPSS	สมการแบบเชิงเส้น	ค่าสัมประสิทธิ์สหสัมพันธ์
1	Linear	air = a + b rain	-0.978658
2	Power	$\ln(air) = a + b \ln(rain)$	-0.971364
3	Logarithmic	$air = a + b \ln(rain)$	-0.976417
4	Exponential	$\ln(air) = a + brain$	-0.982471

ผลการคำนวณของ Mathcad จะได้ค่าสัมประสิทธิ์สหสัมพันธ์ของรูปแบบต่าง ๆ เป็นดังนี้

สมการในรูปแบบทั้ง 4 รูปแบบคือ

ູຈູປແບບ	สมการแบบเชิงเส้น	สมการความสัมพันธ์
1	air = 153.175493 – 6.323988 rain	air = 153.175493 – 6.323988 rain
2	$\ln(air) = 5.129167 - 0.213116 \ln(rain)$	air = 168.876385 rain ^{-0.213116}
3	air = 162.986181 – 26.616482 ln(rain)	air = 162.986181 - 26.616482 ln(rain)
4	ln(air) = 5.052922 – 0.051097 rain	air = 156.479029e ^{-0.051097} rain

การตัดสินใจทางด้านสถิติเราเลือกรูปแบบที่มีค่าสัมประสิทธิ์สหสัมพันธ์ที่มีค่าสัมบูรณ์มากที่สุด เพราะฉะนั้นเลือกรูปแบบความสัมพันธ์ที่ 4 คือ ln(air) = 5.052922 – 0.051097 rain หรือโดยการจัดรูปพีชคณิตจะกลายเป็นสมการ

air = $e^{5.052922 - 0.051097 rain} = e^{5.052922} e^{-0.051097 rain} = 156.479029 e^{-0.051097 rain}$ สรุปสมการแสดงความสัมพันธ์ที่เหมาะสมกับข้อมูลคือ air = 156.479029 e^{-0.051097 rain}

การหาความสัมพันธ์ในรูปแบบต่าง ๆ ด้วย SPSS for Windows

โปรแกรม SPSS for Windows มีคำสั่งที่ช่วยในการหาความสัมพันธ์ในรูปแบบอื่นๆ เช่น

Linear	$y = a + bx = b_0 + b_1 x$ $i \dot{a} = b_0 = a$, $b_1 = b$
Power	$\ln(y) = a + b \ln(x)$ หรือ $y = e^{a}x^{b} = b_{0}x^{b_{1}}$ เมื่อ $b_{0} = e^{a}, b_{1} = b$
Logarithmic	$y = a + b \ln(x) = b_0 + b_1 \ln(x)$ เมื่อ $b_0 = a$, $b_1 = b$
Exponential	$\ln(y) = a + b x $ หรือ $y = e^{a}e^{bx} = b_0 e^{b_1 x} $ เมื่อ $b_0 = e^{a}, b_1 = b$
Quadratic	$y = b_0 + b_1 x + b_2 x^2$

การวิเคราะห์ความสัมพันธ์ของ SPSS มีขั้นตอนดังนี้

- ขั้นที่ 1. นำแฟ้มข้อมูล example17.sav เข้ามาใน SPSS Data Editor
- ขั้นที่ 2. เลือกคำสั่ง Analyze / Regression / Curve Estimation

💼 exan	ple17 - SPS	S Data Edito	ſ					
<u>F</u> ile <u>E</u> o	it <u>V</u> iew <u>D</u> al	a <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp		
8:	 		Reports Descriptive Stal Custom <u>T</u> ables	tistics		5 📎	0	
	rain	air	Compare <u>M</u> ean:	s	Va	ar	var	
	1 4.3	0 126.0) <u>G</u> eneral Linear I	Model				
	2 4.5	0 121.0	Begression		D Di	near		
	3 5.9	0 116.0	Loglinear) <u> </u>	irve Est	imation	
	4I 56	n 119 r)					

🛅 example17 - SPSS Data Editor

<u>File E</u> dit	View Data	Iransform A
<u> 2</u>	a 🔍 🗠	
8:		
	rain	air
1	4.30	126.00
2	4.50	121.00
3	5.90	116.00
4	5.60	118.00
5	6.10	114.00
6	5.20	118.00
7	3.80	132.00
8	2.10	141.00
9	7.50	108.00

 ◆ Tain ◆ air 	Uependentis):	OK Paste Reset Cancel Help Include constant in equation I Plot models
	I⊽ Linear I Quadratic I Logariţhmic I <u>C</u> ubic I I <u>n</u> verse I Po <u>w</u> er	└ Compound └ Growt <u>h</u> └ S └ Exponential └ Logistic Upper <u>b</u> ound: └

ขั้นที่ 3. คลิกคำสั่ง Curve Estimation จะได้เมนูย่อยเป็น

ขั้นที่ 4. เลือกข้อกำหนดต่าง ๆ ของการวิเคราะห์ข้อมูลเช่น

- 1. เลือกตัวแปรตาม air
- 2. เลือกตัวแปรอิสระ rain
- 3. ยกเลิกการหารูปแบบ Linear
- 4. เลือกรูปแบบ Exponential
- 5. ให้เขียนกราฟของข้อมูลและสมการแสดงความสัมพันธ์ที่คำนวณได้
- 6. การหาสมการต้องการให้มีพจน์ของค่าคงตัวด้วย
- 7. ให้แสดงผลตาราง ANOVA

Curve Estimation		×
\bigcirc	Dependent(s):	ОК
l	•	Paste
	Independent	<u>R</u> eset
		6 Cancel
$\bigcirc \rightarrow$	🕞 🖗 rain	U
	⊂ Ti <u>m</u> e	☑ Include constant in equation
(Case La <u>b</u> els:	—
$\Im \rightarrow$	┌ <u>L</u> inear ┌ <u>Q</u> uadratic	└ Compound └ Growt <u>h</u>
	┌ Logariṯhmic ┌ <u>C</u> ubic	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	∏ l <u>n</u> verse ∏ Po <u>w</u> er	∏ Logistic
		Upper <u>b</u> ound:
$\bigcirc \rightarrow$	🔽 Display ANOVA table	S <u>a</u> ve

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณเป็นดังนี้

ผลการคำนวณทั้งหมดคือ

MODEL: MOD_1. Dependent variable.. AIR

Method.. EXPONENT

Listwise Del	etion of	of Missing Da	ta			
Multiple R		.98247				
R Square		.96525				
Adjusted R S	Square	.96028				
Standard Err	or	.01608				
		~ ~~	Analy	sis of Variance:		
	DF	Sum of Squ	ares	Mean Square		
Regression	1	.05028653		.05028653		
Residuals	7	.00181040		.00025863		
F = 194.42	3502	Signif F =	.0000			
			Variab	les in the Equatior	1	
Variable		В	SE B	Beta	Т	Sig T
RAIN		051097	.0036	64982471	-13.944	.0000
(Constant)		156.479071	2.987	250	52.382	.0000
AIR						
150						
140.						
130•	N.					
120		N.				
110•				 • Observed		
100				 Exponential 		
2 3	3 4	56	7	8		
RAIN						

การแปลความหมายจากผลการวิเคราะห์ของ SPSS for Windows

- 1. สมการแสดงความสัมพันธ์ในรูปแบบ Exponential คือ air = 156.479029e^{-0.051097rain}
- 2. สัมประสิทธ์สหสัมพันธ์ของตัวแปร rain, air ในรูปแบบ Exponential มีค่าเท่ากับ –0.98247 หมายเหตุ เครื่องหมายบวกหรือลบ ของค่า R ให้ดูจากสัมประสิทธิ์ B ของตัวแปร rain
- 3. การทดสอบสมมติฐาน

```
ขั้นที่ 1. กำหนดสมมติฐาน H<sub>0</sub> : ρ = 0 (ตัวแปร rain, air ไม่มีความสัมพันธ์กันในรูปแบบ Exponential)
```

```
H<sub>1</sub>: ρ ≠ 0 (ตัวแปร rain, air มีความสัมพันธ์กันในรูปแบบ Exponential)
```

- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. สุ่มตัวอย่าง
- ขั้นที่ 4. เลือกใช้ค่าสถิติเอฟ
- ขั้นที่ 5. คำนวณค่าสถิติเอฟจากตาราง ANOVA , $f_{
 m e^1}_{
 m nu20u}$ = 194.43502
- ขั้นที่ 6. ค่าวิกฤตคือ $f_{0.05,(1,7)} = 5.59$ บริเวณวิกฤตคือ F > 5.59
- ขั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $f_{
 m e^1ucm} = 194.43502 > 5.59$ เพราะฉะนั้นปฏิเสธ H_0 แบบที่ 2 ถ้า Sig = 0.0000 < α = 0.05 เพราะฉะนั้นปฏิเสธ H_0

เพราะฉะนั้นตัวแปร rain, air มีความสัมพันธ์กันในรูปแบบ Exponential

หมายเหตุ การวิเคราะห์ข้อมูลของ Analyze / Regression / Curve Estimation โดยเลือกรูปแบบสมการเป็น Linear , Power, Logarithmic และ Exponential

MODEL: MOD_1. Independent: RAIN

Dependent	Mth	Rsq	d.f.	F	Sigf	b0	b1
AIR	LIN	.958	7	158.77	.000	153.175	- 6.3240
AIR	POW	.944	7	117.00	.000	168.876	- 0.2131
AIR	LOG	.953	7	143.18	.000	162.986	- 26.616
AIR	EXP	.965	7	194.44	.000	156.479	- 0.0511

ความหมายของสมการที่ได้คือ

	รูปแบบ สมการความสัมพันธ์		
1	Linear	air = 153.175 – 6.3240 rain	
2	Power	air = $168.876 \text{ rain}^{-0.2131}$	
3	Logarithmic	air = 162.986 - 26.616 ln(rain)	
4	Exponential	air = $156.479e^{-0.051}$ lrain	

ข้อสังเกต จะเห็นได้ว่ารูปแบบ Exponential มีค่า R² = 0.965 มากที่สุด ดังนั้นจากรูปแบบทั้ง 4 ข้างต้น รูปแบบที่ดีที่สุดคือรูปแบบ Exponential

8.6 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์และสมการถดถอยพหุดูณ

8.6.1 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์ของตัวแปรหลาย ๆ คู่

ในกรณีมีตัวแปรหลายคู่ที่ต้องการหาค่าสัมประสิทธิ์สหสัมพันธ์ เช่นน้ำหนัก (x₁), ความสูง(x₂), อายุ(x₃)

x ₁	x ₂	x ₃
64.00	57.00	8.00
71.00	59.00	10.00
53.00	49.00	6.00
67.00	62.00	11.00
55.00	51.00	8.00
58.00	50.00	7.00
77.00	55.00	10.00
57.00	48.00	9.00
56.00	52.00	10.00
51.00	42.00	6.00
76.00	61.00	12.00
68.00	57.00	9.00

การหาค่าสัมประสิทธิ์สัมพันธ์ของตัวแปรหลายคู่พร้อมกันด้วย SPSS for Windows

ขั้นที่ 1. สร้างข้อมูลประกอบด้วยตัวแปร x1, x2, x3

ใน SPSS Data Editor แล้ว Save แฟ้มข้อมูลชื่อ example18.sav

ขั้นที่ 2. เลือกคำสั่ง Analyze / Correlate / Bivariate

🛅 examp	le18 - SPSS	Data Edito	r			
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
⊯ 15:	/ 		Re <u>p</u> orts D <u>e</u> scriptive Stat Custom <u>T</u> ables	istics		<u>, M</u>
	×1	х2	Compare <u>M</u> eans		Va	ar Va
1	64.00	57.0	<u>G</u> eneral Linear M Corrolato	10del		iupriato
2	71.00	59.0	Begression			artial
3	53.00	49.0	Loginear		• D	istances
<u>л</u>	67.00	62.0	Login loar			1000 1000

5855			
<u>File</u> dit	<u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	<u>A</u> nalyze <u>G</u> raph
2	a 🔍 🗠		- <u>R</u>
15 :			
	×1	х2	xЗ
1	64.00	57.00	8.00
2	71.00	59.00	10.00
3	53.00	49.00	6.00
4	67.00	62.00	11.00
5	55.00	51.00	8.00
6	58.00	50.00	7.00
7	77.00	55.00	10.00
8	57.00	48.00	9.00
9	56.00	52.00	10.00
10	51.00	42.00	6.00
11	76.00	61.00	12.00
10	60.00	E7.00	0.00

คลิกที่ Bivariate จะได้เมนูย่อยเป็น

♦XI Vari	iables: OK
₩ ×2 ★ ×3	<u>P</u> aste
	Reset
	Cance
	Help
Correlation Coefficients └ Pearso <u>n</u>	Spearman
Test of Significance ☞ <u>T</u> wo-tailed	
7 Elog aignificant correlations	<u>O</u> ptions

ขั้นที่ 3. เลือกตัวแปร x1, x2 และ x3 มา	ไว้ที่ช่อง Variables	
1. เลือกคำนวณสหสัมพันธ์ Pearson	A Bivariate Correlations	×
2. เลือกคำนวณ	<u>V</u> ariables: (↔×1	ок
Two-tailed Significant	() () () () () () () () () () () () () (Paste
3. ให้แสดงเครื่องหมาย *		Reset
สำหรับค่ที่มีค่าความสัมพันธ์แตกต่าง		Help
อย่างมีนัยสำคัญ	Constation Conflictents	
$\textcircled{0}\rightarrow$	Goreraduli Cuellicients ア Pearso <u>n</u>	
$\mathbb{Q} \rightarrow$	Test of Significance	
3→ 	\overrightarrow{P} Elag significant correlations	Options

Y

- 1. สำหรับข้อมูลเชิงปริมาณและมีการแจกแจงปกติควรใช้ Pearson Correlation Coefficient
- 2. สำหรับข้อมูลแบบอันดับที่หรือลำดับตำแหน่ง

ควรใช้ Kendall's tau_b หรือ Spearman Correlation Coefficient

ขั้นที่ 4. คลิก OK จะได้ผลการคำนวณเป็น

ผลการคำนวณทั้งหมดคือ

Correlations

Correlations

		X1	X2	X3
X1	Pearson Correlation	1.00000000	.81964508*	.76981680*
	Sig. (2-tailed)		.00110072	.00340655
	Ν	12	12	12
X2	Pearson Correlation	.81964508*	1.00000000	.79840746*
	Sig. (2-tailed)	.00110072		.00184860
	Ν	12	12	12
X3	Pearson Correlation	.76981680*	.79840746*	1.00000000
	Sig. (2-tailed)	.00340655	.00184860	.
	Ν	12	12	12

**. Correlation is significant at the 0.01 level (2-tailed).

การแปลความหมายของผลการวิเคราะห์ข้อมูล

ค่าสหสัมพันธ์ของ น้ำหนัก (x_1) , ความสูง (x_2) เท่ากับ 0.81964508 ค่าสหสัมพันธ์ของ น้ำหนัก (x_1) , อายุ (x_3) เท่ากับ 0.76981680 ค่าสหสัมพันธ์ของ ความสูง (x_2) , อายุ (x_3) เท่ากับ 0.79840746 เพราะฉะนั้น น้ำหนัก (x_1) , ความสูง (x_2) มีความสัมพันธ์กันมากที่สุด การทดสอบสมมติฐานเกี่ยวกับความสัมพันธ์ในรูปแบบเซิงเส้น กำหนดนัยสำคัญ $\alpha = 0.05$ สมมติฐานหลัก H_0 : น้ำหนัก (x_1) , ความสูง (x_2) ไม่มีความสัมพันธ์ในรูปแบบเซิงเส้น สมมติฐานอื่น H_1 : น้ำหนัก (x_1) , ความสูง (x_2) มีความสัมพันธ์ในรูปแบบเซิงเส้น จากตาราง Correlations ค่าสัมประสิทธิ์สหสัมพันธ์ = 0.81964508 และ Sig. (2 – tailed) = 0.00110072 น้อยกว่า 0.05 เพราะฉะนั้นปฏิเสธ H_0 เพราะฉะนั้น น้ำหนัก (x_1) , ความสูง (x_2) มีความสัมพันธ์ในรูปแบบเซิงเส้น ในทำนองเดียวกัน น้ำหนัก (x_1) , อายุ (x_3) มีความสัมพันธ์ในรูปแบบเซิงเส้น และ ความสูง (x_2) , อายุ (x_3) มีความสัมพันธ์ในรูปแบบเซิงเส้น

8.6.2 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์พหุคูณและสมการถดถอยพหุคูณ

การหาสมการถดถอยพนุดูณเซิงเส้น $X_1 = b_{1,23} + b_{12,3} X_2 + b_{13,2} X_3$ ของ X_1 เทียบกับ X_2 และ X_3 สมการปกติคือ $\sum X_1 = b_{1,23} n + b_{12,3} \sum X_2 + b_{13,2} \sum X_3$ $\sum X_1 X_2 = b_{1,23} \sum X_2 + b_{12,3} \sum X_2^2 + b_{13,2} \sum X_2 X_3$ $\sum X_1 X_3 = b_{1,23} \sum X_3 + b_{12,3} \sum X_2 X_3 + b_{13,2} \sum X_2^3$ จากข้อมูล $\sum X_1 = 753$, $\sum X_2 = 643$, $\sum X_3 = 106$, $\sum X_1^2 = 48139$, $\sum X_2^2 = 34843$, $\sum X_3^2 = 976$, $\sum X_1 X_2 = 40830$, $\sum X_1 X_3 = 6796$, $\sum X_2 X_3 = 5779$ แทนค่าต่าง ๆ ลงในสมการปกติ จะได้ 12 $b_{1,23} + 643 b_{12,3} + 106 b_{13,2} = 753$ $643 b_{1,23} + 34843 b_{12,3} + 5779 b_{13,2} = 40830$ $106 b_{1,23} + 5779 b_{12,3} + 976 b_{13,2} = 6796$ โดยการแก้สมการจะได้ $b_{1,23} = 36512$, $b_{12,3} = 0.8546$ และ $b_{13,2} = 1.5063$

เพราะฉะนั้นสมการถดถอยคือ X $_1$ = 3.6512 + 0.8546 X $_2$ + 1.5063 X $_3$ 🛗 example 18 - SPSS Data E

การหาสมการ $X_1 = b_{1.23} + b_{12.3} X_2 + b_{13.2} X_3$ ด้วย SPSS for Windows ขั้นที่ 1. นำข้อมูลเข้าสู่ SPSS

ขั้นที่ 2. เลือกคำสั่ง Analyze / Regression / Linear

	🞒 🖳 🗠		🗄 [? 🎢						
15 :									
	×1	х2	хЗ						
1	64.00	57.00	8.00						
2	71.00	59.00	10.00						
3	53.00	49.00	6.00						
4	67.00	62.00	11.00						
5	55.00	51.00	8.00						
6	58.00	50.00	7.00						
7	77.00	55.00	10.00						
8	57.00	48.00	9.00						
9	56.00	52.00	10.00						
10	51.00	42.00	6.00						
11	76.00	61.00	12.00						
12	68.00	57.00	9.00						

and Linear Regression			2
 ♦ XI ⊕ x2 ⊕ x3 		Dependent:	OK <u>P</u> aste
	Previous	Block 1 of 1 Next	<u>R</u> eset
		Independent(s):	Cancel
	$\mathbf{\blacktriangleright}$		Help
		Method: Enter 🚬	
		S <u>e</u> lection Variable: Rule	
		<u>C</u> ase Labels:	
<u>₩</u> LS >>	<u>S</u> tatistics	Plots Save Options	

ขั้นที่ 3. คลิกที่ Linear จะได้เมนูย่อยเป็น

ขั้นที่ 4. เลือกตัวแปร x1 ไปไว้ที่ช่อง dependent และ เลือกตัวแปร x2, x3 ไปไว้ที่ช่อง Independent[s]

🚓 Linear Regression		×
() * ×2 (*) ×3	Dependent:	OK Paste
	Previous Block 1 of 1 Next	Reset
	Independent(s):	Cancel
		Help
	Method: Enter 💌	

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณเป็น

🎬 ch8 example18 - SPSS Viewer								
<u>File Edit View Insert Format Analyze Graphs Utilities Window H</u> elp								
Output	Regr	ession						
Title Variables Entered/Removed								
Variables Entered/Remov	Model	Variable Entered	is Variab d Remov	iles /ed Methor	d			
Model Summary	1	X3, X2ª		. Enter				
→ Coefficients	a. All requested variables entered.							
	b. D	ependent V	/ariable: X1					
			Model Su	mmary				
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
	1	.841757ª	.708554	.643789	5.363215			
a. Predictors: (Constant), X3, X2								

ผลการคำนวณทั้งหมดคือ

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	X3, X2 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: X1

Model Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.841757 ^a	.708554	.643789	5.363215

a. Predictors: (Constant), X3, X2

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	629.3734	2	314.6867	10.9403	.0038950179 ^a
	Residual	258.8766	9	28.7641		
	Total	888.2500	11			

a. Predictors: (Constant), X3, X2

b. Dependent Variable: X1

Coefficients^a

			Model	
	1			
		(Constant)	X2	X3
Unstandardized	В	3.6512	.8546	1.5063
Coefficients	Std. Error	16.1678	.4517	1.4143
Standardized	Beta		.5655	.3183
t		.2258	1.8921	1.0651
Sig.		.8264	.0910	.3146

a. Dependent Variable: X1

จากตาราง Coefficients จะได้ $b_{1,23} = 3.6512$, $b_{12,3} = 0.8546$, $b_{13,2} = 1.5063$ ความหมายของผลการคำนวณที่ได้คือ $X_1 = b_{1,23} + b_{12,3} X_2 + b_{13,2} X_3$ เพราะฉะนั้นสมการถดถอยคือ $X_1 = 3.6512 + 0.8546 X_2 + 1.5063 X_3$

บทที่ 9 การวิเคราะห์ความแปรปรวน

การวิเคราะห์ความแปรปรวน เป็นการทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากรตั้งแต่ 2 ชุดขึ้นไปเท่า กันหรือไม่ ซึ่งการทดสอบจะสามารถทำได้กับข้อมูลที่เก็บมาจากข้อมูลตัวอย่างที่จำแนกเป็นกลุ่มๆ และทำการ ทดสอบด้วยการวิเคราะห์ความแปรปรวน โดยมีรูปแบบการวิเคราะห์ความแปรปรวนที่สำคัญคือ

9.1 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

(One-Way ANOVA, Simple-Factor ANOVA)

สุ่มตัวอย่างขนาด n₁, n₂, ..., n_k จากประชากรชุดที่ 1, 2, ..., k ต่าง ๆ กัน จะจำแนกประชากร k ชุดต่าง ๆ กันนี้ออกตาม **วิธีการปฏิบัติ** (Treatments) โดยทั่วไปคำว่า วิธีการปฏิบัติจะใช้กับการจำแนกต่าง ๆ กัน เช่น การอัดแรงคอนกรีตชนิดต่าง ๆ ปุ๋ยชนิดต่าง ๆ หรือบริเวณต่าง ๆ ของประเทศ ฯลฯ ตัวอย่างเช่น วิศวกรผู้หนึ่งสนใจในการหาค่าเฉลี่ยของการดูดความชื้นในคอนกรีตอัดแรง 5 ชนิด ได้นำตัวอย่าง มาทดลองชนิดละ 6 หน่วย นาน 48 ชั่วโมง ได้ข้อมูลดังนี้

1	2	3	4	5
551	595	639	417	563
457	580	615	449	631
450	508	511	517	522
731	583	573	438	613
499	633	648	415	656
632	517	677	555	679

•	A	⁄ শ্	່ຈັບ	
ชบดขอ	งดอบกรต(′ การดดความชบ	หบายบาหบก	00
		11 1 9 6 6 1 1 1 9 1 9 1 9 1 9 1 9 1 9 1	11 10 0 0 10 11 10 11	<i>nv j</i>

ในกรณีทั่วไป สมมติว่าประชากร k ชุด เป็นอิสระต่อกันและมีการแจกแจงปกติ

โดยมีค่าเฉลี่ย $\mu_1, \mu_2, \dots, \mu_k$ ตามลำดับและความแปรปรวนเท่ากันคือ σ^2 การทดสอบสมมติฐาน $H_0: \mu_1 = \mu_2 = \dots = \mu_k$

แย้งกับ H₁ : อย่างน้อยที่สุดค่าเฉลี่ย 2 ค่าไม่เท่ากัน จากรูปแบบทั่วไปของข้อมูล

	วิธีการปฏิบัติ (Treatment)						
ลำดับที่	1	2		j		k	
1	x ₁₁	x ₁₂		x _{1j}		x _{1k}	
2	x ₂₁	x ₂₂		x _{2j}		x _{2k}	
:	:	:		:		:	
i	x _{i1}	x _{i2}		x _{ij}		x _{ik}	
:	:	:		:		:	
				x _{njj}			
		x _{n22}					
	x _{n11}					x _{nkk}	
จำนวน	n ₁	n ₂		nj		n _k	
รวม	T.1	T.2		T _{.j}		T _{.k}	
ค่าเฉลี่ย	$\overline{\mathbf{x}}_{.1}$	x.2		x.j		$\overline{\mathbf{x}}_{.k}$	

หมายเหตุ จำนวนตัวอย่างในแต่ละ Treatment ไม่จำเป็นต้องมีขนาดเท่ากัน

N = จำนวนข้อมูลทั้งหมด = $n_1 + n_2 + ... + n_k$

 \mathbf{x}_{ij} = ค่าสังเกตตัวที่ i ซึ่งเลือกจากวิธีการปฏิบัติที่ j

 $\mathbf{T}_{,j}^{'}$ = ผลรวมของค่าสังเกตทั้งหมดจากตัวอย่างที่มีวิธีการปฏิบัติที่ j

 $\overline{\mathbf{x}}_{,i}$ = ค่าเฉลี่ยของค่าสังเกตจากตัวอย่างที่มีวิธีการปฏิบัติที่ j

T_ = ผลรวมทั้งหมดของค่าสังเกต

 $\overline{\mathbf{x}}_{..} = \frac{\mathbf{T}_{..}}{\mathbf{N}} = ค่าเฉลี่ยของค่าสังเกตทั้งหมด$

การแปรผันของข้อมูลจำแนกเป็น 3 ส่วนคือ

1. การแปรผันโดยรวมทั้งหมด (SST : TOTAL SUM OF SQUARE, Total Sum Square)

SST =
$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{T_{..}^2}{N}$$

2. การแปรผันที่เกิดจาก Treatment ต่างกัน (SSTR : TREATMENT SUM OF SQUARE, Between-

Groups Sum Square), SSTR = $\sum_{j=1}^{k} \frac{T_{.j}^2}{n_j} - \frac{T_{..}^2}{N}$

บทที่ 9 การวิเคราะห์ความแปรปรวน

3. การแปรผันที่เกิดภายในกลุ่ม Treatment เดียวกัน (SSE : ERROR SUM OF SQUARE, Within-Groups Sum Square, Residual Sum Square), SSE = SST - SSTR

นำค่า SST, SSTR, SSE มาสร้างเป็นตารางวิเคราะห์ความแปรปรวน (<u>AN</u>alysis <u>O</u>f <u>VA</u>riance : ANOVA)

แหล่งการแปรผัน	ผลบวก	องศา	ค่าเฉลี่ยของผล	f _{คำนวณ}
	กำลังสอง	ความอิสระ	บวกกำลังสอง	
วิธีการปฏิบัติ (Treatment)	SSTR	k – 1	$MSTR = \frac{SSA}{k-1}$	f _{คำนวณ} = <u>MSTR</u> MSE
ความคลาดเคลื่อน (Error)	SSE	N – k	$MSE = \frac{SSE}{N-k}$	
ทั้งหมด (Total)	SST	N – 1		

ตาราง ANOVA ในตำราสถิติ

รูปแบบของตาราง ANOVA ที่คำนวณโดยใช้โปรแกรม SPSS for Windows

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	SSTR	k – 1	MSTR	f คำนวณ	P(F > f _{คำนวณ})
Within Groups	SSE	N-k	MSE		
Total	SST	N – 1			

หมายเหตุ ความหมายของ Sig. ของค่าสถิติเอฟ f_{คำนวณ}

จากค่าสถิติเอฟ $f_{
m
m f^{}_{
m f^{}_{1}
m u_{2}
m u}}$ และ องศาความอิสระ v_1 = k – 1, v_2 = N – k ที่คำนวณได้จากตัวอย่าง

Sig. =
$$P(F > f_{huan})$$

= พื้นที่ใต้โค้งของการแจกแจงเอฟทางหางด้านขวาที่ระยะ f_{ล้าบาอ}

$$= \int_{\text{forman}}^{\infty} \frac{\Gamma(\frac{v_1 + v_2}{2})(\frac{v_1}{v_2})^{\frac{v_1}{2}} f^{\frac{v_1}{2} - 1}}{\Gamma(\frac{v_1}{2})\Gamma(\frac{v_2}{2})(1 + \frac{v_1}{v_2} f)^{\frac{v_1 + v_2}{2}}} df$$

ขั้นตอนการวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

- **ขั้นที่ 1.** กำหนดสมมติฐานหลัก H_0 : $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$ กำหนดสมมติฐานอื่น H_1 : $\mu_1 \neq \mu_2 \neq \mu_3 \neq ... \neq \mu_k$ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- ขั้นที่ **4**. เลือกค่าสถิติ F
- ขั้นที่ 5. คำนวณค่าสถิติ _{f_{คำนวณ} โดยการสร้างตาราง ANOVA}
- ขั้นที่ 6. เปิดตารางหาค่าวิกฤต f_{α} องศาความอิสระ v_1 = k 1, v_2 = N k บริเวณวิกฤตคือ F > f_{α}
- ขั้นที่ 7. สรุปผล แบบที่ 1. ถ้า ${
 m f}_{_{
 m ournu}}>{
 m f}_{lpha}$ แล้วปฏิเสธ ${
 m H}_0$

แบบที่ 2 ถ้า Sig < α แล้วปฏิเสธ H $_0$

การทดสอบเพื่อหาประชากรที่มีค่าเฉลี่ยไม่เท่ากัน (MULTIPLE COMPARISONS)

ในกรณีปฏิเสธ H₀ เราสามารถหาค่าเฉลี่ยประชากรคู่ที่ต่างกัน วิธีที่นิยมใช้ในการทดสอบหาคู่ของ ้ประชากรที่มีค่าเฉลี่ยเท่ากัน หรือคู่ของประชากรที่มีค่าเฉลี่ยต่างกัน มีหลายวิธี เช่นการทดสอบโดยใช้วิธีของ SCHEFFE' METHOD (S METHOD) ซึ่งมีขั้นตอนการทำงานดังนี้

การทดสอบสมมติฐาน H_0 : $\mu_L - \mu_M = 0$

แย้งกับ H₁ : $\mu_L - \mu_M \neq 0$ ที่ระดับนัยสำคัญ α การสรุปผล ถ้า $|\bar{x}_L - \bar{x}_M| > \sqrt{MSE(\frac{1}{n_L} + \frac{1}{n_M})} \sqrt{(k-1)f_{\alpha,(v_1,v_2)}}$ แล้วปฏิเสธ H₀ MSE หมายถึง MSE จากตารางวิเคราะห์ความแปรปรวน

n_L หมายถึง ขนาดตัวอย่างชุดที่ L

 $\mathbf{n}_{\mathbf{M}}$ หมายถึง ขนาดตัวอย่างชุดที่ \mathbf{M}

$$f_{\alpha,(v_1,v_2)}$$
 หมายถึงค่าเอฟทำให้ $P(F > f_{\alpha,(v_1,v_2)}) = \alpha, v_1 = k - 1, v_2 = N - k$

ตัวอย่าง 9.1.1 ข้อมูลการดูดความชื้นของคอนกรีต 5 ชนิดเป็นดังนี้

ชนิดที่ 1	ชนิดที่ 2	ชนิดที่ 3	ชนิดที่ 4	ชนิดที่ 5
551	595	639	417	563
457	580	615	449	631
450	508	511	517	522
731	583	573	438	613
499	633	648	415	656
632	517	677	555	679

กำหนด µ1,µ2,µ3,µ4,µ5 เป็นค่าเฉลี่ยประชากรของการดูดความชื้นของคอนกรีตชนิดที่ 1, 2, 3, 4, 5 ตาม ้ลำดับ จงทดสอบสมมติฐานว่า µ1,µ2,µ3,µ4,µ5 เท่ากัน ที่ระดับนัยสำคัญ 0.05

ີວີຣີກຳ

ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂ ≠ μ₃ ≠ μ₄ ≠ μ₅ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- ขั้นที่ 4. เลือกค่าสถิติ F
- ขั้นที่ 5. คำนวณค่าสถิติ F จากตัวอย่างและสร้างตาราง ANOVA

คำนวณค่า N = 30

$$SST = \sum_{j=1}^{5} \sum_{i=1}^{6} x_{ij}^2 - \frac{T_{..}^2}{N} = 551^2 + 457^2 + ... + 679^2 - \frac{16854^2}{30} = 209376.800$$
$$SSTR = \sum_{j=1}^{5} \frac{T_{.j}^2}{6} - \frac{T_{..}^2}{N} = \frac{3320^2 + 3416^2 + 3663^2 + 2791^2 + 3664^2}{6} - \frac{16854^2}{30} = 85356.4667$$

SSE = 209377.800 - 85356467 = 124021.333

แหล่งการแปรผัน	ผลบวกกำลังสอง	องศาความอิสระ	ค่าเฉลี่ยของผล	f คำนวณ
SOV	SS	DF	บวกกำลังสอง	
			(MS)	
วิธีการปฏิบัติ	SSTR = 85365	k – 1 = 4	21339	4.30
(Treatment)				
ความคลาดเคลื่อน	SSE = 124021	N - k = 25	4961	
(Error)				
ทั้งหมด (Total)	SST = 209377	N – 1 = 29		

ตาราง ANOVA

ขั้นที่ 6. ค่าวิกฤต $f_{0.05}$ = 2.76 องศาความอิสระ v_1 = 4, v_2 = 25 บริเวณวิกฤตคือบริเวณ F > 2.76 ขั้นที่ 7. สรุปผลเพราะว่า $f_{_{\phi_1 v_2 o_1}}$ = 4.30 > 2.76 เพราะฉะนั้นปฏิเสธ H_0

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวด้วย SPSS for Windows

- ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : μ₁ = μ₂ = μ₃ = ... = μ_k กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂ ≠ μ₃ ≠ ... ≠ μ_k (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน) ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- ขั้นที่ 4. เลือกค่าสถิติ F
- ขั้นที่ 5. คำนวณค่าสถิติ F จากตัวอย่าง (สร้างตาราง ANOVA)
 - 5.1 คำนวณค่า f_{คำนวณ} ไปใช้ในการสรุปผล ตามวิธีทางทฤษฎีข้างต้น

5.2 คำนวณค่า Sig ของคำสถิติ F ที่คำนวณได้ไปใช้ในการสรุปผล

- ขั้นที่ 6. 6.1 หาค่าวิกฤตคือ f_{α} องศาความอิสระ v_1 = k 1, v_2 = N k บริเวณวิกฤตคือ F > f_{α} 6.2 ใช้ค่า Sig ในการสรุปผล
- ขั้นที่ 7. สรุปผล แบบที่ 1 ถ้า $f_{_{
 m
 ho_1u_2au}} > f_{\alpha}$ แล้วปฏิเสธ H_0 แบบที่ 2 ถ้า Sig < α แล้วปฏิเสธ H_0

จากข้อมูลตัวอย่าง 9.1.1

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวด้วย SPSS for Windows

ขั้นที่ 1. กำหนดสมมติฐานหลัก ${
m H}_0$: μ_1 = μ_2 = μ_3 = ... = μ_5

ี่ กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂ ≠ μ₃ ≠ ... ≠ μ₅ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและสร้างแฟ้มข้อมูล

🛅 example19.sav - SPSS Data Editor						
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>(</u>	<u>Analyze G</u> raph			
13: 1 3:						
	type	weigth	var			
1	1.00	551.00				
2	1.00	457.00				

ขั้นที่ 3.1 สร้างแฟ้มข้อมูลโดยกำหนดให้ ตัวแปร type เป็นตัวแปรจำแนก กลุ่ม และ weight เป็นตัวแปรน้ำหนักการดูดความชื้นของคอนครีต

SST = 209377

บันทึกเป็นแฟ้มข้อมูลชื่อ example19.sav

ขั้นที่ 3.2 ใช้คำสั่ง Analyze / Compare Means / One-Way ANOVA

🛗 example19.sav - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp					
13:			Reports Descriptive Statistics Custom <u>T</u> ables	, ₽ <u>₽₽₽ }</u>					
	type	weigth	Compare <u>M</u> eans	Means					
1	1.00	551.0	<u>G</u> eneral Linear Model Corrolato	Une-Sample T Test					
2	1.00	457.0	<u>C</u> urrelate Begression	Paired-Samples T Test					
3	1.00	450.0	Loglinear	One-W/au ANDVA					
	1.00	701.0	E <u>og</u> inioai	<u>ono moyano va</u>					

ขั้นที่ 3.3 คลิกที่ One-Way ANOVA จะได้เมนูย่อยเป็น

♠ type ★ weigth	D <u>e</u> pendent List:	0K
		Paste <u>R</u> eset
		Cancel
	Eactor:	Help
	<u>C</u> ontrasts Post <u>H</u> oc <u>O</u> ption	s

ขั้นที่ 3.4 เลือกตัวแปร type ไปไว้ที่ช่อง Factor และ เลือกตัวแปร weigth ไปไว้ที่ช่อง Dependent List

👷 One-Way ANOVA		×
	Dependent List:	OK Paste
		Cancel
	Eactor:	Help
	<u>Contrasts</u> Post <u>H</u> oc <u>O</u> ptions	

🎬 Output example19.spo - SPSS Viewer											
File Edit ⊻iew Insert Format Analyze Graphs Utilities Window Help											
E Oneway	ANDVA										
	Notes WEIGTH										
		Sum of									
I ~		Squares	df	Mean Square	F	Sig.					
	Between Groups	85356.4667	4	21339.117	4.302	.009					
	Within Groups	124020.3333	25	4960.813							
	Total	209376.8000	29								
ตาราง ANOVA ที่คำนวณได้คือ

Oneway

WEIGTU

ANOVA

WEIGTH					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	85356.4667	4	21339.117	4.302	.009
Within Groups	124020.3333	25	4960.813		
Total	209376.8000	29			

ขั้นที่ 4. สรุปผลโดยเปรียบเทียบค่า Sig กับ lpha หรือ เปรียบเทียบค่า $f_{_{
m enu}\alpha}$ กับค่าวิกฤต

ขึ้นที่ 5. จากตาราง ANOVA $f_{_{
m e^1ucau}}$ = 4.302 และ Sig = 0.009

ขั้นที่ 6. ค่าวิกฤตคือ
$$\mathrm{f}_{0.05}$$
 = 2.76 องศาความอิสระ v_1 = 4, v_2 = 25 บริเวณวิกฤตคือบริเวณ F > 2.76

ขั้นที่ 7. สรุปผล แบบที่ 1 เพราะว่า $f_{_{
m enu}_{
m nu}}$ = 4.302 > 2.76 เพราะฉะนั้นปฏิเสธ H_0

หรือ แบบที่ 2 เพราะว่า Sig = 0.009 < 0.05 เพราะฉะนั้นปฏิเสธ ${
m H}_0$

หมายเหตุ 1. ในทางปฏิบัติการสรุปผลโดยดูค่า Sig มีความสะดวกมากกว่า 2. ที่มาของค่า Sig คือ โดยการคำนวณด้วย MATHCAD

$$h(f) := \frac{\Gamma\left(\frac{v1+v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right)-1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1+\left(\frac{v1}{v2}\right) \cdot f^{\frac{v1+v2}{2}}\right]} \quad \text{Sig} := 1 - \int_{0}^{4.302} h(f) \, df \qquad \text{Sig} = 0.008747$$

Significant := 1 - pF(4.302, 4, 25) Significant = 0.008747

การทดสอบเพื่อหาประชากรที่มีค่าเฉลี่ยไม่เท่ากัน (MULTIPLE COMPARISONS) จากขั้นที่ 3.5

👷 One-Way ANOVA		X
	Dependent List:	ок
		Paste
		<u>R</u> eset
		Cancel
	Eactor:	Help
	<u>Contrasts</u> Post <u>H</u> oc <u>O</u> ptions	

ขั้นที่ 3.6 คลิกที่ปุ่ม Post Hoc	One-Way ANOVA: Post Hoc Multiple Comparisons	×
จะได้เมนูย่อยดังนี้ ขั้นที่ 3.7 1. คลิกเลือกวิธี Scheffe 2. เลือกระดับนัยสำคัญ 0.05	Equal Variances Assumed F LSD F S-N-K F Waller-Duncan F Bonferroni F Jukey T ype I/Type II Error Ratio: 100 F Sidak F Tukey's-b F Dunngtt F Scheffe F Duncan Control Category: Last F R-E-G-W F F Hochberg's GT2 F R-E-G-W Q F Gabriel F C Control Category: Last F R-E-G-W Q F Gabriel F C Control Category: F C C Category:	- T
$\begin{array}{ccc} 1 \\ \longrightarrow & \overrightarrow{\mbox{Scheffe}} & \overrightarrow{\mbox{Duncan}} \\ & \overrightarrow{\mbox{R-E-G-WF}} & \overrightarrow{\mbox{Hochberg's GT2}} \\ & \overrightarrow{\mbox{R-E-G-WQ}} & \overrightarrow{\mbox{Gabriel}} \end{array}$	Equal Variances Not Assumed Tamhane's T2	
Equal Variances Not Assumed ☐ Tamhane's T2 ☐ Dunnett's T3 2 → Significance level: .05	Significance level: .05 Continue Cancel Help	p

ขั้นที่ 3.8 คลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณเพิ่มเติมจากเดิมดังนี้

Multiple Comparisons

Dependent Variable: WEIGTH Scheffe

		Mean			95% Confide	ence Interval
(I) TYPE	(J) TYPE	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	-16.0000	40.6645	.997	-151.0824	119.0824
	3.00	-57.1667	40.6645	.740	-192.2491	77.9158
	4.00	88.1667	40.6645	.346	-46.9158	223.2491
	5.00	-57.3333	40.6645	.738	-192.4158	77.7491
2.00	1.00	16.0000	40.6645	.997	-119.0824	151.0824
	3.00	-41.1667	40.6645	.903	-176.2491	93.9158
	4.00	104.1667	40.6645	.195	-30.9158	239.2491
	5.00	-41.3333	40.6645	.902	-176.4158	93.7491
3.00	1.00	57.1667	40.6645	.740	-77.9158	192.2491
	2.00	41.1667	40.6645	.903	-93.9158	176.2491
	4.00	145.3333*	40.6645	.030	10.2509	280.4158
	5.00	1667	40.6645	1.000	-135.2491	134.9158
4.00	1.00	-88.1667	40.6645	.346	-223.2491	46.9158
	2.00	-104.1667	40.6645	.195	-239.2491	30.9158
	3.00	-145.3333*	40.6645	.030	-280.4158	-10.2509
	5.00	-145.5000*	40.6645	.030	-280.5824	-10.4176
5.00	1.00	57.3333	40.6645	.738	-77.7491	192.4158
	2.00	41.3333	40.6645	.902	-93.7491	176.4158
	3.00	.1667	40.6645	1.000	-134.9158	135.2491
	4.00	145.5000*	40.6645	.030	10.4176	280.5824

*. The mean difference is significant at the .05 level.

หมายเหตุ คู่ที่มี * เป็นคู่ประชากรที่มีค่าเฉลี่ยแตกต่างกัน ที่ระดับนัยสำคัญ 0.05 ผลการวิเคราะห์ข้อมูล ค่าเฉลี่ยประชากรคู่ที่ 3 และ 4 แตกต่างกัน ที่ระดับนัยสำคัญ 0.05 ค่าเฉลี่ยประชากรคู่ที่ 4 และ 5 แตกต่างกัน ที่ระดับนัยสำคัญ 0.05

9.2 การวิเคราะห์ความแปรปรวนแบบที่มีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม

(Randomized Complete Block Designs, Mutiple-Factor ANOVA)

การวิเคราะห์ความแปรปรวนแบบที่มีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่มหรือแบบจำแนกสองทาง เป็น การวิเคราะห์สำหรับการทดลองแบบ Randomized Block Design ซึ่งแบ่งการทดลองที่มีลักษณะแบบเดียวกัน ออกเป็น กลุ่ม (Block) ในแต่ละกลุ่มมีจำนวนหน่วยของการทดลองเท่ากันเรียกว่า วิธีการปฏิบัติ (Treatment) เพื่อให้ข้อมูลมีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม

ตัวอย่างเช่น ในการเปรียบเทียบประสิทธิภาพของเครื่องจักร 4 ชนิด ที่ใช้ผลิตสินค้าอย่างหนึ่งได้จัดเจ้าหน้าที่ 5 คน สลับการควบคุมเครื่องจักร ข้อมูลคือจำนวนวินาทีทั้งหมดใช้ในการผลิตจนสำเร็จ ข้อมูลที่ได้คือ

	เครื่องจักร			
เจ้าหน้าที่	1	2	3	4
1	44	38	47	36
2	46	40	52	43
3	34	36	44	32
4	43	38	46	33
5	38	42	49	39

ลักษณะของข้อมูลจะเห็นได้ว่า ค่าสังเกต 1 ค่ามีผลมาจาก การควบคุมของเจ้าหน้าที่ และ เครื่องจักรต่างๆ กัน ในทางสถิติถือว่าเป็นค่าสังเกตที่มีการแปรผันมาจาก 2 ปัจจัย(Factor)

		วิธีเ				
	1	2	 j	 k	รวม	ค่าเฉลี่ย
กลุ่มที่ 1	x ₁₁	x ₁₂	 x _{1j}	 x _{1k}	T _{1.}	$\overline{\mathbf{x}}_{1.}$
กลุ่มที่ 2	x ₂₁	x ₂₂	 x _{2j}	 x _{2k}	T _{2.}	$\overline{\mathbf{x}}_{2.}$
กลุ่มที่ 3	x ₃₁	x ₃₂	 x _{3j}	 x _{3k}	T _{3.}	$\overline{x}_{3.}$
:	:	:	:	:	:	:
กลุ่มที่ i	x _{i1}	x _{i2}	 x _{ij}	 х	T _{i.}	$\overline{\mathbf{x}}_{\mathbf{i}}$.
:	:	:	:	:	:	:
กลุ่มที่ b	x _{b1}	x _{b2}	 х _{bj}	 x _{bk}	T _{b.}	$\overline{\mathbf{x}}_{\mathbf{b}}$.
รวม	T.1	T.2	 T _{.j}	 T _{.k}	T	
ค่าเฉลี่ย	<u>x</u> .1	$\overline{x}_{.2}$	 x.j	 $\overline{\mathbf{x}}_{.k}$		<u>x</u>

9.2.1 กรณีที่ 1 Treatment 1 Block มีค่าสังเกต 1 ค่า ลักษณะข้อมูลโดยทั่วไป

N คือจำนวนค่าสังเกตทั้งหมด

 ${x_{ij}}$ คือค่าสังเกตของวิธีการปฏิบัติที่ j ในกลุ่มที่ i, j = 1, 2, ... , k และ i = 1, 2, ... , b

 $\overline{x}_{,j}$ = ค่าเฉลี่ยของวิธีการปฏิบัติที่ j (jth treatment mean)

x = ค่าเฉลี่ยทั้งหมด (grand mean หรือ overall mean)

- \overline{x}_{i} = ค่าเฉลี่ยของกลุ่มที่ i (ith block mean)
- T_{.j} = ผลรวมของค่าสังเกตที่ได้จากวิธีการปฏิบัติที่ j (jth treatment total)
- T_{i.} = ผลรวมของค่าสังเกตที่ได้จากกลุ่มที่ i (ith block total)
- T. = ผลรวมทั้งหมด (grand total หรือ overall total)

การแปรผันของข้อมูลจำแนกเป็น 4 ส่วนคือ

1. การแปรผันโดยรวมทั้งหมด (SST : TOTAL SUM OF SQUARE, Total Sum Square)

SST =
$$\sum_{j=1}^{k} \sum_{i=1}^{b} (x_{ij} - \overline{x}_{..})^2 = \sum_{j=1}^{k} \sum_{i=1}^{b} x_{ij}^2 - \frac{T_{..}^2}{N}$$

2. การแปรผันที่เกิดจาก Treatment ต่างกัน (SSTR : TREATMENT SUM OF SQUARE, Between-Treatment Sum Square)

SSTR = b
$$\sum_{j=1}^{k} (\bar{x}_{.j} - \bar{x}_{..})^2 = \frac{\sum_{j=1}^{k} T_{.j}^2}{b} - \frac{T_{..}^2}{N}$$

3. การแปรผันที่เกิดจาก Block ต่างกัน (SSBL : BLOCK SUM OF SQUARE, Between-Groups Sum Square)

SSBL =
$$k \sum_{i=1}^{b} (\overline{x}_{i.} - \overline{x}_{..})^2 = \frac{\sum_{i=1}^{b} T_{i.}^2}{k} - \frac{T_{..}^2}{N}$$

4. การแปรผันที่เกิดร่วมกันระหว่าง Treatment และ Block (SSE : ERROR SUM OF SQUARE, Within-Groups Sum Square, Residual Sum Square)

SSE = SST - SSTR - SSBL

นำค่า SST, SSTR, SSBL, SSE มาสร้างเป็นตารางวิเคราะห์ความแปรปรวน

ตาราง ANOVA ในตำราสถิติ

แหล่งการแปรผัน	ผลบวก กำลังสอง	องศาเสรี	ค่าเฉลี่ยของผล บวกกำลังสอง	f _{คำนวณ}
วิธีการปฏิบัติ (Treatment)	SSTR	k – 1	$MSTR = \frac{SSTR}{k-1}$	$f_{\text{treatment}} = \frac{\text{MSTR}}{\text{MSE}}$
กลุ่ม (Block)	SSBL	b – 1	$MSBL = \frac{SSBL}{b-1}$	$f_{block} = \frac{MSBL}{MSE}$
ความคลาดเคลื่อน (Error)	SSE	(b – 1)(k – 1)	$MSE = \frac{SSE}{(b-1)(k-1)}$	
ทั้งหมด (Total)	SST	N – 1		

Source	Sum of Squares	df	Mean Square	F	Sig.
			$=\frac{SS}{DF}$	$=\frac{MS*}{MSE}$	
Corrected Model	SSTR + SSBL	(b-1) + (k-1)	MS_Corrected	fcorrect	$P(F > f_{correct})$
Intercept	SST – SS(Total)	1	MS_intercept	fint ercept	$P(F > f_{int ercept})$
Block	SSBL	b – 1	MSBL	f _{block}	$P(F > f_{block})$
Treatment	SSTR	k – 1	MSTR	f _{treatment}	$P(F > f_{treatment})$
Error	SSE	(k-1)(b-1)	MSE		
Total	SS(Total)	Ν			
Corrected Total	SST	N-1			

รูปแบบตาราง ANOVA ที่ได้จาก SPSS for Windows

การทดสอบเพื่อหาประชากรที่มีค่าเฉลี่ยไม่เท่ากัน (MULTIPLE COMPARISONS)

ภายหลังการสรุปผล หากเราต้องปฏิเสธ H₀ ในการหาค่าเฉลี่ยของวิธีการปฏิบัติ (Treatment) หรือ ค่าเฉลี่ยของกลุ่ม (Block) ที่ต่างกัน วิธีที่นิยมใช้ในการทดสอบหาคู่ที่มีค่าเฉลี่ยเท่ากันหรือคู่ที่ค่าเฉลี่ยต่างกัน เช่นวิธี Fisher's LSD ของ เซอร์ โรนัลด์ เอ ฟิชเซอ (Sir Ronald A. Fisher ค.ศ. 1890 – 1962)

LSD หมายถึง LEAST SIGNIFICANT DIFFERENCE

การทดสอบหาวิธีการปฏิบัติ (Treatment) ที่มีค่าเฉลี่ยแตกต่างกัน

กำหนดสมมติฐาน $H_0': \mu_L = \mu_M$

แย้งกับ $H_1 : \mu_L \neq \mu_M$

กำหนดระดับนัยสำคัญ α

การสรุปผล ถ้า $|\bar{x}_{.L} - \bar{x}_{.M}| > t_{\frac{lpha}{2}} \sqrt{MSE\left(rac{2}{b}
ight)}$ แล้วปฏิเสธ H_0

การทดสอบหากลุ่ม (Block) ที่มีค่าเฉลี่ยแตกต่างกัน

กำหนดสมมติฐาน $H_0^{''}$: $\mu_{L.}$ = $\mu_{M.}$

แย้งกับ $H_1^{''}$: $\mu_{L.} \neq \mu_{M.}$

กำหนดระดับนัยสำคัญ α

การสรุปผล ถ้า $|\bar{x}_{L.} - \bar{x}_{M.}| > t_{\frac{lpha}{2}} \sqrt{MSE\left(\frac{2}{k}\right)}$ แล้วปฏิเสธ $H_0^{"}$

โดยที่ MSE หมายถึง $\frac{SSE}{(b-1)(k-1)}$ จาก ANOVA TABLE , b หมายถึง จำนวน Blocks

k หมายถึงจำนวน Treatments และ $t_{\frac{\alpha}{2}}$ หมายถึง ค่า t อ่านจากตาราง t องศาความอิสระ (b – 1)(k – 1)

ขั้นตอนการทดสอบสมมติฐานด้วยการวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง

ขั้นที่ 1. กำหนดสมมติฐานเกี่ยวกับวิธีการปฏิบัติ (Treatment)

 H_0 : $\mu_{.1} = \mu_{.2} = \mu_{.3} = ... = \mu_{.k}$

 H_1 : $\mu_{.1} \neq \mu_{.2} \neq \mu_{.3} \neq ... \neq \mu_{.k}$ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

```
212
```

สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม (Block)

 H_0 : $\mu_{1.} = \mu_{2.} = \mu_{3.} = ... = \mu_{b.}$

- H_1 : μ_{1.} ≠ μ_{2.} ≠ μ_{3.} ≠ ... ≠ μ_{b.} (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- **ขั้นที่ 4.** เลือกค่าสถิติ F
- ขั้นที่ 5. คำนวณค่าสถิติ F จากตัวอย่างโดยการสร้างตาราง ANOVA
- ขั้นที่ 6. เปิดตารางหาค่าวิกฤต
 - 6.1 ค่าวิกฤตของการสรุปผลเกี่ยวกับ Treatment คือ f_{lpha}

โดยมีค่าองศาความอิสระ v_1 = k – 1, v_2 = (b – 1)(k – 1) บริเวณวิกฤตคือ F > f_{α} ค่าวิกฤตของการสรุปผลเกี่ยวกับ Block คือ f_{α}

6.2 ค่าวิกฤตของการสรุปผลเกี่ยวกับ Block คือ f_{α} โดยมีค่าองศาความอิสระ v_1 = b – 1, v_2 = (b – 1)(k – 1) บริเวณวิกฤตคือ F > f_{α}

ขั้นที่ 7. สรุปผล

7.1	การสรุปผลเกียวกับ Treatment	7.1.1 ถ้า f $_{ ext{treatment}}$ > f $_{lpha}$ ของ Treatment แล้วปฏิเสธ 1	7.1.1	H ₀
		7.1.2 ถ้า Sig ของค่าสถิติ f $_{ m treatment}$ < $lpha$ แล้วปฏิเสธ F	7.1.2	H_0
7.2	การสรุปผลเกี่ยวกับ Block	7.2.1 ถ้า f $_{ m block} > { m f}_{lpha}$ ของ Block แล้วปฏิเสธ H $_0$	7.2.1	
		7.2.2 ถ้า Sig ของค่าสถิติ f $_{ m block} < lpha$ แล้วปฏิเสธ H $_0$	7.2.2	

ตัวอย่าง 9.2.1 ในการเปรียบเทียบประสิทธิภาพของเครื่องจักร 4 ชนิด และความสามารถของคนที่คุม เครื่องจักร 5 คน ข้อมูลจากการสุ่มตัวอย่างคือ

	เครื่องจักร 1	เครื่องจักร 2	เครื่องจักร 3	เครื่องจักร 4
เจ้าหน้าที่คนที่ 1	44	38	47	36
เจ้าหน้าที่คนที่ 2	46	40	52	43
เจ้าหน้าที่คนที่ 3	34	36	44	32
เจ้าหน้าที่คนที่ 4	43	38	46	33
เจ้าหน้าที่คนที่ 5	38	42	49	39

จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่า เครื่องจักร 4 เครื่องมีอัตราเร็วเท่ากัน จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่า เจ้าหน้าที่ 5 คน ปฏิบัติการด้วยอัตราเร็วเท่ากัน วิธีทำ ขั้นที่ 1. สมมติฐานเกี่ยวกับวิธีการปฏิบัติ(เครื่องจักร Treatment)

 H_0 : $\mu_{.1} = \mu_{.2} = \mu_{.3} = \mu_{.4}$

H₁ : µ_{.1} ≠ µ_{.2} ≠ µ_{.3} ≠ µ_{.4} (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่างกัน)

สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม(เจ้าหน้าที่ Block)

 H_0 : $\mu_{1.} = \mu_{2.} = \mu_{3.} = \mu_{4.} = \mu_{5.}$

 H_1 : $\mu_{1.} \neq \mu_{2.} \neq \mu_{3.} \neq \mu_{4.} \neq \mu_{5.}$ (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่างกัน)

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. นำข้อมูลเข้าสู่ SPSS Data Editor
- ขั้นที่ 3.1 การสร้างแฟ้มข้อมูล
- กำหนดตัวแปร man เป็นตัวแปรจำแนกคน
- ตัวแปร machine เป็นตัวแปรจำแนกเครื่องจักร
- ตัวแปร time เป็นตัวแปรเก็บข้อมูลที่ต้องการวิเคราะห์
- เสร็จแล้ว Save ลงแฟ้มข้อมูลชื่อ example20.sav

🛗 example20.sav - SPSS Data Editor							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze <u>G</u> raph	is <u>U</u> tilities <u>W</u>			
学日参 興 ∽ <							
	man	machine time		var			
1	1.00	1.00	44.00				
2	1.00	2.00	38.00				
3	1.00	3.00	47.00				
4	1.00	4.00	36.00				
5	2.00	1.00	46.00				

ขั้นที่ 3.2 เลือกใช้คำสั่ง Analyze / General Linear Model / Univariate

🛗 examp	le20.sav - Sl	PSS Data E	ditor	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
14 :	a 🔍 🗠		Reports Descriptive Statistics Custom <u>T</u> ables	₽ <u>₽</u> ₩ <u>></u> @
	man	machine	Compare <u>M</u> eans	•
1	1.00	1.0	<u>G</u> eneral Linear Model	Univariate
2	1.00	2.0	<u>L</u> orrelate Begression	<u>M</u> ultivariate Beneated Measures
3	1.00	3.0	Loglinear	
4	1.00	4.0	Classify	▶ Variance Components

ขั้นที่ 3.3 เลือกคำสั่ง Univariate จะได้เมนูย่อยดังนี้

ขั้นที่ 3.4

📾 Univariate		×
() man	Dependent Variable:	<u>M</u> odel
(₩) machine (₩) time	Eixed Factor(s):	Co <u>n</u> trasts
		Plo <u>t</u> s
		Post <u>H</u> oc
	R <u>a</u> ndom Factor(s):	<u>S</u> ave
		<u>O</u> ptions
	<u>C</u> ovariate(s):	
	WLS Weight:	
OK	<u>Paste</u> <u>R</u> esetCancelHelp	
ลือกตัวแปร time ไ	ปที่ช่อง Dependent Variable	
ลือกตัวแปร machine ไ	ปที่ช่อง Fixed Factor(s)	
ลือกตัวแปร man ไ	ปที่ช่อง Fixed Factor(s)	
#R Univariate		×
	Dependent Variable:	<u>M</u> odel
	[]	Co <u>n</u> trasts
	man ▲ merships	Plo <u>t</u> s
		Post <u>H</u> oc

ขั้นที่ 3.5 คลิกที่ปุ่ม Model จะได้เมนูย่อย

Full f <u>a</u> ctorial	← <u>C</u> ustom	Continu
actors & Covariates:	<u>M</u> odel:	Cancel
man(F) machine(F)		Help
Interaction	n ×	
	I.	

ขั้นที่ 3.6 ตรงตำแหน่ง Specify Model ให้เลือก • Custom

Specify Model		0.1
Full factorial	₢ Custom	Continu
Factors & Covariates:	<u>M</u> odel:	Cancel
man(F) machine(F)		Help
Build Ter	m(s)	

ขั้นที่ 3.7 เลือกตัวแปร machine(F) จากช่อง Factor & Covariates มาไว้ที่ช่อง Model เลือกตัวแปร man(F) จากช่อง Factor & Covariates มาไว้ที่ช่อง Model

ขั้นที่ 3.8 ในกรอบของ Build Term(s) คลิกที่ช่อง Interaction จะได้ แถบเมนูย่อย

ขั้นที่ 3.9 ให้เลือก All 2-way

ขั้นที่ **3.10** คลิกที่ Continue จะกลับไปเมนูย่อย Univariate

🚯 Univariate		×
	¯ Dependent Variable: ∲time	<u>M</u> odel
	, <u>F</u> ixed Factor(s):	Co <u>n</u> trasts
	man 🖈 machine	Plo <u>t</u> s
		Post <u>H</u> oc

ขั้นที่ 3.11 คลิก OK จะได้ผลการคำนวณดังนี้

Tutput example20 spo	SPSS V	ewer			
<u>File Edit View Insert Fo</u>	rmat <u>A</u> nal	yze <u>G</u> raphs	<u>U</u> tilities	<u>₩</u> indow	<u>H</u> elp
🛎 🗖 🕘 🔄 🖼	<u>ا</u> ا	1 🔚 📭 🖸	0 📠	1	
+ + + - 🕮 🗆	<u>,</u>	Ď			
Output	Jniva	riate An	alysi	is of \	/ariance
Title	Between-Subjects Factors				
Notes			N]	
→ 🛱 Tests of B	MAN	1.00	4	1	
		2.00	4		
		3.00	4		
		4.00	4		
I	l	5.00	4		

ผลการคำนวณทั้งหมดคือ

Univariate Analysis of Variance

Between-Subjects Factors

		Ν
MAN	1.00	4
	2.00	4
	3.00	4
	4.00	4
	5.00	4
MACHINE	1.00	5
	2.00	5
	3.00	5
	4.00	5

Tests of Between-Subjects Effects

Dependent Variable: TIME	
--------------------------	--

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	500.3 ^a	7	71.471	11.637	.0001669961
Intercept	33620.0	1	33620.000	5474.084	.0000000000
MAN	161.5	4	40.375	6.574	.0048466575
MACHINE	338.8	3	112.933	18.388	.0000877779
Error	73.7	12	6.142		
Total	34194.0	20			
Corrected Total	574.0	19			

a. R Squared = .872 (Adjusted R Squared = .797)

จากผลการคำนวณของ SPSS จะได้ว่า

 SSTR(machine) = 338.8
 MSTR(machine) = 112.933

 SSBL(man) = 161.5
 MSBL(man) = 40.375

 SSE = 73.7
 MSE = 6.14

 SST = 574.0
 SST = 574.0

ขั้นที่ 4. เลือกค่าสถิติ F

ขั้นที่ 5. คำนวณค่าสถิติ F จากตัวอย่าง

ตาราง ANOVA

แหล่งการแปรผัน	ผลบวก	องศา	ค่าเฉลี่ยของผล	f คำนวณ
	กำลังสอง	ความอิสระ	บวกกำลังสอง	
วิธีการปฏิบัติ(Treatment)	338.800	3	122.933	f _{treatment} =
(machine)				18.39
กลุ่ม(Block)	161.500	4	40.38	$f_{block} = 6.58$
(man)				
ความคลาดเคลื่อน	73.700	12	6.14	
(Error)				
ทั้งหมด	574.000	19		
(Total)				

ขั้นที่ 6. เปิดตารางหาค่าวิกฤต

ค่าวิกฤตของการสรุปเกี่ยวกับ machine มีค่าเป็น f_{0.05,(3,12)} = 3.49

ค่าวิกฤตของการสรุปเกี่ยวกับ man มีค่าเป็น f_{0.05,(4,12)} = 3.26

ขั้นที่ 7. สรุปผล

```
การสรุปผลเกี่ยวกับ machine (Treatment)
```

1. เพราะว่า F คำนวณของ machine = 18.39 > 3.49 เพราะฉะนั้นปฏิเสธ H₀ หรือ 2. เพราะว่า Sig = 0.0000877779 < 0.05 เพราะฉะนั้นปฏิเสธ H₀ การสรุปผลเกี่ยวกับ man (Block)

1. เพราะว่า F คำนวณของ man = 6.58 > 3.26 เพราะฉะนั้นปฏิเสธ H_0

หรือ 2. เพราะว่า Sig = 0.0048466575 < 0.05 เพราะฉะนั้นปฏิเสธ H_0

การทดสอบหาเครื่องจักรที่มีประสิทธิภาพต่างกัน (เครื่องจักรที่ 1 และ เครื่องจักรที่ 2)

กำหนดสมมติฐาน $H_0': \mu_1 = \mu_2$ แย้งกับ $H_1': \mu_1 \neq \mu_2$ กำหนดระดับนัยสำคัญ $\alpha = 0.05$ $\overline{x}_{.1} = 41.0$, $\overline{x}_{.2} = 38.8$, $|\overline{x}_{.1} - \overline{x}_{.2}| = 2.2$, $t_{0.025, 12} = 2.179$, $\sqrt{MSE(\frac{2}{b})} = \sqrt{6.142(\frac{2}{5})} = 1.5674$ $t_{\frac{\alpha}{2}} \sqrt{MSE(\frac{2}{b})} = 2.179 \sqrt{6.142(\frac{2}{5})} = 3.4153$ เพราะว่า $|\overline{x}_{.1} - \overline{x}_{.2}| = 2.2$ U $2.179 \sqrt{6.142(\frac{2}{5})} = 3.4153$ เพราะฉะนั้นยอมรับ $H_0': \mu_{.1} = \mu_2$ เพราะฉะนั้นยอมรับว่าเครื่องจักรที่ 1 และ เครื่องจักรที่ 2 มีความสามารถเท่ากัน การทดสอบหากลุ่มที่มีค่าเฉลี่ยแตกต่างกัน (เจ้าหน้าที่คนที่ 1 กับ เจ้าหน้าที่คนที่ 2) กำหนดสมมติฐาน $H_0'': \mu_{.1} = \mu_2$. แย้งกับ $H_1'': \mu_{.1} \neq \mu_2$. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

$$\overline{\mathbf{x}}_{1.} = 41.25 , \ \overline{\mathbf{x}}_{2.} = 45.25 , \ | \ \overline{\mathbf{x}}_{1.} - \overline{\mathbf{x}}_{2.} | = 4 , \ \mathbf{t}_{0.025,12} = 2.179 , \ \sqrt{\mathrm{MSE}\left(\frac{2}{b}\right)} = \sqrt{6.142\left(\frac{2}{4}\right)} = 1.7524$$
$$\mathbf{t}_{\frac{\alpha}{2}} \sqrt{\mathrm{MSE}\left(\frac{2}{k}\right)} = 2.179 \sqrt{6.142\left(\frac{2}{4}\right)} = 3.8184$$

เพราะว่า $|\bar{x}_{1.} - \bar{x}_{2.}| = 4 > 3.8184$ เพราะฉะนั้นปฏิเสธ $H_0^{"}$ เพราะฉะนั้นเจ้าหน้าที่คนที่ 1 กับ เจ้าหน้าที่คนที่ 2 มีความสามารถแตกต่างกัน

การคำนวณ Multiple Comparisons โดยใช้ SPSS for Windows

จากขั้นตอนที่ 3.11 มีเมนูย่อยเป็น

onitanace		~
	Dependent Variable	:: <u>M</u> odel
	Fixed Factor(s):	Co <u>n</u> trasts
	man machina	Plo <u>t</u> s
		Post <u>H</u> oc
	R <u>a</u> ndom Factor(s):	<u>S</u> ave
		<u>O</u> ptions
	<u>C</u> ovariate(s):	
	WLS Weight:	
ОК <u></u>	<u>Paste R</u> eset Cancel	Help

ก่อนที่จะคลิก OK ให้คลิกปุ่ม Post Hoc จะได้เมนูย่อยดังนี้

_actor(s):		Post Hoc Tests for:	Continue
man machine			Cancel
			Help
Equal Variances	, Assumed		
F <u>L</u> SD	Г <u>S</u> -N-К	<u>₩</u> aller-Duncan	
🗖 <u>B</u> onferroni		Type I/Type II Error Ratio:	100
□ Sidak □	┌ Tu <u>k</u> ey's-b	C Dunnett	'
□ Scheffe □	🗖 <u>D</u> uncan	Control Category: La	st 💌
<u> </u>		_Test	
Г R-E-G-W <u>Q</u>	☐ <u>G</u> abriel	<u>€2</u> -sided € < C <u>o</u> ntrol €	• > Co <u>n</u> trol
-Equal Variances	Not Assumed		
🗖 Tamhane's T	2 🔽 Dunnett's T3	└ Games-Howell └ Dunnett	's C

ขั้นที่ 3.12 เลือกตัวแปร man, machine มาไว้ที่ช่อง Post Hoc Tests for และเลือกการทดสอบแบบ LSD

ขั้นที่ 3.13 คลิก Continue และ OK ตามลำดับ

จะได้ผลการคำนวณเพิ่มเติมจากเดิมเป็นส่วนของการทดสอบ Multiple comparison ดังนี้

Post Hoc Tests

MAN

Multiple Comparisons

Dependent Variable: TIME

LSD

		Mean			95% Confide	ence Interval
(I) MAN	(J) MAN	(I-J)	Std. Error	Sia.	Lower Bound	Upper Bound
1.00	2.00	-4.0000*	1.7524	.041	-7.8181	1819
	3.00	4.7500*	1.7524	.019	.9319	8.5681
	4.00	1.2500	1.7524	.489	-2.5681	5.0681
	5.00	7500	1.7524	.676	-4.5681	3.0681
2.00	1.00	4.0000*	1.7524	.041	.1819	7.8181
	3.00	8.7500*	1.7524	.000	4.9319	12.5681
	4.00	5.2500*	1.7524	.011	1.4319	9.0681
	5.00	3.2500	1.7524	.088	5681	7.0681
3.00	1.00	-4.7500*	1.7524	.019	-8.5681	9319
	2.00	-8.7500*	1.7524	.000	-12.5681	-4.9319
	4.00	-3.5000	1.7524	.069	-7.3181	.3181
	5.00	-5.5000*	1.7524	.009	-9.3181	-1.6819
4.00	1.00	-1.2500	1.7524	.489	-5.0681	2.5681
	2.00	-5.2500*	1.7524	.011	-9.0681	-1.4319
	3.00	3.5000	1.7524	.069	3181	7.3181
	5.00	-2.0000	1.7524	.276	-5.8181	1.8181
5.00	1.00	.7500	1.7524	.676	-3.0681	4.5681
	2.00	-3.2500	1.7524	.088	-7.0681	.5681
	3.00	5.5000*	1.7524	.009	1.6819	9.3181
	4.00	2.0000	1.7524	.276	-1.8181	5.8181

Based on observed means.

*. The mean difference is significant at the .05 level.

หมายเหตุ คู่ที่มีเครื่องหมาย * คือคู่ประชากรที่มีค่าเฉลี่ยแตกต่างกันโดยวิธี LSD โดยมีระดับนัยสำคัญ 0.05 สรุปที่ระดับนัยสำคัญ 0.05

เจ้าหน้าที่คนที่มีความสามารถแตกต่างกันคือ

(เจ้าหน้าที่คนที่ 1 , เจ้าหน้าที่คนที่ 2) , (เจ้าหน้าที่คนที่ 1 , เจ้าหน้าที่คนที่ 3) ,

(เจ้าหน้าที่คนที่ 2, เจ้าหน้าที่คนที่ 3), (เจ้าหน้าที่คนที่ 2, เจ้าหน้าที่คนที่ 4),

(เจ้าหน้าที่คนที่ 3 , เจ้าหน้าที่คนที่ 5)

MACHINE

Multiple Comparisons

Dependent	Variable:	TIME
LSD		

		Mean			95% Confide	ence Interval
(I) MACHINE	(J) MACHINE	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	2.2000	1.5674	.186	-1.2150	5.6150
	3.00	-6.6000*	1.5674	.001	-10.0150	-3.1850
	4.00	4.4000*	1.5674	.016	.9850	7.8150
2.00	1.00	-2.2000	1.5674	.186	-5.6150	1.2150
	3.00	-8.8000*	1.5674	.000	-12.2150	-5.3850
	4.00	2.2000	1.5674	.186	-1.2150	5.6150
3.00	1.00	6.6000*	1.5674	.001	3.1850	10.0150
	2.00	8.8000*	1.5674	.000	5.3850	12.2150
	4.00	11.0000*	1.5674	.000	7.5850	14.4150
4.00	1.00	-4.4000*	1.5674	.016	-7.8150	9850
	2.00	-2.2000	1.5674	.186	-5.6150	1.2150
	3.00	-11.0000*	1.5674	.000	-14.4150	-7.5850

Based on observed means.

*. The mean difference is significant at the .05 level.

หมายเหตุ คู่ที่มีเครื่องหมาย * คือคู่ประชากรที่มีค่าเฉลี่ยแตกต่างกันโดยวิธี LSD โดยมีระดับนัยสำคัญ 0.05 สรุปที่ระดับนัยสำคัญ 0.05

เพราะฉะนั้นเครื่องจักรที่มีความสามารถแตกต่างกันคือ (เครื่องจักรที่ 1 , เครื่องจักรที่ 3) , (เครื่องจักรที่ 1 , เครื่องจักรที่ 4) , (เครื่องจักรที่ 2 , เครื่องจักรที่ 3) , (เครื่องจักรที่ 3 , เครื่องจักรที่ 4)

9.2.1 กรณีที่ 1 Treatment 1 และ 1 Block มีค่าสังเกตมากกว่า 1 ค่า

ในกรณี 1 Treatment 1 Block มีค่าสังเกตมากกว่าหนึ่งค่าเช่นจากตัวอย่าง 9.2.1 หากเราให้เจ้าหน้าที่ทำงาน กับเครื่องจักรซ้ำ 5 ครั้งเพื่อตรวจสอบว่าผลของความชำนาญกับเครืองจักรจะทำให้เวลาเฉลี่ยในการทำงานของ เจ้าหน้าที่และเครื่องจักรมีค่าเฉลี่ยเท่ากันหรือไม่ ดังนั้นเราจึงเลือกสมมติฐานเพื่อทำการทดสอบ 3 แบบคือ สมมติฐานเกี่ยวกับวิธีการปฏิบัติ (Treatment)

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Treatment แตกต่างกัน

H₁ : มีความแตกต่างระหว่างประชากรที่มี Treatment แตกต่างกันอย่างน้อยหนึ่งคู่ของ Treatment สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม (Block)

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Block แตกต่างกัน

H₁ : มีความแตกต่างระหว่างประชากรที่มี Block แตกต่างกันอย่างน้อยหนึ่งคู่ของ Block สมมติฐานเกี่ยวกับ Treatment และ Block

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Treatment และ Block ร่วมกัน

H₁ : มีความแตกต่างระหว่างประชากรที่มี Treatment และ Block ร่วมกันอย่างน้อยหนึ่งคู่

การแปรผันของข้อมูลจำแนกเป็น 5 ส่วนคือ

1. การแปรผันโดยรวมทั้งหมด (SST : TOTAL SUM OF SQUARE, Total Sum Square)

SST =
$$\sum_{j=1}^{k} \sum_{i=1}^{b} \sum_{s=1}^{m} x_{ij}^2 - \frac{T^2}{N}$$
, m = จำนวนค่าสังเกตของแต่ละ treatment และ block

2. การแปรผันที่เกิดจาก Treatment ต่างกัน (SSTR : TREATMENT SUM OF SQUARE, Between-

Treatment Sum Square) SSTR =
$$\frac{\sum_{j=1}^{k} T_{j}^{2}}{\frac{j=1}{m}} - \frac{T_{j}^{2}}{N}$$

3. การแปรผันที่เกิดจาก Block ต่างกัน (SSBL : BLOCK SUM OF SQUARE, Between-Groups Sum

Square) SSBL =
$$\frac{\sum_{j=1}^{b} T_{i.}^{2}}{km} - \frac{T_{..}^{2}}{N}$$

4. การแปรผันที่เกิดร่วมกันของ Treatment และ Block (SSTRBL : Sum of Square Interactions

TR*BL) SSTRBL =
$$\sum_{j=1}^{k} \sum_{i=1}^{b} \frac{\left(\sum_{s=1}^{m} x_{ijs}\right)^{2}}{m} - \frac{T_{...}^{2}}{N}$$

5. การแปรผันในส่วนอื่น ๆ ของ Treatment และ Block (SSE : ERROR SUM OF SQUARE, Within-Groups Sum Square, Residual Sum Square)

SSE = SST - SSTR - SSBL - SSTRBL

น้ำค่า SST, SSTR, SSBL, SSTRBL, SSE มาสร้างเป็นตารางวิเคราะห์ความแปรปรวน

ตาราง ANOVA ในตำราสถิติ

แหล่งการแปรผัน	ผลบวก	องศา	ค่าเฉลี่ยของผล	f _{คำนวณ}
	กำลังสอง	ความอิสระ	บวกกำลังสอง	
Treatment	SSTR	k – 1	$MSTR = \frac{SSTR}{k-1}$	$f_{\text{treatment}} = \frac{\text{MSTR}}{\text{MSE}}$
Block	SSBL	b – 1	$MSBL = \frac{SSBL}{b-1}$	$= \frac{f_{block}}{MSBL}$
Interactions Treatment and Block	SSTRBL	(k – 1)(b – 1)	$MSTRBL= \frac{SSTRBL}{(k-1)(b-1)}$	$f_{\text{int eractions}} = \frac{\text{MSTRBL}}{\text{MSE}}$
Error	SSE	bk(m – 1)	$MSE = \frac{SSE}{kb(m-1)}$	
Total	SST	N – 1		

Source	Sum of Squares	df	Mean Square	F	Sig.
			$=\frac{SS}{DF}$	$=\frac{MS*}{MSE}$	
Corrected Model	SSTR + SSBL + SSTRBL	kb – 1			
Intercept	SS Intercept	1			
TREATMENT	SSTR	k – 1	MSTR	ftreatment	$P(F > f_{treatment})$
BLOCK	SSBL	b – 1	MSBL	fblock	$P(F > f_{block})$
Interaction TR*BL	SSTRBL	(k – 1)(b – 1)	MSTRBL	fint eraction	$P(F > f_{int eractions})$
Error	SSE	kb(m – 1)	MSE		
Total	SS Intercept + SST	N			
Corrected Total	SST	N – 1			

รูปแบบตาราง ANOVA ที่ได้จาก SPSS for Windows

การสรุปผลการทดสอบที่ระดับนัยสำคัญ α

สมมติฐานเกี่ยวกับวิธีการปฏิบัติ (Treatment)

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Treatment แตกต่างกัน

H₁ : มีความแตกต่างระหว่างประชากรที่มี Treatment แตกต่างกันอย่างน้อยหนึ่งคู่ของ Treatment

การสรุปผล แบบที่ 1 ถ้า Sig = $P(F > f_{treatment}) < \alpha$ แล้วปฏิเสธ H_0

แบบที่ 2 ถ้า $f_{treatment} > f_{lpha, (k-1, kb(m-1))}$ แล้วปฏิเสธ H_0

สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม (Block)

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Block แตกต่างกัน

H₁ : มีความแตกต่างระหว่างประชากรที่มี Block แตกต่างกันอย่างน้อยหนึ่งคู่ของ Block

การสรุปผล แบบที่ 1 ถ้า Sig = $P(F > f_{block}) < \alpha$ แล้วปฏิเสธ H_0

แบบที่ 2 ถ้า $f_{block} > f_{\alpha,(b-1,kb(m-1))}$ แล้วปฏิเสธ H_0

สมมติฐานเกี่ยวกับ Treatment และ Block

H₀ : ไม่มีความแตกต่างระหว่างประชากรที่มี Treatment และ Block ร่วมกัน

H_l : มีความแตกต่างระหว่างประชากรที่มี Treatment และ Block ร่วมกันอย่างน้อยหนึ่งคู่

การสรุปผล แบบที่ 1 ถ้า Sig = $P(F > f_{int \, eractions}) < \alpha$ แล้วปฏิเสธ H_0

แบบที่ 2 ถ้า f_{interactions} > f_{α ,((k-1)(b-1),kb(m-1))} แล้วปฏิเสธ H₀

	เครื่องจักร 1	เครื่องจักร 2	เครื่องจักร 3	เครื่องจักร 4
	44	38	47	36
a ad d	35	35	35	36
เจ้าหน้าทิคนที่ 1	35	32	39	36
	32	35	32	35
	37	36	37	36
	46	40	52	43
	35	37	42	33
เจ้าหน้าที่คนที่ 2	39	36	32	32
	39	35	35	35
	38	36	38	31
	34	36	44	32
a ad d	34	35	40	36
เจ้าหน้าทิคนที่ 3	35	34	39	36
	34	34	38	35
	33	36	39	34
	43	38	46	33
* * 4 4	35	35	39	35
เจ้าหน้าทิคนที่ 4	38	36	39	35
	38	32	32	37
	32	35	38	37
	38	36	35	39
* * d d	39	34	32	35
เจ้าหน้าที่คนที่ 5	39	32	36	36
	40	32	35	36
	35	32	32	32

ตัวอย่าง 9.2.2 ในการเปรียบเทียบประสิทธิภาพของเครื่องจักร 4 ชนิด และความสามารถของคนที่คุม เครื่องจักร 5 คน โดยให้ทำการควบคุมเครื่องจักรเครื่องเดียวซ้ำคนละ 5 ครั้ง ได้ข้อมูลจากการสุ่มตัวอย่างคือ

จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.01

1. ไม่มีความแตกต่างของค่าเฉลี่ยระหว่างเครื่องจักร(Treatment) ที่แตกต่างกัน

2. ไม่มีความแตกต่างของค่าเฉลี่ยระหว่างเจ้าหน้าที่(Block) ที่แตกต่างกัน

3. ไม่มีความแตกต่างของค่าเฉลี่ยระหว่าง เครื่องจักร (Treatment) และ เจ้าหน้าที่(Block) ที่แตกต่างกัน
 วิธีทำ

ขั้นที่ 1. สมมติฐานเกี่ยวกับวิธีการปฏิบัติ(เครื่องจักร Treatment)

H₀ : ไม่มีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักร(Treatment) ที่แตกต่างกัน

H1 : มีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักรอย่างน้อยหนึ่งคู่

สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม (เจ้าหน้าที่ Block)

H₀ : ไม่มีความแตกต่างระหว่างค่าเฉลี่ยของเจ้าหน้าที่ (Block) ที่แตกต่างกัน

H₁ : มีความแตกต่างระหว่างค่าเฉลี่ยของเจ้าหน้าที่อย่างน้อยหนึ่งคู่

สมมติฐานเกี่ยวกับ Treatment และ Block

H₀ : ไม่มีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักร(Treatment) และ เจ้าหน้าที่(Block)

 ${
m H}_1$: มีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักร(Treatment) และ เจ้าหน้าที่(Block) อย่างน้อยหนึ่งคู่

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.01$
- ขั้นที่ 3. เข้าสู่ SPSS Data Editor

ขั้นที่ 3.1 การสร้างแฟ้มข้อมูล กำหนด ตัวแปร man เป็นตัวแปรจำแนกคน

ตัวแปร machine เป็นตัวแปรจำแนกเครื่องจักร

ตัวแปร time เป็นตัวแปรเก็บข้อมูลที่ต้องการวิเคราะห์

เสร็จแล้ว Save ลงแฟ้มข้อมูลชื่อ example20 multiple observation.sav

🧰 examp	le20 multiple	observation	- SPSS Data
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	<u>A</u> nalyze <u>G</u> raph
🖻 🖬	a 🔍 🗠		li? M
13 :			
	man	machine	time
1	1.00	1.00	44.00
2	1.00	1.00	35.00
3	1.00	1.00	35.00
4	1.00	1.00	32.00
5	1.00	1.00	37.00
6	1.00	2.00	38.00

1.00

2.00

35.00

ขั้นที่ 3.2 เลือกใช้คำสั่ง Analyze / General Linear Model / Univariate

🧰 examp	le20 multiple	observatio	n - SPSS Data Editor	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	\underline{T} ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
1 3:	8 🖳 🗠		Reports Descriptive Statistics Custom <u>T</u> ables	: • •
	man	machine	Compare <u>M</u> eans	
1	1.00	1.0	Leneral Linear Model	
2	1.00	1.0	Lorrelate Degression	<u>Multivariate</u> Percented Meanuree
3	1.00	1.0		 <u>n</u>epeateu Measules
4	1.00	1.0	Classify	

ขั้นที่ 3.3 เลือกคำสั่ง Univariate จะได้เมนูย่อยดังนี้

ขั้นที่ 3.4 เลือกตัวแปร time ไปช่อง Dependent Variable เลือกตัวแปร machine และ man ไปช่อง Fixed Factor(s)

#A Univariate		×
	Dependent Variable: → time	<u>M</u> odel
	Fixed Factor(s):	Co <u>n</u> trasts
	→ man → man	Plo <u>t</u> s
		Post <u>H</u> oc

ขั้นที่ 3.5	Univariate: Model		×
คลิกที่ปุ่ม Model จะได้เมนูย่อย	Specify Model © Full f <u>a</u> ctorial	⊂ <u>C</u> ustom	Continue
	Factors & Covariates:	<u>M</u> odel:	Cancel
	man(F) machine(F)		Help
	Build T	erm[s]	
ขั้นที่ 3.6	Sum of sguares: Type III	✓ Include intercept in mod	el
ตรงตำแหน่ง Specify Model	Univariate: Model		×
ให้เลือก ● Custom	Specify Model		Continue
Custom	C Full factorial	© Custom	Continue
	Eactors & Covariates:	<u>M</u> odel:	
	machine(F)		Help
	Build T	tion	

ขั้นที่ 3.7 เลือกตัวแปร machine(F) จากช่อง Factor & Covariates มาไว้ที่ช่อง Model

เลือกตัวแปร man(F) จากช่อง Factor & Covariates มาไว้ที่ช่อง Model

nivariate: Model		
Specify Model	د <u>C</u> ustom	Continue
Factors & Covariates:	<u>M</u> odel:	Cancel
man(F) machine(F)	man machine	Help
Build Term	[s]	
Interaction		

ขั้นที่ 3.8 คลิกที่ตัวแปร man

กด SHIFT ค้างไว้แล้วคลิกที่ตัวแปร machine จะได้ผลบนจอภาพเป็น

Univariate: Model		×
⊂ Specify Model ← Full f <u>a</u> ctorial	© <u>C</u> ustom	Continue
Factors & Covariates:	<u>M</u> odel:	Cancel
man(F) machine(F)	man machine	Help
Build Term(s)		
Interaction _		

ขั้นที่ **3.11** ถ้าต้องการทดสอบว่าความแปรปรวนของข้อมูลเท่ากันจริงหรือไม่ ให้คลิกปุ่ม Options จะได้เมนูย่อยเป็น

actor(s) and Factor Interactions:	Display <u>M</u> eans for:
man machine machine*man	
	<u>Compare main effects</u>
	Confidence interval adjustment:
	LSD (none) 💌
isplay	
Descriptive statistics	☐ <u>H</u> omogeneity tests
<u> </u>	🖵 Spread vs. level plot
Observed power	∏ <u>R</u> esidual plot
Parame <u>t</u> er estimates	┌─ <u>L</u> ack of fit
⊂ C <u>o</u> ntrast coefficient matri×	☐ <u>G</u> eneral estimable function
	lance intervale are 05%

ขั้นที่ 3.12 เลือก Homogeneity tests

Display	
☐ Descriptive statistics	✓ Homogeneity tests
☐ Estimates of effect size	🖵 Spread vs. level plot

ขั้นที่ 3.13 คลิก Continue กลับไปเมนูย่อย Univariate และคลิก OK ตามลำดับจะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

Univariate Analysis of Variance

Between-Subjects Factors

		Ν
MAN	1.00	20
	2.00	20
	3.00	20
	4.00	20
	5.00	20
MACHINE	1.00	25
	2.00	25
	3.00	25
	4.00	25

Levene's Test of Equality of Error Variances^a

Dependent Variable: TIME

F	df1	df2	Sig.	
1.979700	19	80	.018697	

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+MAN+MACHINE+MAN * MACHINE

Dependent Variable: TIME							
	Type III Sum						
Source	of Squares	df	Mean Square	F	Sig.		
Corrected Model	401.5600 ^a	19	21.1347	1.7911	.038191		
Intercept	132350.4400	1	132350.4400	11216.1390	.000000		
MAN	66.4600	4	16.6150	1.4081	.238851		
MACHINE	162.6800	3	54.2267	4.5955	.005096		
MAN * MACHINE	172.4200	12	14.3683	1.2177	.285890		
Error	944.0000	80	11.8000				
Total	133696.0000	100					
Corrected Total	1345.5600	99					

Tests of Between-Subjects Effects

a. R Squared = .298 (Adjusted R Squared = .132)

การสรุปผลเกี่ยวกับความแปรปรวน

จากตาราง Levene's Test of Equality of Error Variance

จะได้ว่า Sig = P(F > 1.979700) = 0.018697 > α = 0.01 เพราะฉะนั้นยอมรับว่าค่าความแปรปรวนของประชากร ทุกกลุ่มมีค่าเท่ากันที่ระดับนัยสำคัญ 0.01

การสรุปผลเกี่ยวกับค่าเฉลี่ย

สมมติฐานเกี่ยวกับวิธีการปฏิบัติ(เครื่องจักร, Treatment = ตัวแปร machine)

เพราะว่า Sig = P(F > f_{treatment}) = $0.005096 < \alpha = 0.01$ เพราะฉะนั้นปฏิเสธ H₀ เพราะฉะนั้นมีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักร(Treatment) อย่างน้อยหนึ่งคู่

สมมติฐานเกี่ยวกับกลุ่ม (เจ้าหน้าที่, Block = ตัวแปร man)

เพราะว่า Sig = $P(F > f_{block}) = 0.238851 > \alpha = 0.01$ เพราะฉะนั้นยอมรับ H₀ เพราะฉะนั้นไม่มีความแตกต่างระหว่างค่าเฉลี่ยของเจ้าหน้าที่ (Block) ที่แตกต่างกัน

สมมติฐานเกี่ยวกับวิธีการปฏิบัติและกลุ่ม

เพราะว่า Sig = $P(F > f_{int\, eractions}) = 0.285890 > \alpha = 0.01$ เพราะฉะนั้นยอมรับ H₀ เพราะฉะนั้นไม่มีความแตกต่างระหว่างค่าเฉลี่ยของเครื่องจักร(Treatment) และ เจ้าหน้าที่(Block)

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

ในกรณีที่เราไม่ทราบการแจกแจงของประชากรและเราต้องการทดสอบสมมติฐานเกี่ยวกับลักษณะบาง อย่างของประชากร เราทำการทดสอบด้วยวิธี **การทดสอบสมมติฐานแบบนอนพาราเมตริก** (Nonparametric Test) การทดสอบแบบนอนพาราเมตริกที่สำคัญได้แก่

การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่ การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่ การทดสอบว่าประชากร 2 กลุ่มมีความสัมพันธ์กันหรือไม่ การทดสอบว่าค่าเฉลี่ยของประชากร k กลุ่มตัวอย่างเท่ากันหรือไม่

10.1 การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่

การทดสอบว่าข้อมูลตัวอย่างที่เราเก็บรวบรวมมาได้มีลักษณะของการเกิดเป็นไปโดยสุ่มหรือไม่ สามารถ ทำการทดสอบได้โดยใช้วิธี **ทดสอบรันส์** (Runs Test)

การทดสอบสมมติฐานโดยใช้ Runs Test ของ SPSS for windows

ตัวอย่าง 10.1.1 ข้อมูลจำนวนคนที่อยู่ในแถวเพื่อรอถอนเงินจากเครื่อง ATM ที่เก็บมาในช่วงเวลา 40 วัน ต่อเนื่องกันเป็นดังนี้

6	7	5	6	8	6	8	6	6	4
3	2	4	4	3	4	7	5	6	8
6	6	3	5	2	5	4	4	3	7
5	5	4	3	7	4	6	5	2	8

้จงทดสอบว่าจำนวนคนที่อยู่ในแถวเป็นไปอย่างสุ่ม กำหนดระดับนัยสำคัญ 0.05

🖀 Output1 example21 - S	PSS V	iewer		
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u>	ormat ,	<u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>V</u>	⊻indow <u>H</u>	lelp
<u></u>	0	🗏 🖉 🥵 📕	<u>+</u>	+
⊡····· <mark>E</mark> Output ⊡····· <mark>E</mark> NPar Tests ∭······ <u>È</u> Title	N	IPar Tests Runs Test		
Notes			NO	
E Runs lest		Test Valueª	5.00	
		Cases < Test Value	16	
		Cases ≻= Test Value	24	
		Total Cases	40	
		Number of Runs	15	
		Z	-1.570	
		Asymp. Sig. (2-tailed)	.116	
		a. Median		

- ขั้นที่ 4. เลือกค่าสถิติ Z
- ขั้นที่ 5. z_{คำนวณ} = -1.570 และ Asymp. Sig. (2-tailed) = 0.116
- ชั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $Z < -z_{\frac{\alpha}{2}}$ หรือ $Z > z_{\frac{\alpha}{2}}$ เพราะฉะนั้นค่าวิกฤตคือ -1.96 และ 1.96 บริเวณวิกฤตคือ Z < -1.96 หรือ Z > 1.96
- ขั้นที่ 7. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

โดยมีเกณฑ์การสรุปผล ถ้า $z_{_{
m e^1u2au}} < -z_{\frac{lpha}{2}}$ หรือ $z_{_{
m e^1u2au}} > z_{\frac{lpha}{2}}$ แล้วปฏิเสธ H_0

เพราะว่า $z_{_{
m enu}20}$ = -1.570 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้นยอมรับ H_0

หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α เกณฑ์การสรุปผล ถ้า Asymp. Sig. (2-tailed) < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. (2-tailed) = 0.116 มากกว่า 0.05 เพราะฉะนั้นยอมรับ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α มีความสะดวกมากกว่า

การทดสอบว่าประชากรมีค่าเฉลี่ยตามที่เราคาดไว้หรือไม่

ตัวอย่าง 10.1.2 ข้อมูลของจำนวนซัลเฟอร์ออกไซด์ที่ออกมาจากโรงงานอุตสาหกรรมในแต่ละวันที่เก็บมาได้ ในช่วง 60 วัน เป็นดังนี้

17	15	20	29	19	18	22	25	27	9
24	20	17	6	24	14	15	23	24	26
19	23	28	19	16	22	24	17	20	13
19	10	23	18	31	13	20	17	24	14
28	19	16	22	24	17	20	13	19	10
23	18	17	15	20	29	19	18	22	25

้จงทดสอบสมมติฐานว่าค่าเฉลี่ยของซัลเฟอร์ออกไซด์เท่ากับ 20 ที่ระดับนัยสำคัญ 0.05

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก H_0 : $\mu = 20$ กำหนดสมมติฐานอื่น

 H_1 : $\mu \neq 20$

28 - SPSS Data Edi

ขั้นที่ 2. กำหนดระดับนัยสำคัญ lpha = 0.05

- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณค่าสถิติ Z
- ขั้นที่ 3.1 สร้างแฟ้มข้อมูลประกอบด้วย
- ตัวแปร x แทนจำนวนซัลเฟอร์ออกไซด์

เสร็จแล้ว Save ในแฟ้มข้อมูลชื่อ example28.sav

ขั้นที่ 3.2 เลือกคำสั่ง

Analyze / Nonparametric Tests / Runs

ขั้นที่ 3.3 คลิกที่ Runs จะได้เมนูย่อย

ขั้นที่ 3.4

1. เลือกตัวแปร x ไปไว้ที่ช่อง Test Variable List 2. คลิกที่ช่อง Median เพื่อยกเลิกการทดสอบเทียบกับค่า Median 3. คลิกที่ช่อง Custom และพิมพ์ค่า 20 ในช่อง Custom

Runs Test			Teat Variable List	
				ок
				<u>P</u> aste
				Reset
				Cance
				Help
Cut Point			·	
∏ <u>M</u> edian	∏ Mo <u>d</u> e			E <u>x</u> act
∏ M <u>e</u> an	☞ <u>C</u> ustom:	20		Options

🛗 example28 - SPSS Data Editor							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>					
11 :							
	х	var					
1	17						
2	15						
59	22						
60	25						

- ขั้นที่ 4. เลือกค่าสถิติ Z
- ขั้นที่ 5. z_{คำนวณ} = 1.312 และ Asymp. Sig. (2-tailed) = 0.189
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $Z < -z_{\frac{\alpha}{2}}$ หรือ $Z > z_{\frac{\alpha}{2}}$ เพราะฉะนั้นค่าวิกฤตคือ -1.96 และ 1.96 บริเวณวิกฤตคือ Z < -1.96 หรือ Z > 1.96
- ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า z_{คำนวณ} < -z_α หรือ z_{คำนวณ} > z_α แล้วปฏิเสธ H₀ เพราะว่า z_{คำนวณ} = 1.312 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้นยอมรับ H₀ หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α

โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. (2-tailed) < lpha แล้วปฏิเสธ H $_0$ เพราะว่า Asymp. Sig. (2-tailed) = 0.189 > 0.05 เพราะฉะนั้นยอมรับ H $_0$

10.2 การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่

การทดสอบว่าประชากรที่เราสนใจมีการแจกแจงปกติจริงหรือไม่ ประชากรที่เราสนใจมีการแจกแจง uniform จริงหรือไม่ ประชากรที่เราสนใจมีการแจกแจงปัวส์ซองจริงหรือไม่ เราสามารถทำการทดสอบแบบ Nonparametric Test ได้

ตัวอย่าง 10.2.1 การทดสอบว่าน้ำหนักของนักเรียนมีการแจกแจงปกติจริงหรือไม่ จึงทำการสุ่มตัวอย่างน้ำ หนักนักเรียนมา 50 คน ได้ข้อมูลดังนี้

50	69	108	85	132	67	121	80	59	64
148	61	50	103	110	66	95	55	128	101
137	145	103	96	136	127	149	111	76	134
87	117	50	77	108	133	98	124	95	124
109	123	107	65	92	101	125	66	90	110

กำหนดระดับนัยสำคัญ 0.05


```
ขั้นที่ 3.5 คลิก OK จะได้ผลการคำนวณเป็น
```

🚏 Output1 example22 - SPSS Viewer <u>File Edit View Insert Format Analyze Graphs Utilities Window H</u>elp 륏뗏톚 🖆 日 🞒 🖪 🛸 🔍 🗆 🔚 🔚 🖉 🧔 📠 +l+l +1 . 📒 Output NPar Tests - 🔁 NPar Tests -----One-Sample Kolmogorov-Smirnov Test 🗟 Title Notes Х Dne-Sample Kolmogorov 50 Normal Parameters^{a,b} Mean 99.56 Std. Deviation 28.13 Most Extreme Absolute .101 Differences Positive .101 Negative -.078 .717 Kolmogorov-Smirnov Z .683 Asymp. Siq. (2-tailed) Test distribution is Normal. b. Calculated from data. ขั้นที่ 4. เลือกค่าสถิติ Z (Kolmogorov-Smirnov Z) ขั้นที่ 5. z_{ดำนวณ} = 0.717 และ Asymp. Sig. (2-tailed) = 0.683 ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\underline{\alpha}}$ และ $z_{\underline{\alpha}}$ บริเวณวิกฤตคือ Z < $-z_{\underline{\alpha}}$ หรือ Z > $z_{\underline{\alpha}}$ เพราะฉะนั้นค่าวิกฤตคือ –1.96 และ 1.96 บริเวณวิกฤตคือ Z < –1.96 หรือ Z > 1.96 ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า $z_{_{
m efnu}2a}$ < $-z_{\frac{lpha}{2}}$ หรือ $z_{_{
m efnu}2a}$ > $z_{\frac{lpha}{2}}$ แล้วปฏิเสธ ${
m H}_0$ เพราะว่า z_{คำนวณ} = 0.717 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้นยอมรับ H₀ หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. (2-tailed) < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. (2-tailed) = 0.683 > 0.05 เพราะฉะนั้นยอมรับ H₀ หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α มีความสะดวกมากกว่า

10.3 การทดสอบว่าประชากร 2 กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่

10.3.1 ประชากร 2 ชุดไม่เป็นอิสระต่อกัน

ในกรณีที่ประชากร 2 ชุดไม่อิสระต่อกัน และ ไม่ทราบการแจกแจงของประชากร เราสามารถทำการ ทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากร 2 ชุดเท่ากันหรือไม่ โดยใช้วิธีทดสอบ Wilcoxon Signed Ranks Test

	×	У
1	147.00	137.90
2	183.50	176.20
3	232.10	219.00
4	161.60	163.80
5	197.50	193.50
6	206.30	201.40
7	177.00	180.60
8	215.40	203.20
9	147.70	149.00
10	208.10	195.40

ตัวอย่าง 10.3	. 1 การทดสอบว่าโปรแ	กรมการควบคุมน้ำหนักโดยใช้เวลา	า 40 วันจะมีผลทำให้น้ำหนักลดลง
ได้ทำการเก็บข้เ	อมูลน้ำหนักของชาย 4() คนได้ข้อมูลดั้งนี้	

	×	У
21	180.60	185.00
22	203.20	195.00
23	137.90	140.00
24	176.20	170.00
25	219.00	200.00
26	163.80	155.00
27	193.50	190.00
28	201.40	200.00
29	180.60	170.00
30	137.90	140.00

	×	У
11	137.90	140.00
12	176.20	170.00
13	219.00	210.00
14	163.80	160.00
15	137.90	140.00
16	176.20	170.00
17	219.00	210.00
18	163.80	165.00
19	193.50	195.00
20	201.40	205.00

	×	У
31	176.20	177.00
32	219.00	211.00
33	163.80	174.00
34	193.50	195.00
35	201.40	200.00
36	180.60	180.00
37	203.20	203.00
38	149.00	150.00
39	195.40	185.00
40	145.00	150.00

x เป็นน้ำหนักก่อนเข้าโปรแกรม และ y เป็นน้ำหนักหลังเข้าโปรแกรม จงทดสอบสมมติฐานว่าโปรแกรมการ ควบคุมน้ำหนักไม่ทำให้น้ำหนักเปลี่ยนแปลง กำหนดระดับนัยสำคัญ 0.05

วิธีทำ ขึ้นที่ **1**. กำหนดสมมติฐานหลัก H₀ : ค่าเฉลี่ยของน้ำหนักก่อนและหลังเข้าโปรแกรมเท่ากัน กำหนดสมมติฐานอื่น H₁ : ค่าเฉลี่ยของน้ำหนักก่อนและหลังเข้าโปรแกรมไม่เท่ากัน

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและคำนวณค่าสถิติ Z
- ขั้นที่ 3.1 สร้างแฟ้มข้อมูลและ

Save ข้อมูลในแฟ้มชื่อ example23.sav

🛅 example23 - SPSS Data Editor							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>					
E							
	х	У					
1	147.00	137.90					
2	183.50	176.20					

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

🛗 examp	le23 - SPSS	Data Editor		
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	Iransform	Analyze <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
1: x	a 🔍 🗠	Ca 🗐	Reports Descriptive Statistics Custom <u>T</u> ables	
	x 147.00	y 137.9	Compare <u>M</u> eans <u>G</u> eneral Linear Model	var var
2	183.50	176.2	<u>C</u> orrelate <u>R</u> egression	•
4	161.60	163.8	L <u>og</u> linear Classif <u>y</u>	Image: Image of the second s
5	197.50 206.30	193.5 201.4	<u>D</u> ata Reduction Sc <u>a</u> le	•
7	177.00 215.40	180.6 203.2	<u>N</u> onparametric Tests Time Series	 <u>C</u>hi-Square Binomial
9	147.70	149.0	<u>S</u> urvival	▶ <u>B</u> uns
10	208.10 137.90	195.4 140.0	Multiple Hesponse Missing <u>V</u> alue Analysis	<u>1</u> -Sample K-S <u>2</u> Independent Samples
12	176.20 219.00	170.00 210.00		<u>K</u> Independent Samples 2 Related Samples
14	163.80	160.00		K Related <u>S</u> amples

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / 2 Related Samples

ขั้นที่ 3.3 คลิกที่คำสั่ง 2 Related Samples จะได้เมนูย่อย

ŧ∳× ŧ≥y	-	<u>T</u> est Pair(s) List:	OK
			Paste
			<u>R</u> eset
			Cancel
			Help
Current Selections		Test Type	
Variable 1:		₩ilcoxon Sign F	<u>M</u> cNemar
Variable 2:		☐ Marginal <u>H</u> omogeneity	
		Exact	Options

ขั้นที่ 3.4 คลิกที่ตัวแปร x จะได้ Variable 1 : x ที่กรอบ Current Selections คลิกที่ตัวแปร y จะได้ Variable 2 : y ที่กรอบ Current Selections

# Two-Related-Samples Tests	_	Test Pair(s) List:	OK
			Paste
			<u>R</u> eset
			Cancel
			Help
Current Selections		r Test Type	
Variable 1: \times		₽ <u>₩</u> ilcoxon Γ <u>S</u> ign Γ <u>M</u> o	Nemar
Variable 2: y		☐ Marginal <u>H</u> omogeneity	
		E <u>x</u> act 0	ptions

	ערוי	v		
เลือกวิธีทดสอบ		# Two-Related-Samples Tests		×
Wilcoxon		()	<u>T</u> est Pair(s) List:	ок
Wheekon		₩ Y	×	Paste
Test Type				<u>R</u> eset
₩ilcoxon Г	⁻ <u>S</u> ign			Cancel
				Help
		Current Selections	Test Type	
		Variable 1:	₽ <u>₩</u> ilcoxon Γ <u>S</u> ign Γ <u>M</u> e	:Nemar
		Variable 2:	┌ Marginal <u>H</u> omogeneity	
			E <u>x</u> act	ptions

ขั้นที่ 3.5 คลิกที่ปุ่มลูกศรเพื่อนำตัวแปรคู่นั้นไปไว้ที่ช่อง Test Pair(s) List

ขั้นที่ 3.6 คลิก OK จะได้ผลการคำนวณเป็น

ผลการคำนวณทั้งหมดคือ

NPar Tests

Wilcoxon Signed Ranks Test

Ranks							
N Mean Rank Ranks							
Y - X	Negative Ranks	24 ^a	25.21	605.00			
	Positive Ranks	16 ^b	13.44	215.00			
	Ties	0 ^c					
	Total	40					

a. Y < X

b. Y > X

c. X = Y

Test Statistics^b

	Y - X
Z	-2.622 ^a
Asymp. Sig. (2-tailed)	.009

a. Based on positive ranks.

b. Wilcoxon Signed Ranks Test

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

- ขั้นที่ 4. เลือกค่าสถิติ Z
- ขั้นที่ 5. z_{ดำนาณ} = -2.622 และ Asymp. Sig. (2-tailed) = 0.009
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ $Z < -z_{\frac{\alpha}{2}}$ หรือ $Z > z_{\frac{\alpha}{2}}$
 - เพราะฉะนั้นค่าวิกฤตคือ –1.96 และ 1.96 บริเวณวิกฤตคือ Z < –1.96 หรือ Z > 1.96 สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต
- ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า z_{คำนวณ} < -z_a หรือ z_{คำนวณ} > z_a แล้วปฏิเสธ H₀ เพราะว่า z_{คำนวณ} = -2.622 < -1.96 เพราะฉะนั้นปฏิเสธ H₀
- หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. (2-tailed) < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. (2-tailed) = 0.009 < 0.05 เพราะฉะนั้นปฏิเสธ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α มีความสะดวกมากกว่า

10.3.2 ประชากร 2 ชุดเป็นอิสระต่อกัน

ตัวอย่าง 10.3.2 ปริมาณของนิโคตินที่มีในบุหรี่ 2 ยี่ห้อคือ

ยี่ห้อ A	2.1	4.0	6.3	5.4	4.8	3.7	6.1	3.3		
ยี่ห้อ B	4.1	0.6	3.1	2.5	4.0	6.2	1.6	2.2	1.9	5.4

้จงทดสอบว่าปริมาณของนิโคตินที่มีในบุหรี่ 2 ยี่ห้อเท่ากัน กำหนดระดับนัยสำคัญ 0.05

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก ${
m H}_0$: μ_1 = μ_2

กำหนดสมมติฐานอื่น H_1 : $\mu_1 \neq \mu_2$

ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05

ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณค่าสถิติ Z

ขั้นที่ 3.1 สร้างแฟ้มข้อมูล code เป็นตัวแปรจำแนกกลุ่ม

x เป็นตัวแปรปริมาณนิโคติน และ Save แฟ้มข้อมูลชื่อ example27.sav

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / 2 Independent Samples

💼 examp	le27 - SPSS	Data Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
2	a 🔍 🗠	
14 :		
	code	х
1	1.00	2.10
2	1.00	4.00
17	2.00	1 00
18	2.00	5.40

ขั้นที่ 3.3 คลิกที่คำสั่ง 2 Independent Samples จะได้เมนูย่อย

	Lest Variable List:	_ OK
Г	↓ [★] ×	
		Res
_	<u>G</u> rouping Variable:	Can
	Code(1 2)	Hel
Test Type		
🔽 Mann-Whitney U	∏ <u>K</u> olmogorov-Smirnov Z	
☐ Mo <u>s</u> es extreme reactions	$\ \ \ \underline{W}$ ald-Wolfowitz runs	

ขั้นที่ 3.8 คลิก OK จะได้ผลการคำนวณเป็น

ผลการคำนวณทั้งหมดคือ

NPar Tests

Mann-Whitney Test

Ranks

	CODE	N	Mean Rank	Sum of Ranks
Х	1.00	8	11.63	93.00
	2.00	10	7.80	78.00
	Total	18		

Test Statistics^b

	Х
Mann-Whitney U	23.000
Wilcoxon W	78.000
Z	-1.512
Asymp. Sig. (2-tailed)	.131
Exact Sig. [2*(1-tailed Sig.)]	.146 ^a

a. Not corrected for ties.

b. Grouping Variable: CODE

- ขั้นที่ **4**. เลือกค่าสถิติ Z
- ขึ้นที่ 5. z_{คำนวณ} = -1.512 และ Asymp. Sig. (2-tailed) = 0.131
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\underline{\alpha}}$ และ $z_{\underline{\alpha}}$ บริเวณวิกฤตคือ Z < $-z_{\underline{\alpha}}$ หรือ Z > $z_{\underline{\alpha}}$
 - เพราะฉะนั้นค่าวิกฤตคือ –1.96 และ 1.96 บริเวณวิกฤตคือ Z < –1.96 หรือ Z > 1.96
- ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า $z_{_{
 m e^1u2au}} < -z_{\underline{\alpha}}$ หรือ $z_{_{
 m e^1u2au}} > z_{\underline{\alpha}}$ แล้วปฏิเสธ H_0 เพราะว่า $z_{_{
 m enu}2a}$ = -1.512 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้นยอมรับ H_0
- หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. (2-tailed) < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. (2-tailed) = 0.131 > 0.05 เพราะฉะนั้นยอมรับ H_0

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. (2-tailed) กับค่า α มีความสะดวกมากกว่า

10.4 การทดสอบว่าประชากร k กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่

10.4.1 ประชากร k กลุ่มเป็นอิสระต่อกัน

ในกรณีที่ประชากร k ชุดอิสระต่อกัน และ ไม่ทราบการแจกแจงของประชากร เราสามารถทำการ ทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากร 2 ชุดเท่ากันหรือไม่ โดยใช้วิธีทดสอบ Kruskal – Wallis Test

ตัวอย่าง 10.4.1	คะแนนสอบวิชาภาษาเ	เยอรมันของนัก	เรียน 3	กลุ่มที่มาจา	กวิธีการสอา	นที่ต่างกับ	l
				9			

วิธีที่ 1	94	88	91	74	87	97	
วิธีที่ 2	85	82	79	84	63	72	80
วิธีที่ 3	89	67	72	76	69		

้จงทดสอบสมมติฐานว่าวิธีการสอนทั้งสามแบบให้ผลเหมือนกัน กำหนดระดับนัยสำคัญ 0.05 วิธีทำ

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : µ₁ = µ₂ = µ₃

กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂ ≠ μ₃ (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่าง)

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณค่าสถิติ Z
- ขั้นที่ 3.1 สร้างแฟ้มข้อมูล

code เป็นตัวแปรจำแนกกลุ่ม

x เป็นตัวแปรเก็บคะแนน

และ Save ลงแฟ้มข้อมูลชื่อ example29.sav

🧱 example29 - SPSS Data Editor						
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	Iransform A				
B	8 💻 🖻					
15 :						
	code	х				
1	1.00	94.00				
2	1.00	88.00				
17	3.00	76.00				
18	3.00	69.00				

242
บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / K Independent Samples

🛅 examp	🧰 example29 - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u>	<u>G</u> raphs	<u>U</u> tilities	∐ir	idow	<u>H</u> elp		
1 5 :	a 🔍 🗠		Reports D <u>e</u> scrip Custom	s otive Sta n <u>T</u> ables	tistics	* * *	± F	-	<u> </u> @	
	code	Х	Compa	ie <u>M</u> eari	S Madal	1	٧a	ar	var	,
1	1.00	94.0	<u>G</u> eneral Corrolat	ii Lirieai Io	Moder	Ľ.				
2	1.00	88.0	Lorreiate <u>R</u> egression L <u>og</u> linear							
3	1.00	91.0								
4	1.00	74.0								
5	1.00	87.0	Data Beduction			•				
6	1.00	97.0	Scale			•				
7	2.00	85.0	<u>N</u> onpar	rametric	Tests	►		ni-Squa	are	
8	2.00	82.0	Tjme S	eries		•	Bi	nomial.		
9	2.00	79.0	<u>S</u> urviva	al		•	B	uns		
10	2.00	84.0	Muļtiple	e Respor	nse	×	<u>1</u> -	Sample	e K-S	
11	2.00	63.0	Missing	<u>) V</u> alue /	Analysis		2	Indepe	ndent Sample	s
12	2.00	72.00)				K	Indepe	endent Sample	s
13	2.00	80.00)				2	Reļate	d Samples	
14	3.00	89.00	1				K	Relate	d <u>S</u> amples	

ขั้นที่ 3.3 คลิกที่คำสั่ง K Independent Samples จะได้เมนูย่อย

เลือกการทดสอบ

Test Type เป็น	∺ A Tests for Several Independ	lent Samples	×
Kruskal–Wallis H	♦ code ★ ×		OK Paste
Test Type			<u>R</u> eset
I⊄ <u>K</u> ruskal-Wallis H		<u>G</u> rouping Variable:	Cancel
		▶ Define Range	Help
	Test Type		
	I <u>K</u> ruskal-Wallis H	∏ <u>M</u> edian	E <u>×</u> act
	☐ <u>J</u> onckheere-Terpstra		<u>O</u> ptions

ขั้นที่ 3.4 เอาตัวแปร x ไปไว้ที่ช่อง Test Variable List เอาตัวแปร code ไปไว้ที่ช่อง Grouping Variable

Cartests for Several Independ	ant Samples Test Variable List: ↓ ↓ Grouping Variable: ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	× OK Paste Reset Cancel Help
Test Type ☞ <u>K</u> ruskal-Wallis H ┌ <u>J</u> onckheere-Terpstra	∏ <u>M</u> edian	Exact Options

ขั้นที่ 3.5 1. คลิกที่ code[? ?] จะทำให้ปุ่ม Define Range เป็นสีดำขึ้นเพื่อจะทำการกำหนดกลุ่มทดสอบ 2. คลิกที่ Define Groups จะได้เมนูย่อย Defir 3. พิมพ์ 1 ในช่อง Minimum 4. พิมพ์ 3 ในช่อง Maximum บนจอภาพจะเป็นดังนี้	1 – 2 – ne Range 3 - 4 –	Grouping Varial → code(? ?) → Define Range. Several Independent Range for Gro → Minimum: → Maximum: Several Independent Range for Gro Minimum: Maximum:	ble: dent Samples: Define for the samples: Define	Cancel
ขั้นที่ 3.6 คลิก Continue สาคะ จะได้จอภาพเป็น ข้อสังเกต จากของเดิม code[? ?] กลายเป็น code[1 3]	ts for Several Indepe	ndent Samples Ies	t Variable List: < uping Variable: [c[1 3] fine Range]	OK Paste Reset Cancel Help
Tes	ат Туре			
। प	<u>K</u> ruskal-Wallis H	∏ <u>M</u> edian		E <u>x</u> act
Γ,	Jonckheere-Terpst	ra		<u>O</u> ptions
ขั้นที่ 3.7 คลิก OK จะได้ผลการคำนวณเป็น	Image: Second system Image: Second system Image: Second	ple29 - SPSS Viewer Insert Format Analyz Image State fests de otes uskal-Wallis Test Title Ranks Test Statistics	e Graphs Utilities Wir E D @ E _ NPar Tests Kruskal-W CODE X 1.00 2.00 3.00	ndow Help (+++) + - (1) (
ผลการคำนวณทั้งหมดคือ			Total	18

NPar Tests

Kruskal-Wallis Test

Ranks

	CODE	Ν	Mean Rank
Х	1.00	6	14.00
	2.00	7	7.93
	3.00	5	6.30
	Total	18	

Test Statistics^{a,b}

	Х					
Chi-Square	6.673					
df	2					
Asymp. Sig.	.036					
a. Kruskal Wallis Test						
b. Groupin	g Variab	le: CODE				

หมายเหตุ Asymp. Sig. = 0.036 มาจากค่า P(
$$\chi^2 > 6.673)$$

ขั้นที่ 4. เลือกค่าสถิติ χ^2

å 4

ขั้นที่ 5.	χ _{คำนวณ} = 6.673 และ Asymp. Sig. = 0.036
ขั้นที่ 6.	เปิดตารางสถิติเพื่อหาค่าวิกถตและบริเวณวิกถต

ค่าวิกฤตคือ
$$\chi^2_{lpha}$$
 เมื่อ df = k –1 บริเวณวิกฤตคือ χ^2 > χ^2_{lpha}
เพราะฉะนั้นค่าวิกฤตคือ $\chi^2_{0.05}$ = 5.99 บริเวณวิกฤตคือ χ^2 > 5.99

- ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า $\chi^2_{{\dot{
 m fru}}_{120}}$ > χ^2_{lpha} แล้วปฏิเสธ H₀ เพราะว่า $\chi^2_{{\dot{
 m fru}}_{120}}$ = 6.673 > 5.99 เพราะฉะนั้นปฏิเสธ H₀
- หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. กับค่า α โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. = 0.036 < 0.05 เพราะฉะนั้นปฏิเสธ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. กับค่า α มีความสะดวกมากกว่า

10.4.2 ประชากร 2 กลุ่มไม่เป็นอิสระต่อกัน

้ ตัวอย่าง 10.4.2 เครื่องมือ 3 แบบสำหรับวัดปริมาณของซัลเฟอร์มอน็อกไซด์ในบรรยากาศได้ข้อมูลเป็นดังนี้

วันที่	เครื่องมือแบบ A	เครื่องมือแบบ B	เครื่องมือแบบ C
1.	0.96	0.87	0.76
2.	0.82	0.74	0.85
3.	0.75	0.63	0.74
4.	0.61	0.55	0.46
5.	0.89	0.76	0.78
6.	0.64	0.70	0.81
7.	0.81	0.69	0.72
8.	0.68	0.57	0.56
9.	0.65	0.53	0.56
10.	0.84	0.88	0.74
11.	0.59	0.51	0.62
12.	0.94	0.79	0.68

ปริมาณของซัลเฟอร์มอน็อกไซด์ที่วัดได้ในแต่ละวัน

จงทดสอบที่ระดับนัยสำคัญ 0.05 ว่าผลการวัดของเครื่องมือทั้ง 3 แบบมีผลไม่แตกต่างกัน

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

≌|₽|∌| ₹|

з

11

12

ple30 - SPSS Data Editor <u>File E</u>dit <u>V</u>iew <u>D</u>ata <u>T</u>ransform <u>A</u>nalyze

.96

.82

.75

.59

.94

. ار علك

.87

.74

.63

.51

.79

<u>G</u>raph 🏪 😰 🏘

.76

.85

.74

.62

.68

💼 exam

13

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก
$$H_0: \mu_1 = \mu_2 = \mu_3$$

กำหนดสมมติฐานอื่น $H_1: \mu_1 \neq \mu_2 \neq \mu_3$

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณค่าสถิติ Z
- ขั้นที่ 3.1 สร้างแฟ้มข้อมูลประกอบด้วยตัวแปร 3 ตัว
- คือ a, b, c เป็นปริมาณของซัลเฟอร์มอน็อกไซด์

ในบรรยากาศได้ด้วยเครื่องมือแบบ A, B, C ตามลำดับ

และ Save ลงแฟ้มข้อมูลชื่อ example30.sav

ขั้นที่ 3.2 เลือกคำสั่ง

Analyze / Nonparametric Tests

/ K Related Samples

ขั้นที่ 3.3 คลิกที่ K Related Samples จะได้เมนูย่อย

ขั้นที่ 3.4 เลือกตัวแปร a, b, c มาที่ช่อง Test Variables เลือกวิธีทดสอบ Test Type เป็น Friedman

Test Type-**☞** <u>F</u>riedman

t Tests for Several Related Samples	×
Test Variables:	ОК
(∰)a (∰)b	Paste
	<u>R</u> eset
	Cancel
	Help
lest lype	Exact
▽ <u>F</u> riedman └ <u>K</u> endall's ₩ └ <u>C</u> ochran's Q	<u>S</u> tatistics

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

ผลการคำนวณทั้งหมดคือ

NPar Tests

Friedman Test

Ranks							
	Mean Rank						
А	2.58						
В	1.58						
С	1.83						

Test Statistics^a

Ν	12						
Chi-Square	6.500						
df	2						
Asymp. Sig.	.039						
a. Friedman Test							

- ขั้นที่ 4. เลือกค่าสถิติ χ^2
- ขั้นที่ 5. คำนวณค่าสถิติจากตัวอย่างได้ $\chi^2_{_{
 m e^1u}2u}$ = 6.500 และ Asymp. Sig. = 0.039
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต ค่าวิกฤตคือ χ^2_{α} เมื่อ df = k –1 และบริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$ เพราะฉะนั้นค่าวิกฤตคือ $\chi^2_{0.05}$ = 5.99 บริเวณวิกฤตคือ $\chi^2 > 5.99$
- ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ถ้า $\chi^2_{คำนวณ} > \chi^2_{\alpha}$ แล้วปฏิเสธ H₀ เพราะว่า $\chi^2_{คำนวณ}$ = 6.5 > 5.99 เพราะฉะนั้นปฏิเสธ H₀
- หรือ แบบที่ 2 โดยการเปรียบเทียบ Asymp. Sig. กับ α โดยมีเกณฑ์การสรุปผลว่า ถ้า Asymp. Sig. < α แล้วปฏิเสธ H₀ เพราะว่า Asymp. Sig. = 0.039 < 0.05 เพราะฉะนั้นปฏิเสธ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Asymp. Sig. กับค่า α มีความสะดวกมากกว่า

10.5 การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ (Rank Correlation Coefficient)

ในกรณีที่ข้อมูล 2 ชุด เป็นข้อมูลแบบลำดับที่ ตำแหน่งที่ หรือข้อมูลที่มีความหมายในลักษณะของการ เรียงลำดับ กับข้อมูลเชิงปริมาณ การวัดความสัมพันธ์นิยมใช้สัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน (Spearman Rank Correlation Coefficient)

้ตัวอย่าง 10.5.1 ข้อมูลของจำนวนชั่วโมงดูหนังสือและคะแนนสอบที่นักเรียนทำได้ เป็นดังนี้

นักเรียนคนที่	1	2	3	4	5	6	7	8	9	10
เวลาดูหนังสือ(หน่วย ชม.)	8	5	11	13	10	5	18	15	2	8
คะแนน	56	44	79	72	70	54	95	85	33	65

้จงหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน และอธิบายความสัมพันธ์ที่ได้ วิธีทำ

ขั้นที่ 1. สร้างแฟ้มข้อมูลโดยมีตัวแปร x แทนจำนวนชั่วโมงที่ดูหนังสือ

และ ตัวแปร y แทนคะแนนที่ได้

เสร็จแล้ว Save ลงแฟ้มข้อมูลชื่อ example31.sav

🧰 examp	le31 - SPSS	Data Editor
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>
2	8 🔍 🗠	
18 :		
	х	у
1	8.00	56.00
2	5.00	44.00
10	8.00	65.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Correlate / Bivariate

🧰 examp	le31 - SPSS	Data Edito	r			
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	\underline{T} ransform	<u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
18 :	a 🔍 🗠		Reports Descriptive Sta Custom Tables	atistics		<u>s so</u>
	x	у	Compare <u>M</u> ear	ns Madal	. Va	ar v.
1	8.00	56.0	<u>G</u> eneral Linear	Model	D B	ivariate
2	5.00	44.0	Begression			artial
3	11.00	79.0	Logicession		• •	istances
4	13.00	72 ח	Loganear		·	istanoos

ขั้นที่ 3. คลิกที่คำสั่ง Bivariate จะได้เมนูย่อย

	<u>V</u> ariables:	0K
₩ > У		Paste
		<u>R</u> eset
		Cancel
		Help
Correlation Coefficients ☞ Pearso <u>n</u>	, ∏ <u>S</u>pearman	
Test of Significance @ <u>T</u> wo-tailed	iled	
7 Flag cignificant correlations		<u>O</u> ptions

ขั้นที่ 4. นำตัวแปร x และ ตัวแปร y มาไว้ที่ช่อง Variables

Ht Bivariate Correlations	x
<u>⊻</u> ariables:	ок
	Paste
	<u>R</u> eset
	Cancel
	Help
└ Correlation Coefficients ☞ Pearso <u>n</u> ┌ <u>K</u> endall's tau-b ┌ <u>S</u> pearman	
Test of Significance	
☞ <u>T</u> wo-tailed ○ One-tailed	
₽ Elag significant correlations	Options

ขั้นที่ 5. คลิกที่ Pearson เพื่อยกเลิก และ คลิกที่ Spearman เพื่อเลือกคำนวณสัมประสิทธิ์สหสัมพันธ์ ตำแหน่งที่ของสเปียร์แมน

Correlation Co	efficients	
⊢ Pearso <u>n</u>	┌ <u>K</u> endall's tau-b	⊠ <u>S</u> pearman

ขั้นที่ 6. คลิก OK จะได้ผลการคำนวณเป็นดังนี้

The Edit View Insert Format Analyze Graphs Utilities Window Help						
FBBBBBBBBBBBBB	₩.	🤋 🙆 📠 🕛	++) <u>+ - 00 </u> 59	, ,	
Output Nonparametric Correlations Output Title	r	Nonparamet	tric C	Correlations Correlations		
Rotes					Х	Y
Correlations		Spearman's rho	Х	Correlation Coefficient	1.000	.98172557*
				Sig. (2-tailed)		.000
	 +			N	10	10
			Y	Correlation Coefficient	.98172557**	1.000
				Sig. (2-tailed)	.000	
				N	10	10
		**. Correlation	n is sign	ificant at the .01 level (2-ta	iiled).	

ผลการคำนวณทั้งหมดคือ

Nonparametric Correlations

Correlations

			Х	Y
Spearman's rho	Х	Correlation Coefficient	1.000	.982*
		Sig. (2-tailed)		.000
		Ν	10	10
	Y	Correlation Coefficient	.982*	1.000
		Sig. (2-tailed)	.000	
		Ν	10	10

**. Correlation is significant at the .01 level (2-tailed).

จากตาราง Correlations ค่าสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน = 0.98172557 การทดสอบว่าจำนวนชั่วโมงดูหนังสือและคะแนนสอบที่นักเรียนทำได้มีความสัมพันธ์ กำหนดระดับนัยสำคัญ 0.05

ີວີຣີ້ກຳ

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : จำนวนชั่วโมงดูหนังสือและคะแนนสอบมีความสัมพันธ์ กำหนดสมมติฐานอื่น H₁ : จำนวนชั่วโมงดูหนังสือและคะแนนสอบ ไม่มีความสัมพันธ์

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05
- ขั้นที่ 3. ทำการสุ่มตัวอย่าง
- ขั้นที่ 4. เลือกค่าสถิติ Spearman's rho Correlation Coefficient และค่า Sig. (2-tailed)
- ขั้นที่ 5. จากตารางวิเคราะห์ข้อมูลจะได้

Spearman's rho Correlation Coefficient = 0.98172557 และค่า Sig. (2-tailed) = 0.00000100

- ขั้นที่ 6. ไม่ต้องเปิดตารางหาค่าวิกฤต
- ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบ Sig. (2-tailed) กับค่า α โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig. (2-tailed) < α แล้วปฏิเสธ H₀ เพราะว่า Sig. (2-tailed) = 0.00000100 < 0.05 เพราะฉะนั้นปฏิเสธ H₀

เพราะฉะนั้น จำนวนชั่วโมงดูหนังสือ และคะแนนสอบที่นักเรียนทำได้มีความสัมพันธ์กัน นอกจากนั้นเรายังสรุปได้ว่าหากดูหนังสือมากขึ้นก็จะได้คะแนนมากขึ้น

ภาคผนวกที่ 1 การคำนวณค่า Significant ของค่าสถิติ

ผลการวิเคราะห์ข้อมูลทางสถิติของ SPSS for Windows ส่วนใหญ่ผลการวิเคราะห์จะมีการแสดงค่าของ Significant เช่น Sig. (1-tailed), Sig. (2-tailed) ซึ่งที่มาของค่า Significant คำนวณมาจากค่าสถิติ Z, t, F, Chi-Square ตัวอย่างเช่น

ค่าสถิติ z = 1.312	มีค่า Sig. (2-tailed) = 0.18952014
ค่าสถิติ t = 1.581, df = 4	มีค่า Sig. (2-tailed) = 0.189034
ค่าสถิติ Chi-Square = 3.822, df = 3	มีค่า Asymp. Sig. = 0.281338
ค่าสถิติ F = 4.302, v ₁ = 4, v ₂ = 25	มีค่า Sig. = 0.009

1. การหาค่า Significant ของค่าสถิติ Z

ค่า Significant ของค่าสถิติ Z = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทางหางด้านขวาของ โค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่ม Z ตั้งแต่ z = |k| ถึง z = ∞

หมายเหตุ เราใช้สัญลักษณ์ Sig. แทนค่า Significant

ของค่าสถิติ Z = k และ Sig. (2-tailed) = 2 Sig.

Sig. = P(
$$|\mathbf{k}| < \mathbf{Z} < \infty$$
)
= $\int_{|\mathbf{k}|}^{\infty} f(z) dz = 0.5 - \int_{0}^{|\mathbf{k}|} f(z) dz$

ตัวอย่างการคำนวณเช่น

$$f(z) := \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{-\frac{z^2}{2}}$$
 Sig := 0.5 - $\int_0^{1.312} f(z) dz$ Sig = 0.09476007

ดำสั่งของ Mathcad : cnorm(k) = P($-\infty < t < k$) = $\int_{-\infty}^{k} f(z)dz$

เพราะฉะนั้น Significant ของค่าสถิติ z = k จะมีค่าเท่ากับ 1 – cnorm(|k|) คำสั่งที่ช่วยในการคำนวณค่าสถิติ Z ของ Mathcad

dnorm(z, 0, 1)	ฟังก์ชันการแจงแจงความน่าจะเป็นของ Z
pnorm(k, 0, 1)), cnorm(k)	$pnorm(k) = cnorm(k) = P(-\infty < Z < k)$
qnorm(A, 0, 1)	ระยะบนแกน Z = k ที่ทำให้ $P(-\infty < Z < k) = A$

หมายเหตุ ค่าวิกฤต z_{α} มีค่าเท่ากับ qnorm $(1-\alpha\,,\,0,\,1)$ ตัวอย่างการคำนวณ

pnorm(1.312, 0, 1) = 0.905240qnorm(1 - 0.025, 0, 1) = 1.9599641 - pnorm(1.312, 0, 1) = 0.094760qnorm(1 - 0.005, 0, 1) = 2.575829qnorm(0.094760070, 1) = -1.312000 qnorm(1 - 0.05, 0, 1) = 1.644854

เพราะฉะนั้น $z_{0.025} = 1.96$, $z_{0.05} = 1.645$, $z_{0.005} = 2.58$

2. การหาค่า Significant ของค่าสถิติ t

ค่า Significant ของค่าสถิติ t = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทางหางด้านขวาของ โค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่ม t ตั้งแต่ t = $\mid k \mid$ ถึง t = ∞

t distribution

หมายเหตุ เราใช้สัญลักษณ์ Sig. แทนค่า Significant ของค่าสถิติ t = k และ Sig. (2-tailed) = 2 Sig.

Sig. = P(
$$|k| < t < \infty$$
) = $\int_{t=|k|}^{\infty} h(t)dt = 0.5 - \int_{0}^{t=|k|} h(t)dt$

ตัวอย่างการคำนวณเช่น

t distribution
v := 4
$$h(t) := \left(\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)\cdot\sqrt{\pi \cdot v}}\right) \left[1 + \left(\frac{t^2}{v}\right)\right]^{-\frac{v+1}{2}}$$

Sig := 0.5 - $\int_{0}^{1.581} h(t) dt$
ตัวสังของ Mathcad : pt(k, df) = P(- $\infty < t < k$) = $\int_{0}^{k} h(t) dt$

เพราะฉะนั้น Significant ของค่าสถิติ t = k จะมีค่าเท่ากับ 1 – pt(|k|, df) คำสั่งที่ช่วยในการคำนวณค่าสถิติ t ของ Mathcad

dt(t, df)	ฟังก์ชันการแจงแจงความน่าจะเป็นของตัวแปรสุ่ม เ
pt(k, df)	$pt(k, df) = P(-\infty < t < k)$
qt(A, df)	ระยะบนแกน t = k ที่ทำให้ P(0 < t < k) = A

หมายเหตุ ค่าวิกฤต $t_{\alpha,df}$ มีค่าเท่ากับ qt(1- α , df) ตัวอย่างการคำนวณ

$$pt(1.581,4) = 0.905483$$
 $pt(-1.581,4) = 0.094517$ $1 - pt(1.581,4) = 0.094517$ $qt(0.905482704) = 1.581000$ $qt(0.094517304) = -1.581000$ $qt(1 - 0.05,4) = 2.131847$ $qt(1 - 0.094517,4) = 1.581003$ $qt(1 - 0.05,4) = 2.131847$ $qt(1 - 0.094517,4) = 1.581003$ $qt(1 - 0.025,4) = 2.776445$

3. การหาค่า Significant ของค่าสถิติไคสแควร์

ค่า Significant ของค่าสถิติ χ^2 = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทางหางด้านขวาของ โค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มไคสแควร์ตั้งแต่ χ^2 = k ถึง χ^2 = ∞

Sig =
$$0.281338$$

หมายเหตุ เราใช้สัญลักษณ์ Sig. แทนค่า Significant ค่าสถิติไคสแควร์ χ^2 = k

Sig. = P(k <
$$\chi^2$$
 < ∞) = $\int_{k}^{\infty} f(x)dx = 1 - \int_{0}^{k} f(x)dx$
ตัวอย่างการคำนวณเช่น $y := 3$ TOL := 0.00

TOL := 0.000001v := 3

$$f(x) := \left(\frac{1}{\frac{v}{2} \cdot \Gamma\left(\frac{v}{2}\right)} \right) \cdot x^{\left(\frac{v}{2}\right) - 1} \cdot e^{-\frac{x}{2}} \quad \text{Sig} := 1 - \int_{0}^{3.822} f(x) \, dx$$
$$\int_{0}^{3.822} \int_{0}^{3.822} f(x) \, dx$$
$$\text{Sig} = 0.281338$$

หมายเหตุ Asymp. Sig. ของค่าสถิติไคสแควร์ = Sig. ของค่าสถิติไคสแควร์ คำสั่งที่ช่วยในการคำนวณค่าสถิติไคสแควร์ของ Mathcad

dchisq(x, df)	ฟังก์ชันการแจงแจงความน่าจะเป็นของตัวแปรสุ่มไคสแควร์
pchisq(k, df)	pchisq(k, df)= $P(0 < \chi^2 < k)$
qchisq(A, df)	ระยะบนแกน χ^2 = k ที่ทำให้ P(0 < χ^2 < k) = A

หมายเหตุ ค่าวิกฤต $\chi^2_{lpha\,,\,df}$ มีค่าเท่ากับ qchisq(1-lpha, df) ตัวอย่างการคำนวณ

pchisq
$$(3.822, 3) = 0.718662$$

qchisq $(1 - 0.95, 3) = 0.3518$
 $qchisq (1 - 0.025, 3) = 0.3484$
 $\chi^2_{0.95, 3} = 0.3528$, $\chi^2_{0.025, 3} = 9.3484$, $\chi^2_{0.05, 3} = 7.8147$

4. การหาค่า Significant ของค่าสถิติ F

ค่า Significant ของค่าสถิติ F = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทางหางด้านขวาของ โค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มเอฟตั้งแต่ F = k ถึง F = ∞

$$v1 := 4 \quad v2 := 10$$

$$h(f) := \frac{\Gamma\left(\frac{v1 + v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right) - 1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1 + \left(\frac{v1}{v2}\right) \cdot f^{\frac{v1 + v2}{2}}\right]^{\frac{v1 + v2}{2}}}$$

$$k = 4.302$$

หมายเหตุ เราใช้สัญลักษณ์ Sig. แทนค่า Significant ของค่าสถิติ F = k

Sig. = P(k < F <
$$\infty$$
) = $\int_{F=k}^{\infty} h(f) df$ = $1 - \int_{0}^{F=k} h(f) df$

ตัวอย่างการคำนวณเช่น

$$v1 := 4 \quad v2 := 25$$

$$h(f) := \frac{\Gamma\left(\frac{v1+v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right)-1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1+\left(\frac{v1}{v2}\right) \cdot f^{\frac{v1+v2}{2}}\right]} \qquad \text{Sig} := 1 - \int_{0}^{4.302} h(f) \, df \qquad \text{Sig} = 0.008747$$

คำสั่งที่ช่วยในการคำนวณค่าสถิติ F ของ Mathcad

dF(x, df1, df2)	ฟังก์ชันการแจงแจงความน่าจะเป็นของตัวแปรสุ่ม F
pF(k, df1, df2)	pF(k, df1, df2) = P(0 < F < k)
qF(A, df1, df2)	ระยะบนแกน F = k ที่ทำให้ P(0 < F < k) = A

หมายเหตุ ค่าวิกฤต $f_{\alpha,(df1,df2)}$ มีค่าเท่ากับ qF(1- α , df1, df2) ตัวอย่างการคำนวณ

pF(4.302,4,25) = 0.991253	1 - pF(4.302, 4, 25) = 0.008747	qF(0.991253,4,25) = 4.302032
qF(1 – 0.05, 4, 24) = 2.776289	qF(1 - 0.025, 4, 24) = 3.379359	qF(1 - 0.01, 4, 24) = 4.218445
เพราะฉะนั้น f _{0.05,(4,24)} = 2.776289	$f_{0.025,(4,24)} = 3.379359$, $f_{0.01,(4,25)}$	$_{4)} = 4.218445$

ภาคผนวกที่ 2 การเชื่อมโยงข้อมูล SPSS for Windows กับ Microsoft Word

จากผลการวิเคราะห์ข้อมูลของ SPSS for Windows เราสามารถนำผลการคำนวณไปไว้ที่ Microsoft Word ได้ทั้งในรูปแบบข้อความ ตาราง และ ข้อมูล

1. การนำตารางการวิเคราะห์จาก SPSS ไป Word

เปิดแฟ้มข้อมูล example4.sav ใน SPSS Data Editor วิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics / Frequncies เพื่อทำการแจกแจงความถี่ของตัวแปร sex ได้ผลบนจอภาพ SPSS Viewer ดังนี้

เราต้องการตารางการแจกแจงความถี่ของตัวแปร ระดับการศึกษา (educ) ไปไว้ที่ Microsoft Word ขั้นที่ 1. คลิกที่ตารางผลการวิเคราะห์ความถี่ของตัวแปรระดับการศึกษา

🖀 Output1 example4 for a	1002 -	SPSS V	iewer						
Image: State of the state o									
Output									
Title			ı						
Gatistics →Gatistics				Frequency	Percent	Valid Percent	Cumulative Percent		
🔚 Bar chart		Valid	Under graduate	14	28.0	28.0	28.0		
			Graduate	22	44.0	44.0	72.0		
			Post graduate	11	22.0	22.0	94.0		
			Doctorate	3	6.0	6.0	100.0		
			Total	50	100.0	100.0			
	1 L								

ขั้นที่ 2. คลิกที่ Edit และ Copy Objects

10	🚏 Output1 example4 - SPSS Viewer						
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	Insert	F <u>o</u> rmat	<u>A</u> nalyze			
Ē	<u>U</u> ndo			Ctrl+Z			
	Cu <u>t</u>			Ctrl+X			
[<u>С</u> ору			Ctrl+C			
	Copy obj	ects		Ctrl+K			

ขั้นที่ 3. ไปที่ Window การทำงานของ Microsoft Word

ขั้นที่ 4. ขณะที่อยู่ใน Microsoft Word ใช้คำสั่ง Edit และ Paste หรือ กด Ctrl + V

W Micros	soft Word - ນາກໍ່ 1		
\min <u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> ools	T <u>a</u> ble <u>W</u> indow <u>H</u> elp
0 🗳	🗤 Undo Page Sel	tup Ctrl+Z	🖥 🛍 ダ 🗠 • 🗠 • 🍓 🏶 🖪 📰 🔜 🎫 🚜 🖾
Normal	0 <u>R</u> epeat Page S	ietup Ctrl+Y	- B <i>I</i> <u>U</u> ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ∉ ∉ [
	ι χ Cut	Ctrl+X	· 5 · 1 · 6 · 1 · 7 · 1 · 8 · 1 · 9 · 1 · 10 · 1 · 11 · 1 · 12 · 1 · 13 ·
	Ba Copy	Ctrl+C	
	🛍 Paste	Ctrl+V	
	Paste Special.		
1.	Paste as <u>H</u> yper	link	9 19497 1
<u>-</u>	Clear	Delete	
<u>-</u>	Select All	Ctrl+A	_)งต้นเกี่ยวกับ∙SPSS∙for∙Windows'

จะได้ตารางของการวิเคราะห์มาอยู่ใน Window ของ Microsoft Word ที่เราทำขณะนั้นโดยรูปแบบตารางจะ เป็น Object เหมือนกันใน SPSS Viewer

W Microso	oft Word - ı	บทที่ 1							
🜇 <u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>T</u> ools	T <u>a</u> ble <u>W</u> indov	v <u>H</u> elp					
🗋 🗅 🚔 🛛	8 8 0	k 🖤 🖞 ն 🐰	Þa 🛍 💅	×⊃ + C × +	🍓 😻 🖪 🖬	I 🔜 III 🚜 [
Normal	Normal → EucrosiaUPC → 26 → B I <u>U</u> E E E E E E E								
L 1 · · ·	<u>A. 1. 1. 1</u> .	1 • 2 • 1 • 3 • 1 • 4 •	1 • 5 • 1 • 6 •	1 • 7 • 1 • 8	9 10 .	• 11 • 12 • 1 • 1			
	ความ	รู้เบื้องต้นเก	าี่ยวกับ∙: _{Level of}	บทที่ SPSS f educatior	1¶ for·Windo	ws			
.						Cumulative			
4			Frequency	Percent	Valid Percent	Percent			
-	Valid	Under graduate	14	28.0	28.0	28.0			
u .		Graduate	22	44.0	44.0	72.0			
1-1		Post graduate	11	22.0	22.0	94.0			
س		Doctorate	3	6.0	6.0	100.0			
111		Total	50	100.0	100.0				

หมายเหตุ ในขั้นที่ 2. การเลือก Edit Copy จะเป็นการ Copy ในรูปแบบตารางที่เป็นของ Text เมื่อใช้คำสั่ง Edit / Paste ใน Word ผลที่ได้จะแตกต่างกันดังนี้

เมื่อ Copy ตารางมาได้แล้วจึงใช้ความ สามารถของ Microsoft Word ช่วยใน การจัดรูปแบบตารางให้สวยงาม ตัวอย่างเช่นในภาพ

					е		_			
W	licros	oft \	/ord - vn	ñ 1						
æ] <u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>I</u> ns	sert F <u>o</u> ri	mat <u>T</u> ools T <u>a</u> ble	<u>W</u> indow <u>H</u>	<u>l</u> elp			
) 🖻		<i>t</i>	💞 ក៏ថ្ង	🕼 🕺 🖬 🖬	l 💅 🗠	■ Cil +	😤 🏶 🚷	i 💀 📰 🛷 🖾] ¶
]] No	ormal			New Ro	oman + 10 +	B / U	≣≡		≣ 🖪 🗭 🚝 🛛	
L) - I - (2 • 1	$+1 \pm 1 \pm$	li e e e	+ + + 2 + + + 3	1 · 4 · 1 · (· · · 6	1 • 7 • 1 • 8	I · 9 · I · 10 · I · 11 II	1.1
-										
-						9	เทลี.	1¶		
1 • 1 • 1 • 1						٩	เทที่.	1¶		
				_	৬ শ	ใ ะส.	เทที่.	1¶		_
2 · 1 · 1 · 1 · 1 ·				ควา	ามรู้เบื้องเ	เ ต้นเกี่ย	ุ่มทที่∙ วกับ·	1¶ SPSS∙fo	or•Windows	¶
			avelof	ควา	ามรู้เบื้อง(ation¶	า ต้นเกี่ย	เทที่∙ วกับ∙	1¶ SPSS∙fo	or · Windows	¶
3 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		Le	evel of	ควา educ	ามรู้เบื้องเ ation¶	า ต้นเกี่ย Frequency	มทที่∙ วกับ∙ _{Percent} l	1¶ SPSS- fo	or Windows	¶
1 - 3 - 1 - 5 - 1 - 1 - 1 - 1 - 1 -		Le	evel of	ควา educ	ามรู้เบื้องเ ation¶ _{Under graduate}	ใ ต้นเกี่ย Frequency 14	มทที่· วกับ· Percent 28.0	1¶ SPSS- fo	Cumulative Percent	¶ s
4 1 3 1 1 2 1 1 1 1 1 1 1		Le	evel of	ควา educ	ามรู้เปื้อง(cation¶ ^{Under graduate} Graduate	โ ตั ้นเกี่ย Frequency 14 22	ุ่มทที่∙ วกับ∙ Percent 28.0 44.0	1¶ SPSS: fo Valid Percent 28.0 44.0	Cumulative Percent 22 00 72 00	¶ 3. 3.
1 4 1 3 1 1 2 1 1 1 1 1 1		Le	evel of	ควา educ	ามรู้เบื้อง(cation¶ Under graduate Graduate Post-graduate	โ ดั ้นเกี่ย Frequency 14 22 11	ุ่มทที่. วกับ. 28.0 44.0 22.0	1¶ SPSS- fo Valid Percent 28.0 44.0 22.0	Cumulative Percent 28.0 72.0 94.0	¶ 33, 33, 34,
5 4 1 4 1 3 3 1 2 3 1 1 1 1 1 1 1 1 1 1		Le	evel of	PJ educ Valid	ามรู้เบื้อง cation¶ Under graduate Post- graduate Doctorate	โ ดั นเกี่ย Frequency 14 22 11 3 3)ทที่ . วกับ. 28.0 44.0 22.0 6.0	1¶ SPSS- fo 280 44.0 22.0 6.0	Cumulative Percent 28.0 72.0 94.0 100.0	3, 3, 3, 3 3, 3, 3, 3, 4 3, 3, 3, 3, 4 3, 3, 3, 4 3, 4

ในกรณีที่ต้องการรูปกราฟควรใช้ Copy Objects จาก SPSS Viewer แล้วมา Paste ใน Microsoft Word ตัวอย่างเช่น Witcrosoft Word - บทกิ 1

2. การนำข้อมูลจากตารางของ Word ไปเป็นข้อมูลของ SPSS

เราสามารถนำข้อมูลจากตารางของ Word ไปเป็นข้อมูลของ SPSS ได้ตามขั้นตอนดังนี้ ตัวอย่างเช่นเราต้องการหา อายุเฉลี่ย น้ำหนัก เฉลี่ย และรายได้เฉลี่ย ของคน 5 คนจากตารางใน Word

ขั้นที่ 1. เลือกข้อมูลจากตารางของ Word

แล้	ัวกด (Ctrl + C	(ทำ	การ Coj	py)
1	W Micro	soft Word -	Docume	nt2	
	Eile	<u>E</u> dit <u>V</u> iew	Insert F	<u>o</u> rmat <u>T</u> ools	T <u>a</u> ble <u>W</u> ind∘
	🗅 🗀	: 🖬 🎒 🛙	🗟 🚏 ก็	3 🕰 🐰	🖻 🛍 ダ
-	Normal	• E	ucrosiaUP	C + 14	• B /
[L 1 · ·	K. j. e M	1 • 2 •	· 3 · 1 · 4	1 + 5 + 1 + 1
	_				
	-				
	:	เลขที่ ^เ	อามุต	น้ำหนัก¤	รายได้¤
		10	20¤	65 ⁰	15000¤
	Ē	20	230	56 ⁰	27000¤
	÷	30	25 ⁰	4 7 ⁰	18000Ö
	n l	40	360	850	17500Ö
	<u>.</u>	5 ⁰	270	58 ⁰	19500¤
	_				

จะได้จอภาพใน SPSS Data Editor เป็นดังนี้

W Micros	oft Word -	Docume	nt2		
\min <u>F</u> ile	<u>E</u> dit <u>V</u> iew	Insert F	<u>o</u> rmat <u>T</u> ools	T <u>a</u> ble y	<u>//</u> indov
0 🖻	86	🗟 🚏 h	3 📭 🕺	Þa 🛍	%
Normal	• E	ucrosiaUP	C + 14	+ - B	I
L 1 · · ·	<u>Z· ! · 1</u> ·	1 • 2 • 1	- 3 - 1 - 4 -	1 . 5 . 1	· 6 ·
-					
12	เลขที¤	ang¤	บำหบัก¤	รายได	ía c
- 	10	20¤	65 ⁰	1500	0¤ C
1.	20	23¤	56 ⁰	2700	0¤ C
	30	25 ⁰	4 7 ⁰	1800	o¤ c
. m	40	36 ⁰	85 ⁰	1750	o¤ c

ขั้นที่ 2. ไปที่ SPSS Data Editor

เลือกเมนู File / New / Data และ คลิก Data

🛗 example4 - SPSS Data Editor										
<u>File E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>I</u>							
New	Þ	D <u>a</u> ta								
<u>O</u> pen	•	<u>S</u> yntax								
Open Data <u>b</u> ase	•	<u>O</u> utput								
<u>R</u> ead Text Data		Draft	Draft Output							
Save	Chi+S	Script								

💷 U	Intitle	d - SP9	6S Da	ta Editor						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp	
Ē		e	i 10		ي ا	#4 ·		⊞ ⊕ F	5	<u>ø</u>
1:										
		٧ð	r	var	Vā	ar	Var	Vá	ar	var
	1									
	2									

ขั้นที่ 3. กด Ctrl+V เพื่อเอาข้อมูลที่เรา Copy มาจาก Word วางลงใน SPSS

🛗 Untitle	d - SPSS Da	ta Editor					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze <u>G</u> raph	ıs <u>U</u> tilities <u>W</u>	(indow <u>H</u> elp		
1: var0000	01	1					
	var00001	var00002	var00003	var00004	var	var	
1	1.00	20.00	65.00	15000.00			
2	2.00	23.00	56.00	27000.00			
3	3.00	25.00	47.00	18000.00			
4	4.00	36.00	85.00	17500.00			
5	5.00	27.00	58.00	19500.00			

ขั้นที่ 4. เปลี่ยนชื่อตัวแปรใน Variable View ให้เหมาะสมกับข้อมูล

I	🛗 Untitled - SPSS Data Editor										
	<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	Analyze	<u>G</u> raphs <u>U</u>	tilities	<u>₩</u> indow	<u>Η</u> ε		
	🖻 🖬 🎒 🔍 🗠				⊨ [?	鱼性	ř	≣∣₫	ĸ		
			Name	Туре		Width		Decimals			
		1	id	Numeric	4		0				
		2	age	Numeric	4		0				
		3	weight	Numeric	8		2				
		4	income	Numeric	8		2				

e 4			n	¥	പ് പ്
กลบมาท่	Data	View	จะเ	ดผล	ดงน

-									
📺 Untitled - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	unalyze <u>G</u> raph	ns <u>U</u> tilities <u>W</u>					
28	🛎 🗐 🖳 🖂 🔚 🖗 📲 🏥 🗏								
1 : id		1							
	id	age	weight	income					
1	1	20	65.00	15000.00					
2	2	23	56.00	27000.00					
3	3	25	47.00	18000.00					
4	4	36	85.00	17500.00					
5	5	27	58.00	19500.00					

ขั้นที่ 5. วิเคราะห์ข้อมูลหาค่าเฉลี่ยของ age, weight และ income

Cutput1 example4 for app2 - SPSS Viewer								
<u>File E</u> dit <u>V</u> iew Insert F	<u>File E</u> dit <u>V</u> iew Insert Format <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
- 1								
Cutput Descriptives Title Notes Descriptive Sta	E Output Descriptives Title Descriptive St Descriptive St							
			Descriptive	e Statistics				
						Std.		
		N	Minimum	Maximum	Mean	Deviation		
	AGE	5	20	36	26.20	6.06		
	WEIGHT	5	47.00	85.00	62.2000	14.2724		
	INCOME	5	15000.00	27000.00	19400.0000	4546.9770		
	Valid N (listwise)	5						

ขั้นที่ 6. Copy ตารางจาก SPSS Viewer ด้วยคำสั่ง Copy Objects ที่วิเคราะห์ได้มาไว้ที่ Microsoft Word จะได้ผลดังนี้

3. การนำข้อมูล Data จาก SPSS Data Editor มาทำงานที่ Microsoft Word

การนำข้อมูลที่เป็น Data จาก SPSS Data Editor มาที่ Word ทำได้ดังนี้

จากแฟ้มข้อมูล example4.sav ใน SPSS Data Editor

	<u>File Edit ⊻iew D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
[]1:id									
id sex age educ status income grade bo	nus								
1 1 Male 37 Graduate Divorce 5500 3.78 1:	1000.00								
2 2 Female 29 Post graduate Single 4100 3.89 12	2300.00								
3 3 Female 48 Under graduate Married 5400 3.67 2:	1600.00								
4 4 Male 99 Under graduate Married 9999 2.78 19	9998.00								
5 5 Female 33 Graduate 9 9999 3.00 29	9997.00								

File	jile <u>E</u> dit <u>V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
2	Fee s va b h h h h h h								
1 : id	l: id 1								
		id	sex	age	educ	status	income	grade	bonus
	1	1	Male	37	Graduate	Divorce	5500	3.78	11000.00
	2	2	Female	29	Post graduate	Single	4100	3.89	12300.00
	3	3	Female	48	Under graduate	Married	5400	3.67	21600.00
	4	4	Male	99	Under graduate	Married	9999	2.78	19998.00
	5	5	Female	33	Graduate	9	9999	3.00	29997.00
	6	6	Female	45	Post graduate	Divorce	8300	3.45	16600.00
	7	7	Female	38	Under graduate	Divorce	7700	3.89	7700.00

ขั้นที่ 2. กด Ctrl + C เพื่อ Copy

หรือใช้คำสั่ง Edit / Copy

ขั้นที่ 3. ไปที่โปรแกรม Microsoft Word

ขั้นที่ 4. แล้วกด Ctrl + V เพื่อเอาข้อมูลที่ Copy

ไว้มาทำงานต่อใน Microsoft Word

ขั้นที่ 5. หากต้องการใช้ข้อมูลในรูปแบบตาราง ให้ใช้ความสามารถของ Microsoft Word โดยใช้คำสั่ง Convert Texts to Table

W Microsoft Word - Document3 🕙 <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>I</u>nsert F<u>o</u>rmat <u>T</u>ools T<u>a</u>ble <u>W</u>indow <u>H</u>elp 🗅 🚔 🖬 🎒 🔃 🌾 👫 🐚 👗 🐚 🛍 💅 🗠 - 여 - 1 🍓 🏶 🖽 🗄 • Times New Roman • 12 • **B** *I* <u>U</u> ≡ ≡ ≡ ⊞ Normal L 1 · · · Z · · · 1 · · · 2 · · · 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · ---
 10
 Male0
 370
 Graduate0
 Divorce0

 20
 Female0
 290
 Post-graduate0
 Single0
 Divorcea 5500a a 8 - 1 - 2 - 1 - 1 - 1 -4100a a
 30
 Female0
 480
 Under graduate0
 Married0
 54000
 0

 40
 Male0
 990
 Under graduate0
 Married0
 99990
 0
 50 Femaleo 330 Graduateo 90 9999a a 60 Femaleo 450 Post-graduateo Divorceo 83000 o

ภาคผนวกที่ 3 การเชื่อมโยงข้อมูล SPSS for Windows กับ Excel

เนื่องจากโปรแกรม Excel เป็นโปรแกรมที่มีผู้นิยมใช้กันมากและอาจเก็บข้อมูลที่ต้องการวิเคราะห์ใน รูปแบบของ Excel Sheet และถึงแม้ว่าโปรแกรม Excel จะมีความสามารถในการวิเคราะห์ข้อมูลทางด้านสถิติ แต่ถ้าเราสามารถเชื่อมโยง ข้อมูลและผลลัพธ์การวิเคราะห์ข้อมูล ระหว่าง SPSS for Windows กับ Excel ได้ก็ จะเป็นประโยชน์อย่างมากในการทำงาน

1. การนำข้อมูลจาก Excel ไปเป็นข้อมูลของ SPSS for Windows

ข้อมูลทางสถิติเราสามารถนำข้อมูลที่สร้างไว้ด้วยโปรแกรม Excel มาวิเคราะห์ ด้วย SPSS for Windows ได้ ตัวอย่างเช่น เรามีข้อมูลใน Excel ดังนี้ เราต้องการนำข้อมูลจาก Excel ไปวิเคราะห์ที่ SPSS

ขั้นที่ 1. เลือกบริเวณที่ต้องการ Copy ใน Excel

<u> </u>	A MICIOSOIT EXCEL - appo datao								
	<u>181 File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>I</u> ool								
D	🛩 🖬 (S 🔍 🖤	កឹ 🙆 🐰						
] Co	Cordia New - 14 - B								
	E9	<u> </u>	=						
	А	в	с						
1	25	65	12000						
2	23	70	23000						
3	23	54	25000						
4	19	52	15500						
5	26	63	17500						

คลิกที่ Data จะได้จอภาพเป็น

Bź

С

1200

2300

2500

1550

1750

В

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp	
P		9	u	CH E	‱	鱼	tin	= 1	<u>s</u> 🔊	0
1:										
		Va	ar	var	Va	ar	Var	Va	ar	Var
	1									
	2									

ขั้นที่ 4. กด Ctrl + V เพื่อนำข้อมูลที่ Copy มาจาก Excel วางลงในตารางของ SPSS

🌐 Untitled - SPSS Data Editor							
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	ynalyze <u>G</u> raph				
🖆 🗐 🖳 🖂 🛄 🎽 🦓							
1: var0000	01	25					
	var00001	var00002	var00003				
1	25.00	65.00	12000.00				
2	23.00	70.00	23000.00				
3	23.00	54.00	25000.00				
4	19.00	52.00	15500.00				
5	26.00	63.00	17500.00				

คลิก Variable View

	🗊 Untitled - SPSS Data Editor								
Ei	<u>File Edit V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
	29] 19] 19] 19] 19] 19] 19] 19] 19] 19] 1								
	Name Type			Width	Decimals	Label	Values	Missing	
	1	var00001	Numeric	8 2			None	None	
	2	2 var00002 Numeric		8 2			None	None	
	3 var00003 Numeric			8	2		None	None	

ง้า ส่ ขับที	5	เปลี่ยบชื่อตัวแปรตาบความแหมาะสบ
ขนท	5.	เกิดถูกมอด าแกวด เทค า เทเมท เริยท

คลิก Data View เพื่อกลับจอภาพของ Data จะได้ผลบนจอภาพดังนี้

🛅 Untitle	🛗 Untitled - SPSS Data Editor								
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Anal	yze	<u>G</u> raphs	<u>U</u> tili	ties	$\underline{W} indow$	<u>H</u> e
E							•		
	Name	Туре			Width			Decimals	
1	age	Numeric		8			0		
2	weight	Numeric		4			2		
3	income	Numeric		9			2		

🎬 Untitled - SPSS Data Editor								
<u>File E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u>	<u>inalyze G</u> raph:					
1:age		25						
	age	weight	income					
1	25	65.00	12000.00					
2	23	70.00	23000.00					
3	23	54.00	25000.00					
4	19	52.00	15500.00					
5	26	63.00	17500.00					

ขั้นที่ 6. วิเคราะห์ข้อมูลเพื่อหาค่าเฉลี่ยของทุกตัวแปร

<mark>評 Output1 - SPSS Viewer</mark> File Edit View Insert Format Analyze Graphs Utilities Window <u>H</u> elp										
4 H H H H H H H H H H H H H H H H H H H										
Cutput)escriptives		Descriptive	Statistics					
→ Cin Notes			N	Minimum	Maximum	Mean	Std. Deviation			
	+	AGE	5	19	26	23.20	2.68			
		WEIGHT	5	52.00	70.00	60.8000	7.5961			
		INCOME	5	12000.00	25000.00	18600.0000	5354.9043			
		Valid N (listwise)	5							

2. การนำผลการวิเคราะห์ข้อมูลของ SPSS กลับไปที่ Excel

ขั้นที่ 1. จากจอภาพใน SPSS Viewer ไปที่ตารางที่ต้องการ แล้วกดดับเบิลคลิก

🚏 Output1 - SPSS '	Viewer									
<u>File E</u> dit <u>V</u> iew <u>I</u> ns	sert <u>P</u> iv	vot	F <u>o</u> rmat	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow <u>I</u>	<u>H</u> elp		
Output	/es		Des	cripti	ves					
Title	s						Descriptiv	e Statistics		
Descr	riptive									Std.
						N	Minimum	Maximum	Mean	Deviation
		+	AGE			5	19	26	23.20	2.68
			WE	(GHT		5	52.00	70.00	60.8000	7.5961
			INC	OME		5	12000.00	25000.00	18600.0000	5354.9043
			Vali	d N (listv	wise)	5				
				·····				·····		

ขั้นที่ 2. เลือกเมนู Edit / Select / Table หรือกด Ctrl + A

จะได้ผลที่ตารางที่เลือกไว้เป็นดังนี้

🔒 Output1 - SPSS Viewer						
<u>File Edit V</u> iew Insert <u>P</u> ivot F	ormat <u>Analyze</u> <u>G</u> raphs	: <u>U</u> tilities	<u>W</u> indow	<u>H</u> elp		
Output Descriptives	Descriptives					
Title			Descriptiv	ve Statistics		
Le Descriptive		N	Minimum	Maximum	Mean	Std. Deviation
→	AGE	5	19	26	23.20	2.68
	WEIGHT	5	52.00	70.00	60.8000	7.5961
	INCOME	5	12000.00	25000.00	18600.0000	5354.9043
	Valid N (listwise)	5				

ขั้นที่ 3. กด Ctrl + C เพื่อ Copy ตาราง

1 Eile Edit View Insert Format Tools Data Window Help 🗅 😅 🔚 🎒 🖪 🏷 👫 🛍 👗 ங 🋍 💅 🗠 - 여 -토 콩 퀵 비 영 혐 Cordia New - 14 -B *I* U E1 в С D Е F А 65 1 25 12000 2 23 70 23000

ขั้นที่ 5. คลิกคำสั่ง Edit / Paste จะได้ผลบนจอภาพ Excel เป็นดังนี้

\mathbf{X}	🗙 Microsoft Excel - app3 data3											
1	🖹 Eile Edit View Insert Format Iools Data Window Help											
] [□ 🖆 🖬 🖨 🖪 ♥ Å ⁰ ₩ ↓ 🖻 🛍 🚿 ⊨ - · · · 😪 ♥ Σ & 2↓ X↓ 🛍 🔮 🖑 100% - Ø											
c	ordia New	→ 1	4 • B	<u>v</u> <u>u</u> ≣			ş%,	*.0 .00 €	e ::	• 🕭 • <u>A</u> •		
	E1	<u> </u>	 Descriptive 	e Statistics								
	A	в	С	D	E	F	G	н	I	J		
1	25	65	12000		Descriptive	Statistics						
2	23	70	23000			N	Minimum	Maximum	Mean	Std. Deviation		
3	23	54	25000		AGE	5	19	26	23.2	2.683282		
4	19	52	15500		WEIGHT	5	52	70	60.8	7.596052		
5	26	63	17500		INCOME	5	12000	25000	18600	5354.904		
6					Valid N (list	5						
7												

3. การนำข้อมูลแบบ String และ Number จาก Excel ไปไว้ที่ SPSS for Windows

ขั้นที่ 1. สร้างตัวอย่างข้อมูลที่ Excel เป็นดังนี้

จากข้อมูลใน Excel ที่มีทั้ง String และ Numerics การนำข้อมูลจาก Excel ไปที่ SPSS for Windows

เราต้องเตรียมตัวแปรที่ SPSS ให้เหมาะสมกับตัวแปร

ทั้นที่ 2. ไปที่ SPSS Data Editor

a d

คลิกที่ Variable View

🛗 Untitle	🎬 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	lyze <u>G</u> raphs <u>U</u> til	ities <u>W</u> indow <u>H</u> ≀	elp						
e	▰▤▰▰▻▫▫◾◾◗▰◗▰ֿװּ										
	Name Type Width Decimals Label										
1											

🕙 <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>I</u>nsert F<u>o</u>rmat <u>T</u>ools <u>D</u>ata <u>W</u>indow <u>H</u> 🗅 🚅 📕 🎒 🖪 🦈 👭 🕼 🗼 🖷 🛍 💅 🗠 Cordia New - 14 -BIUEE3 111 А в С D Е F 1 id name sex age weight income 2 1 Miss.Somsri 25 65 12000 Female 2 Mr. Somchai 3 70 23000 Male 23 3 Miss. Somsamorn Female 23 54 25000 4 4 Mr. Somsit 19 52 15500 Female 5 Mr Sombat 17500 26 63 Male

ขั้นที่ 3. กำหนดตัวแปรให้ เหมาะสมกับข้อมูล เช่นชื่ออาจต้องกำหนดความกว้าง

width = 20

🛅 Untitle	ed - SPSS Da	ita Editor			
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs <u>U</u> tili	ities <u>W</u> indow <u>H</u> ∉	elp
2	a 🛒 🗠	o 💷 🏪	I ? <u>M</u> <u>F</u>	1 <u>84</u> 5	<u>s</u>
	Name	Туре	Width	Decimals	Label
1	id	Numeric	4	0	
2	name	String	20	0	
3	sex	String	6	0	
4	age	Numeric	4	0	
5	weight	Numeric	6	2	
6	income	Numeric	8	2	

X Microsoft Excel

ขั้นที่ 4. คลิก Data View

🛅 U	🛗 Untitled - SPSS Data Editor												
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> rap	ihs <u>U</u> tilitie:	s <u>1</u>	<u>W</u> indow	<u>H</u> elp	ı		
Ê		a 🖪	i 🔊		يا 🗠	M	<u> </u>		∎∣∰∣	1	<u>s</u>		
1 : id													
		id	1	na	ame		sex		age		weight	:	income
	1												

ขั้นที่ 5. เพื่อง่ายต่อความเข้าใจขอให้ทำการ

Copy ตัวแปรครั้งละตัวจาก Excel มา Paste ที่ SPSS

ขั้นที่ 5.1 Copy ที่ column ของตัวแปร id ดูจากที่แรงงา

ใน Excel

ขั้นที่ 5.2 ไปที่ SPSS Data Editor

เลื่อนเมาส์ไปที่ตำแหน่งค่าสังเกตแรกของตัวแปร id

ใช้คำสั่ง Edit / Paste

จะได้ผลบนจอภาพดังนี้

1 File Edit View Insert Format Tools Data Window 🗅 🗲 📕 🚑 🖪 🖤 📅 🐚 👗 ங 🛍 💅 🗠 Cordia New B / 14 U≣≣≣ A в С D Е F 1 id name sex age weight income 2 1 Miss.Somsri 12000 Female 25 65 з Mr. Somchai 2 Male 23 70 23000 25000 Miss. Somsamorn Female 23 54 5 Somsit 15500 Female 19 52 6 17500 Mr. Sombat Male 26 63

The Han	There are	Transform Unaffee Tra	<u>-</u>	TT man Trade	·	
2	a 🔍 🗠) 🖂 🔙 🔚 🧖 🏘		= 1 1 1	<u>s</u>	
1 : id		1				
	id	name	sex	age	weight	income
1	1					
2	2			,		
3	3			,		
4	4					
5	5					

🛅 Untitled - SPSS Data Editor

หมายเหตุ ข้อมูลประเภทเดียวกันเราสามารถ Copy พร้อมกันจาก Excel แล้วมา Paste ที่ SPSS ได้

ขั้นที่ 5.3 กลับไปที่ Excel

Copy ที่ข้อมูลตัวแปร name และ sex ดูจากที่แรเงา

ขั้นที่ 5.4 ไปที่ SPSS Data Editor

เลื่อนเมาส์ไปที่ตำแหน่งค่าสังเกตแรกของตัวแปร name

ใช้คำสั่ง Edit / Paste จะได้ผลบนจอภาพดังนี้

🛅 U	Intitle	d - SPSS Da	ta Editor							
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nalyze <u>G</u> ra	phs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp					
Ê		a 🖳 🗠	0 🖂 🔚 🤚 🏘			<u>s</u>				
1:n	ame	e Miss.Somsri								
		id	name	sex	age	weight	income			
	1	1	Miss.Somsri	Female						
	2	2	Mr. Somchai	Male						
	3	3	Miss. Somsamorn	Female						
	4	4	Mr. Somsit	Female						
	5	5	Mr. Sombat	Male						
	_									

×	🗙 Microsoft Excel - app3 data										
8	<u> </u>	e <u>E</u> dit <u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat	Tools	<u>D</u> ata N	<u>M</u> indow <u>⊢</u>					
]		¥ 🖬 🎒 🖪 🖤	កីវី ն	*	Þa 🛍	💅 😰					
Co	rdia	New 👻	14 - 1	B <i>I</i>	U	F = 3					
	E	32 🗾	= Miss.9	Somsri	-						
	A	В	C	D	Е	F					
1	id	name	sex	age	weight	income					
2	1	Miss.Somsri	Female	25	65	12000					
3	2	Mr. Somchai	Male	23	70	23000					
4	3	Miss. Somsamorn	Female	23	54	25000					
5	4	Mr. Somsit	Female	19	52	15500					
6	5	Mr. Sombat	Male	26	63	17500					

ขั้นที่ 5.5 กลับไปที่ Excel

Copy ที่ข้อมูลของตัวแปร age, weight, income ดูจากที่แรเงา

ขั้นที่ 5.6 ไปที่ SPSS Data Editor

เลื่อนเมาส์ไปที่ตำแหน่งค่าสังเกตแรกของตัวแปร age

ใช้คำสั่ง Edit / Paste จะได้ผลบนจอภาพดังนี้

🛗 Untitle	🛗 Untitled - SPSS Data Editor										
<u>F</u> ile <u>E</u> dit	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
	≥ ∎∰ <u>≈</u> <u>~</u> <u>~</u> <u>~</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u>										
1: age	1:age 25										
	id	name	sex	age	weight	income					
1	1	Miss.Somsri	Female	25	65.00	12000.00					
2	2	Mr. Somchai	Male	23	70.00	23000.00					
3	3	Miss. Somsamorn	Female	23	54.00	25000.00					
4	4	Mr. Somsit	Female	19	52.00	15500.00					
5	5	Mr. Sombat	Male	26	63.00	17500.00					

ขณะนี้เรามีข้อมูลที่พร้อมจะวิเคราะห์ข้อมูลด้วย SPSS แล้ว

4. การนำข้อมูลจาก SPSS for Windows ไปไว้ที่ Excel

จากจอภาพ SPSS Data Editor

🛅 ехатр	🛗 example4.sav - SPSS Data Editor									
<u>F</u> ile <u>E</u> dit	<u>File Edit View D</u> ata Iransform Analyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp									
	ERS NA LE A TÈ BAR VO									
1:10	1: Id									
	id	sex	age	educ	status	income	grade	bonus		
1	1	Male	37	Graduate	Divorce	5500	3.78	11000.00		
2	2	Female	29	Post graduate	Single	4100	3.89	12300.00		
3 3 Female 48 Under graduate Married 5400 3.67 21600.00										
4	4	Male	99	Under graduate	Married	9999	2.78	19998.00		

X H	licr	osoft Excel - app3	data							
<u> File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> ∉										
🗅 😅 🖬 🚑 🗟 🖤 📅 ն 👗 ங 🋍 💅 🗠										
Cordia New - 14 - B Z <u>U</u>] ≣ Ξ Ξ										
	D2 _ = 25									
	A	В	С	D	E	F				
1	id	name	sex	age	weight	income				
2	1	Miss.Somsri	Female	25	65	12000				
3	2	Mr. Somchai	Male	23	70	23000				
4	3	Miss. Somsamorn	Female	23	54	25000				
5	4	Mr. Somsit	Female	19	52	15500				
6	5	Mr. Sombat	Male	26	63	17500				

ขั้นที่ 1. เลือกบริเวณที่ ต้องการใน SPSS

🎬 example4 - SPSS Data Editor									
<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp									
2									
1 : id	1: id 1								
	id	sex	age	educ	status	income	grade	bonus	
1	1	Male	37	Graduate	Divorce	5500	3.78	11000.00	
2	2	Female	29	Post graduate	Single	4100	3.89	12300.00	
3	3	Female	48	Under graduate	Married	5400	3.67	21600.00	
4	4	Male	99	Under graduate	Married	9999	2.78	19998.00	
5	5	Female	33	Graduate	9	9999	3.00	29997.00	
6	6	Female	45	Post graduate	Divorce	8300	3.45	16600.00	

ขั้นที่ 2. ไปที่ Excel เลือกตำแหน่งที่ต้องการ Paste ข้อมูลที่ Copy มาจาก SPSS เช่นเลือกตำแหน่ง Cell A1

X Microsoft Excel - Book3								
] 11 Eile Edit ⊻iew Insert Format Iools Data Window Help								
D	🖻 🚽	a 🗸 🖗	ក៏ 🙆 🖁	: 🖻 🛍 🖞	💕 🗠 🗸 🖉	a - 😫 🍳	Σ <i>f</i> *	2 ↓ X↓ 🛍
Co	rdia New	• 1	4 - B	<u>I</u> <u>U</u> ≣			ş%,	*.0 .00 €
	A1	<u> </u>	-					
	A	в	с	D	E	F	G	н
1]						
2								

ขั้นที่ 3. คลิกคำสั่ง Edit / Paste จะได้ผลดังนี้

X Microsoft Excel - Book3 Microsoft Excel -							
Cordia New • 14 • B I U ≡ ≡ ≡ ≣ ⊠ ⊠ %,							
	A	<u>▼</u> =	C C	D	E	F	G
1	1	Male	37	Graduate	Divorce	5500	3.78
2	2	Female	29	Post gradu	Single	4100	3.89
3	3	Female	48	Under grad	Married	5400	3.67
4	4	Male	99	Under grad	Married	9999	2.78
5	5	Female	33	Graduate	9	9999	3

จัดรูปแบบให้สวยงามด้วยความสามารถของ Excel ตัวอย่างเช่น

XM	licrosof	t Excel - Bo	ook3							
1	Minimit Edit View Insert Format Iools Data Window Help									
	D 🚅 🔲 🎒 🕼 🖤 📅 🕼 👗 🛍 🛍 💅 🗠 - α - 🍓 🏶 Σ 🐅 🛃									
Co	rdia New	,	- 14	• B / U 🗐		i 🖬 🦻	% , <u>.</u>			
	18	<u> </u>	=							
	А	в	С	D	E	F	G			
1	1	Male	37	Graduate	Divorce	5500	3.78			
2	2	Female	29	Post graduate	Single	4100	3.89			
3	3	Female	48	Under graduate	Married	5400	3.67			
4	4	Male	99	Under graduate	Married	9999	2.78			
5	5	Female	33	Graduate	9	9999	3			

ภาคผนวกที่ 4 SPSS Syntax Editor กับ โปรแกรมภาษา SPSS

โปรแกรมภาษา SPSS เป็นเรื่องที่มีประโยชน์มากสำหรับการวิเคราะห์ข้อมูลที่มีขั้นตอนการสั่งงานหลาย ขั้นตอน หรือ การทำงานที่ต้องมีการทำอยู่เป็นประจำเช่น การตรวจสอบมาตรฐานสินค้า การวิเคราะห์คะแนน สอบ วิเคราะห์ยอดการขายสินค้า ฯลฯ งานต่าง ๆ เหล่านี้เราสามารถนำโปรแกรม Syntax ของ SPSS มาช่วยใน การทำงานได้ นอกจากนั้นในบางหน่วยงานอาจจะมีโปรแกรมภาษา SPSS ที่ยังมีความจำเป็นที่จะต้องใช้งาน และต้องการผู้ที่ใช้โปรแกรมภาษา SPSS เหล่านี้เป็น

1. การบันทึกคำสั่งต่าง ๆ ของการวิเคราะห์ข้อมูลเป็น Syntax

ใน SPSS รุ่นแรกๆ เช่น SPSS/PC version 3 ผู้ที่จะวิเคราะห์ข้อมูลด้วย SPSS ต้องเขียนโปรแกรม ภาษา SPSS ได้บางพอสมควร แต่ในปัจจุบันเราสามารถสั่งให้ SPSS ทำการบันทึกคำสั่งต่างๆ ที่เราสั่งให้ โปรแกรม Syntax แล้วพิมพ์ไว้ที่ SPSS Syntax Editor ตัวอย่างเช่นการบันทึกคำสั่งการวิเคราะห์ของตัวแปร

age ในข้อมูลของแฟ้ม example4.sav เป็น Syntax ขั้นที่ 1. เปิดแฟ้ม example4.sav คลิกเมาส์ที่ Analyze บนเมนูบาร์จอภาพจะเป็นดังนี้

และ คลิก <u>D</u>escriptive Statistics จอภาพเป็นดังนี้

ขั้นที่ 2. คลิก Descriptives จะได้เมนูย่อย หมายเหตุ

- 1. เครื่องหมายแสดงชนิดตัวแปรว่าเป็นข้อมูลตัวเลข
- ตัวแปรที่มี Value Labels จะแสดงค่า Value Label เช่นตัวแปร educ

ขั้นที่ 3. การเลือกตัวแปร age เพื่อทำการคำนวณ ให้นำเมาส์ไปคลิกที่ตัวแปร age

แล้วคลิกที่ปุ่ม **โ** เพื่อย้ายตัวแปร age ไปทางขวา บนจอภาพจะกลายเป็น

หมายเหตุ ถ้าเราคลิก OK ขณะนี้โปรแกรม SPSS จะทำการวิเคราะห์ข้อมูลให้ทันที แต่ถ้าเราต้องการขั้นตอนที่เราสั่งมาทั้งหมดบันทึกเป็น Syntax ให้ทำดังนี้

б

📓 Syntax1 - SPSS Syntax Editor

DESCRIPTIVES

Eile <u>E</u>dit <u>V</u>iew <u>A</u>nalyze <u>G</u>raphs <u>U</u>tilities <u>R</u>un <u>W</u>indow

International States St

=== • • <u>== •</u> • • • • • •

ขั้นที่ 4. คลิกปุ่ม Paste บนเมนูย่อย Descriptives บนจอภาพจะมี Window ของ SPSS Syntax Editor และโปรแกรมภาษา SPSS ชนิดหนึ่งที่เรียกว่า Syntax ปรากฏอยู่

ข้อสังเกต

1. เป็นผลมาจากการคลิกคำสั่ง Analyze / Descriptive Statistics / Descriptives จากขั้นที่ 1.

2. เป็นผลมาจากการเลือกตัวแปร age มาวิเคราะห์จากขั้นที่ 2.

3. เป็นผลมาจากค่า Default ที่ SPSS กำหนดให้

4. มาจากรูปแบบภาษาของ Syntax ที่กำหนดว่า VARIABLES, STATISTICS เป็นคำสั่งย่อยของชุดคำสั่ง DESCRIPTIVES ต้องมีการขั้นด้วยเครื่องหมาย /

5. มาจากรูปแบบภาษาของ Syntax ที่กำหนดว่าเมื่อจบชุดคำสั่งต้องลงท้ายด้วยเครื่องหมาย .

ความหมายทางด้านโปรแกรม SPSS

DESCRIPTIVES

วิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptives

VARIABLES=age

เลือกตัวแปร age มาทำการวิเคราะห์

/STATISTICS=MEAN STDDEV MIN MAX .

้คำนวณค่าสถิติตามที่กำหนดคือ ค่าเฉลี่ย (MEAN) ส่วนเบี่ยงเบนมาตรฐาน (STDDEV) ค่าต่ำสุด (MIN)

ค่าสูงสุด (MAX)

2. การสั่งให้โปรแกรม Syntax ทำงาน

ขั้นที่ 4. สั่งให้โปรแกรม Syntax ทำงาน

คลิกคำสัง	Run	/	All	

จะได้ผลการคำนวณดังนี้

T Output1 - SPSS Viewer									
<u>File E</u> dit <u>V</u> iew Insert F	ormat 🥖	∖nalyze <u>G</u> raph:	s <u>U</u> tilities <u>W</u>	indow <u>H</u> elp					
2 3 4 4 4 4 4 4 4 4 4 4									
I <mark>E</mark> Output È <mark>E</mark> Descriptives IIIIe	1	Descripti	ves	Descriptive	Statistics				
→ Canal Descriptive Sta	 		N	Minimum	Maximum	Mean	Std. Deviation		
	`	AGE	48	21	56	37.94	9.55		
		Valid N (listwise)	48						

DESCRIPTIVES

VARIABLES=age

🙀 Syntax app4 - SPSS Syntax Editor

🛎 🖬 🔿 💷 🔚 🕅 🖊 🗖

/STATISTICS=MEAN STDDEV MI

<u>File E</u>dit <u>V</u>iew <u>A</u>nalyze <u>G</u>raphs <u>U</u>tilities <u>R</u>un <u>W</u>indow <u>H</u>elp

All

Current Chil+B

<u>T</u>o End

เมื่อเราวิเคราะห์เพิ่มเติมด้วย

คำสั่ง Analyze / Descriptive Statistics / Frequencies

 		Varia	ble(s): e	 	ок
Level of education [edu					<u>P</u> aste
🗰 status 🚸 income					Rese
(₩) grade (₩) bonus					Cance
		I			Help
✓ <u>D</u> isplay frequency tables					
	<u>S</u> tatistics	s	<u>C</u> harts	<u>F</u> ormat	

และเลือกคำนวณค่าสถิติเพิ่มเติมดังนี้

เมื่อคลิก Paste ที่เมนย่อย

โปรแกรม SPSS จะนำขั้นตอนต่าง ๆ

ที่เราสั่งไว้ล่าสุดไปพิมพ์ต่อใน SPSS Syntax Editor

ผลของโปรแกรมที่ได้ใน SPSS Syntax Editor เป็นดังนี้

ความหมายทางด้านโปรแกรม SPSS

FREQUENCIES

วิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics / Frequencies

VARIABLES=status

เลือกตัวแปร status มาทำการแจกแจงความถึ่

/NTILES= 4

สั่งให้คำนวณค่าควอไทล์ที่ 1, 2 และ 3

/NTILES= 10

สั่งให้คำนวณค่าเปอร์เซ็นต์ไทล์ที่ 10, 20, 30, ... , 80, 90

/STATISTICS=STDDEV VARIANCE RANGE MINIMUM MAXIMUM SEMEAN MEAN MEDIAN MODE

สั่งให้คำนวณค่าสถิติต่าง ๆ เช่น ส่วนเบี่ยงเบนมาตรฐาน(STDDEV) ความแปรปรวน(VARIANCE) พิสัย (RANGE) ค่าต่ำสุด(MINIMUM) ค่าสูงสุด(MAXIMUM) Standard Error Mean(SEMEAN) ค่าเฉลี่ย (MEAN) มัธยฐาน(MEDIAN) ฐานนิยม(MODE)

📓 Syntax app4 - SPSS Syntax Editor

<u>File Edit View Analyze Graphs Utilities Run Windo</u>

3. การสั่งให้บางส่วนของโปรแกรม Syntax ทำงาน

ขั้นที่ 1. เลื่อนเมาส์ Pointer มาที่คำสั่ง FREQUNCIES

4. การแก้ไขบางส่วนของโปรแกรม Syntax

จากโปรแกรม Syntax เดิมเราสามารถเพิ่มเติมและแก้ไขคำสั่งได้ตัวอย่างเช่น จากโปรแกรม

ตัวอย่างการแก้ไขเช่น

- 1. เพิ่มตัวแปรของการวิเคราะห์ของคำสั่ง DESCRIPTIVES อีก 1 ตัวคือตัวแปร income
- 2. คำนวณค่าสถิติของคำสั่ง DESCRIPTIVE คือ MEAN ค่าเดียวเท่านั้น
- 3. เพิ่มตัวแปรของการวิเคราะห์ของคำสั่ง FREQUENCIES อีก 1 ตัวคือตัวแปร educ
- 4. ยกเลิกการคำนวณเปอร์เซ็นต์ไทล์ 10, 20, 30, ... , 90
- 5. การวิเคราะห์ด้วยคำสั่ง FREQUENCIES ให้คำนวณค่าสถิติเฉพาะค่า ฐานนิยม (MODE) เท่านั้น

จะได้โปรแกรม Syntax ใหม่เป็น

	📓 Syntax app4 2 - SPSS Syntax Editor
	<u>File E</u> dit <u>V</u> iew <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>R</u> un <u>W</u> indow <u>H</u> elp
	* • • • • • • • • • • • •
$\stackrel{1\rightarrow}{\overset{2}{\rightarrow}}$	DESCRIPTIVES VARIABLES=age,income /STATISTICS=MEAN.
$3 \rightarrow 4 \rightarrow 5 \rightarrow$	FREQUENCIES VARIABLES=status,educ /NTILES= 4 /STATISTICS=MODE SUM SKEWNESS SESKEW KURTOSIS SEKURT /ORDER= ANALYSIS .

สั่งให้โปรแกรม Syntax ทำงานโดยคลิกคำสั่ง Run / All จะได้ผลดังนี้

หมายเหตุ เราสามารถบันทึกแฟ้ม Syntax ไว้ทำงานต่อได้ โดยใช้คำสั่ง File / Save

บรรณานุกรม

- Joseph G. Van Matre , Glenn H. Gilbreath , Statistics for Business and Economics , Third Edition , Business Publication, Inc., Homewood, Illinois ,1987
- Ronald E. Walpole , Raymond H. Myers , Probability and Statistics for Engineers and Scientists Third Edition , Macmillan Publishing Company , NewYork , 1985.

SPSS Base 7.5 Application Guide, SPSS Inc. USA 1997

- SPSS Base 7.5 for Windows User's Guide, SPSS Inc. USA 1997
- กรรณิกา ทิตาราม สถิติเชิงคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย กรุงเทพมหานคร 2528
- คณาจารย์ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ความน่าจะเป็นและสถิติ พิทักษ์ การพิมพ์ กรุงเทพมหานคร 2528
- ดำรงค์ ทิพย์โยธา การวิเคราะห์ข้อมูลทางสถิติ และความน่าจะเป็นด้วยโปรแกรมสำเร็จรูป SPSS for Windows & Mathcad โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 2541
- ดำรงค์ ทิพย์โยธา การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 9.0 โรงพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย กรุงเทพมหานคร 2543
- ดำรงค์ ทิพย์โยธา ความน่าจะเป็นและสถิติ สรุปเนื้อหา โจทย์แบบฝึกหัดและเฉลย โรงพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย กรุงเทพมหานคร 2544
- ดำรงค์ ทิพย์โยธา **คู่มือ MATHCAD** โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 2541
- พรพรรณ แย้มกลิ่น , สุพพัดดา ปวนะฤทธิ์ เอกสารประกอบคำบรรยาย วิชาความน่าจะเป็นและสถิติ ภาค วิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 2530
- ศิริชัย พงษ์วิชัย การวิเคราะห์ข้อมูลทางสถิติด้วยคอมพิวเตอร์ พิมพ์ครั้งที่ 8 สำนักพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย กรุงเทพมหานคร 2539

การหาค่า Significant (Sig.) ของค่าสถิติด้วย Mathcad

คำสั่งของ Mathcad เกี่ยวกับการแจกแจงค่าสถิติที

dt(t, v) = ฟังก์ชันการแจกแจงความน่าจะเป็นของตัวแปรสุ่ม t

$$dt(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\Gamma(\frac{v}{2})\sqrt{\pi v}} (1 + \frac{x^2}{v})^{-\frac{v+1}{2}}, df = v$$

$$A = pt(k, v) = P(t < k) = \tilde{wunnun} (a + 1) + \frac{wunnun}{2} (a + 1) + \frac{wun$$

ตัวอย่างเช่น pt(2.242, 23) = 0.98254978 และ qt(0.98254978, 23) = 2.242 เพราะฉะนั้น Significant ของค่าสถิติ t = k มีค่าเท่ากับ 1 – pt(k, v) เมื่อ df = v

คำสั่งของ Mathcad เกี่ยวกับการแจกแจงค่าสถิติไคสแควร์

dchisq(x, v) = ฟังก์ชันการแจกแจงความน่าจะเป็นของตัวแปรสุ่มไคสแควร์

dchisq(x, v) =
$$\frac{1}{2^{\frac{V}{2}}\Gamma(\frac{v}{2})}$$
, df = v
 $A = \text{pchisq}(k, v) = P(\chi^2 < k)$
 $= \tilde{\mathsf{w}}$ uńlete let volume let under the second s

ตัวอย่างเช่น pchisq(3.822, 3) = 0.71866249 และ qchisq(0.71866249, 3) = 3.822 เพราะฉะนั้น Significant ของค่าสถิติไคสแควร์ k มีค่าเท่ากับ 1 – pchisq(k, v) เมื่อ df = v

คำสั่งของ Mathcad เกี่ยวกับการแจกแจงค่าสถิติเอฟ

 $\mathrm{dF}(\mathbf{x}, \ \mathbf{v}_1, \mathbf{v}_2\,)$ = ฟังก์ชันการแจกแจงความน่าจะเป็นของตัวแปรสุ่มเอฟ

$$dF(x, v_1, v_2) = \frac{\Gamma(\frac{v_1 + v_2}{2})(\frac{v_1}{v_2})^{\frac{v_1}{2}} f^{\frac{v_1}{2} - 1}}{\Gamma(\frac{v_1}{2})\Gamma(\frac{v_2}{2})(1 + \frac{v_1}{v_2} f)^{\frac{v_1 + v_2}{2}}}, df = v_1, v_2$$

$$A = pF(k, v_1, v_2) = P(F < k)$$

$$= \sqrt[a]{unified an variant of the variant of the$$

F distribution df =
$$(v_1, v_2)$$

dF(f, v_1, v_2)
A = pF(k, v_1, v_2)
f
k = qF(A, v_1, v_2)

ที่ทำให้พื้นที่ใต้โค้งทางหางด้านขวามีค่าเท่ากับ A ตัวอย่างเช่น pF(6.574, 4, 12) = 0.99515349 และ qF(0.99515349, 4, 12) = 6.57400016

พราะฉะนั้น Significant ของค่าสถิติ f = k มีค่าเท่ากับ 1 – pchisq(k, v_1, v_2) เมื่อ df = v_1, v_2

การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 10

เป็นหนังสือที่จะทำให้ผู้อ่านทุกท่านสามารถใช้โปรแกรม SPSS for Windows version 10 ได้ โดยง่ายเพราะว่าทุกขั้นตอนของการสั่งงานด้วยคำสั่ง SPSS มีภาพประกอบการทำงานทุกขั้น ตอน มีขั้นตอนการทำงานทางทฤษฎีเพื่อเปรียบเทียบกับการทำงานของ SPSS มีการกล่าวถึงที่ มาของสูตรที่ SPSS ใช้ในการคำนวณ เนื้อหาภายในเล่มประกอบด้วย

การสร้างแฟ้มข้อมูล การคำนวณค่าสถิติเบื้องต้น
การนำเสนอข้อมูลในรูปแบบตาราง และ กราฟ
การหาช่วงความเชื่อมั่น การทดสอบสมมติฐาน
การทดสอบภาวะสารูปสนิทดี
การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระ
การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว
สหสัมพันธ์และสมการถดถอยพหุคูณ
การวิเคราะห์ความแปรปรวน
การทดสอบสมมติฐานแบบนอนพาราเมตริก
การเชื่อมโยงข้อมูล SPSS กับ Word และ Excel
การวิเคราะห์ข้อมูลด้วยโปรแกรม Syntax
เสริมการคำนวณค่าสถิติด้วย Mathcad

จัดจำหน่ายโดย ศูนย์หนังสือจุฬาลงกรณ์มหาวิทยาลัย ถนนพญาไท กรุงเทพฯ 10330 ศาลาพระเกี้ยว โทร. 0-2255-4433, 0-2218-7000 โทรสาร. 0-2255-4441 สยามสแควร์ โทร. 0-2251-6141, 0-2218-9888 โทรสาร. 0-2254-9495 CALL CENTER 0-2225-4433 http://www.chulabook.com e-mail : order@chulabook.com