การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Window version 9.0

รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

http://pioneer.netserv.chula.ac.th/~tdumrong/homepage

Dumrong Tipyotha

การวิเคราะห์ข้อมูลทางสถิติด้วย SPSS for Windows version 9.0

รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Dumrong Tipyotha

คำนำ

หนังสือ **การวิเคราะห์ข้อมูลทางสถิติด้วย** SPSS for Windows version 9.0 เป็น หนังสือสำหรับนิสิตคณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เพื่อใช้ประกอบในการเรียนวิชา 2301286 ความน่าจะเป็นและสถิติ และเป็นคู่มือของการทำปฏิบัติการการวิเคราะห์ข้อมูลทาง สถิติ

โปรแกรม SPSS for Windows เป็นโปรแกรมที่มีความสามารถในการวิเคราะห์ข้อมูล ทางสถิติ เช่น นำเสนอข้อมูลในรูปแบบตารางการแจกแจงความถี่และนำเสนอข้อมูลในรูปกราฟ คำนวณค่าสถิติเบื้องต้น การประมาณค่า การหาช่วงความเชื่อมั่นของค่าพารามิเตอร์ ทำการ ทดสอบสมมติฐาน การหาความสัมพันธ์ระหว่างข้อมูล การทดสอบนอนพาราเมตริก

การเรียนวิชา 2301286 ความน่าจะเป็นและสถิติ ของนิสิตคณะวิทยาศาสตร์มีทั้งส่วน ของหลักการและเหตุผลต่างๆ ของค่าสถิติที่จะนำไปใช้ในการวิเคราะห์ข้อมูล ซึ่งเนื้อหาของความ น่าจะเป็นและสถิติในส่วนนี้จะเกี่ยวข้องกับสูตรของการแจกแจงความน่าจะเป็นของตัวแปรสุ่ม แบบต่างๆ เช่น ตัวแปรสุ่มทวินาม ตัวแปรสุ่มพหุนาม ตัวแปรสุ่มปัวส์ซอง ตัวแปรสุ่มปกติ ตัวแปร สุ่มที ฯลฯ เนื้อหาในส่วนนี้เราสามารถนำโปรแกรม MATHCAD เข้ามาช่วยในการคำนวณเมื่อ นิสิตมีความเข้าใจมากยิ่งขึ้น เมื่อนิสิตได้เรียนหลักการวิเคราะห์ข้อมูลทางสถิติตามเนื้อหาในวิชา 2301286 ความน่าจะเป็นและสถิติ แล้วโปรแกรมสำเร็จรูป SPSS for Windows ซึ่งมีความ สามารถในการวิเคราะห์ข้อมูลทางสถิติ จะทำให้นิสิตสามารถทำการวิเคราะห์ข้อมูลที่มีจำนวน มากๆ ได้สะดวกและรวดเร็วมากยิ่งขึ้น

รองศาสตราจารย์ ดำรงค์ ทิพย์โยธา

สารบัญ

		หน้าที่
บทร์	ที่ 1 ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows	1 – 22
1.1	คอมพิวเตอร์ที่สามารถทำงานกับโปรแกรม SPSS for Windows	2
1.2	ความสามารถของโปรแกรม SPSS for Windows	2
1.3	การเข้าสู่การทำงานของโปรแกรม SPSS for Windows	5
1.4	WINDOW ของการทำงานแบบต่างๆ ของ SPSS for Windows	7
1.5	สรุปเนื้อหาของคำสั่งและขั้นตอนการทำงานโดยย่อของ SPSS for Windows	9
1.6	lcon บนเมนูบาร์กับการทำงานของ SPSS for Windows	21
บทร์	ที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม	23 – 44
2.1	การสร้างแฟ้มข้อมูลใน SPSS for Windows Data Edito	27
2.2	การบันทึกแฟ้มข้อมูล	38
2.3	การเปิดแฟ้มข้อมูล	39
2.4	การดูรายละเอียดตัวแปร	40
2.5	การสั่งให้ SPSS for Windows Data Editor แสดง value label	41
2.6	การแสดงรายละเอียดของแฟ้มข้อมูล	42
บทร์	ที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics	45 – 72
3.1	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง	
	Analyze / Descriptive Statistics / Descriptive	45
3.2	การเปลี่ยนรูปแบบของตารางในการแสดงผลของ SPSS for Windows Viewer	47
3.3	การกำหนดตำแหน่งทศนิยมของการคำนวณในตารางของ SPSS Viewer	48
3.4	การคำนวณค่าสถิติอื่นๆ ด้วยคำสั่ง Descriptive	50
3.5	สูตรของค่าสถิติและเปรียบเทียบการคำนวณ MATHCAD กับ SPSS	52
3.6	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง	
	Analyze / Descriptive Statistics / Frequencies	58
3.7	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / E	xplore 65
3.8	การคำนวณค่าสถิติเบื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / C	rosstabs 70

บทา์	ที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports	73 –	84
4.1	การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง Analyze / Reports / OLAP Cubes		73
4.2	การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง Analyze / Reports / Case Summar	ies	77
4.3	การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง		
	Analyze / Reports / Report Summaries in Rows		
	Analyze / Reports / Report Summaries in Columns		81
บทเ	ที่ 5 การแก้ไขแฟ้มข้อมูลด้วยคำสั่ง Data และ คำสั่ง Transforms	85 -	- 106
5.1	การเพิ่มตัวแปร การลดตัวแปร การแทรกตัวแปร		86
5.2	การลบค่าสังเกต		90
5.3	การรวมแฟ้มข้อมูลแบบเพิ่มตัวแปร		91
5.4	การรวมแฟ้มข้อมูลแบบเพิ่มค่าสังเกต		93
5.5	การเรียงลำดับข้อมูล		95
5.6	การกำหนดตัวแปรน้ำหนัก		96
5.7	การน้ำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่		98
5.8	การปรับเปลี่ยนค่าของตัวแปรด้วยคำสั่ง Transform / Recode		100
บทร์	ที่ 6 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าพารามิเตอร์	107 -	- 138
6.1	การหาช่วงความเชื่อมั่น (1-α)100% ของค่า μ		108
6.2	การหาช่วงความเชื่อมั่น(1-α)100% ของผลต่างค่าเฉลี่ย μ ₁ -μ ₂		
	กรณีประชากร 2 ชุดเป็นอิสระต่อกัน		115
6.3	การหาช่วงความเชื่อมั่น(1-α)100% ของผลต่างค่าเฉลี่ย μ ₁ -μ ₂		
	กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน		127
6.4	การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Compare Means / Means		132
6.5	การหาช่วงความเชื่อมั่น (1-α)100% ของค่าเฉลี่ยด้วยคำสั่ง		
	Analyze / Compare Means / One-Way ANOVA		135
บทร์	ที่ 7 การทดสอบสมมติฐาน	139 -	- 176
7.1	การทดสอบสมมติฐานว่า $\mu=\mu_0$ จริงหรือไม่		140
7.2	การทดสอบสมมติฐาน H₀ : μ₁ =μ₂ กรณีที่ประชากร 2 ชุดเป็นอิสระต่อกัน		144
7.3	การทดสอบสมมติฐาน H ₀ : μ ₁ = μ ₂ กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน	ſ	152

7.4 การทดสอบสมมติฐาน H $_{_{0}}$: $\sigma^{2}=\sigma_{0}^{2}$	158
7.5 การทดสอบสมมติฐาน H $_{_0}$: $\sigma_1^2=\sigma_2^2$	159
7.6 การทดสอบภาวะสารูปสนิทดี	164
7.7 การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกันหรือไม่	169
บทที่ 8 สหสัมพันธ์และการถดถอยเชิงเส้น	177 – 206
8.1 การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว(Simple Linear Regression)	
และ สหสัมพันธ์ (Correlation)	177
8.2 การหาช่วงความเชื่อมั้น (1– $lpha$)100% ของค่า eta และ $lpha$	188
8.3 การทดสอบสมมติฐาน H $_{_0}: ho=0$	192
8.4 การทดสอบสมมติฐาน H $_{_0}$: $eta=eta_0$	195
8.5 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์และสมการถดถอยพหุคูณ	199
8.6 การเลือกรูปแบบความสัมพันธ์แบบเชิงเดียวที่เหมาะสมกับข้อมูล	204
บทที่ 9 การวิเคราะห์ความแปรปรวน	207 – 226
9.1 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว	207
9.2 การวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง	215
บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก	227 – 250
10.1 การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่	227
10.2 การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่	233
10.3 การทดสอบว่าประชากร 2 กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่	235
10.4 การทดสอบว่าประชากร k กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่	242
10.5 การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่(Rank Correlation Coefficient)	248
ภาคผนวกที่ 1 การคำนวณค่า Significant ของค่าสถิติ	251 – 254
ภาคผนวกที่ 2 การเชื่อมโยงข้อมูล SPSS for Windows กับ Microsoft Word	255 – 259
ภาคผนวกที่ 3 การเชื่อมโยงข้อมูล SPSS for Windows กับ Excel	260 – 263
บรรณานุกรม	264

บทที่ 1

ความรู้เบื้องต้นเกี่ยวกับ SPSS for Windows

โปรแกรมสำเร็จรูปที่มีความสามารถในการวิเคราะห์ข้อมูลทางสถิติในปัจจุบันมีหลาย โปรแกรมเช่น SAS, MINITAB, SPSS for Windows แต่โปรแกรมที่นิยมใช้กันมากคงจะเป็น โปรแกรม SPSS for Windows โปรแกรม SPSS (<u>S</u>tatistical <u>P</u>ackage for the <u>S</u>ocial <u>S</u>ciences) มีการใช้งานมานาน เริ่มตั้งแต่การใช้งานบนเครื่องคอมพิวเตอร์ขนาดใหญ่ (Main Frame) ต่อมาเมื่อเครื่องไมโครคอมพิวเตอร์มีการใช้งานกันมาก โปรแกรม SPSS เริ่มมีรุ่นที่ใช้กับเครื่องไมโครคอมพิวเตอร์ได้ เช่น

SPSS/PC version 3.0 SPSS for Windows version 6.0 SPSS for Windows version 7.5 , 8.0 SPSS for Windows version 9.0 สำหรับระบบปฏิบัติการ DOS

สำหรับระบบปฏิบัติการ Windows 3.0

สำหรับระบบปฏิบัติการ Windows 95 , 98 สำหรับระบบปฏิบัติการ Windows 95 , 98

โปรแกรม SPSS for Windows version 9.0 สามารถน้ำ ข้อมูล SPSS หรือ ข้อมูล โปรแกรมเดิมที่สร้างมาจาก SPSS version 3.0 – 8.0 ทั้งในระบบ DOS และ ระบบ ปฏิบัติการ Windows กลับมาใช้ได้ และสามารถรับข้อมูลที่สร้างจากโปรแกรมประเภทต่างๆ ได้เช่น Excel MATHCAD Microsoft Word ฯลฯ นอกจากนี้ โปรแกรม SPSS for Windows ยังสามารถบันทึกคำสั่งที่เกิดจากขั้นตอนการทำงานตามลำดับต่างๆ จากการใช้เมาส์เลือกเมนู ของโปรแกรมที่มีอยู่ มาบันทึกเป็น ชุดคำสั่ง (Command Language) เพื่อประโยชน์ในการ เรียกคำสั่งเหล่านี้มาใช้ได้อีกในครั้งต่อๆ ไปภายหลัง ผู้ที่เคยใช้โปรแกรมอื่นๆ ที่ทำงานบน Window สามารถเรียนรู้การใช้งานโปรแกรม SPSS for Windows version 9.0 ได้อย่างรวดเร็ว และสามารถนำคุณสมบัติของ Window มาใช้ได้อย่างเต็มที่ เช่น copy cut paste การย้าย การ คัดลอก การพิมพ์ การแลกเปลี่ยนข้อมูลระหว่างโปรแกรม ฯลฯ

1.1 คอมพิวเตอร์ที่สามารถทำงานกับโปรแกรม SPSS for Windows

ความต้องการของเครื่องคอมพิวเตอร์ฮาร์ดแวร์และซอฟท์แวร์ที่สามารถนำโปรแกรม SPSS for Windows ไปใช้ได้จะต้องมีคุณสมบัติอย่างต่ำดังต่อไปนี้

🖵 เครื่องคอมพิวเตอร์ IBM PC หรือ IBM Compatible ที่ใช้ Window95 , Windows98

🖵 หน่วยความจำภายใน (RAM) อย่างน้อย 16 Megabyte

ุ่∎Hard disk มีที่ว่างอย่างน้อย 55 Mb

🔲 จอภาพ (Monitor) ต้องสามารถแสดงผลทางด้านกราฟฟิกได้

🖵 โปรแกรม Microsoft Windows 95 หรือ Windows 98

🖵 โปรแกรม SPSS for Window version 9.0

เพื่อความสะดวกในการทำงานและการเชื่อมโยงข้อมูลน่าจะมี Excel Microsoft Word

Mathcad

2

1.2 ความสามารถของโปรแกรม SPSS for Windows

1.2.1 ความสามารถในการวิเคราะห์ข้อมูล

เป็นความสามารถที่จะทำการวิเคราะห์ข้อมูลด้วยวิธีการทางสถิติดังต่อไปนี้

 การคำนวณค่าสถิติเบื้องต้น (Descriptive Statistics) สามารถคำนวณค่าสถิติพื้นฐาน ทั่วๆ ไป เช่น ค่าเฉลี่ย(Mean) มัธยฐาน(Median) ฐานนิยม(Mode) พิสัย(Range) ความ แปรปรวน(Variance) ส่วนเบี่ยงเบนมาตรฐาน(Standard deviation) ฯลฯ

 การแจกแจงความถี่ (Frequency Distributions) สามารถแจกแจงค่าของตัวแปรตาม จำนวนที่นับได้ทั้งแบบทางเดียวและแบบหลายทาง (Crosstabs) พร้อมทั้งแสดงค่าสถิติที่เกี่ยว ข้อง เช่น ค่าเฉลี่ย(Mean) มัธยฐาน(Median) ฐานนิยม(Mode) พิสัย(Range) ความแปรปรวน (Variance) ส่วนเบี่ยงเบนมาตรฐาน(Standard deviation) เปอร์เซ็นต์ไทล์ (Percentiles) กราฟแท่งหรือค่าสถิติที่เกี่ยวข้องกับการทดสอบทางสถิติ เช่น Chi-Squares Phi

 การเปรียบเทียบค่าเฉลี่ย (Mean Groups Comparison) สามารถเปรียบเทียบและ ทดสอบค่าเฉลี่ยระหว่างกลุ่ม 2 กลุ่มตัวอย่างโดยค่าสถิติ t (Student't) และสำหรับหลายกลุ่มตัว อย่างโดยค่าสถิติ F ด้วยการวิเคราะห์ความแปรปรวน (Analysis of Variance : ANOVA) ทั้ง แบบทางเดียวและแบบหลายทาง

4. การหาความสัมพันธ์ระหว่างตัวแปร (Correlation) สามารถคำนวณหาค่า สัมประสิทธิ์สหสัมพันธ์ระหว่างตัวแปรแบบต่างๆ เช่น Pearson Kendall Spearman

5. การวิเคราะห์การถดถอย (Regression Analysis) สามารถหาความสัมพันธ์เพื่อการ พยากรณ์ โดยวิธีการถดถอยเชิงเส้น (Linear Regression Analysis) ทั้งแบบ 1 ตัวแปรอิสระ และแบบหลายตัวแปรอิสระ นอกจากนี้ยังสามารถดูรูปแบบความสัมพันธ์ในลักษณะอื่นๆ ที่ไม่ใช่ เส้นตรง เช่น Linear Quadratic Logarithmic ฯลฯ

 การทดสอบแบบนอนพาราเมตริก (Non – Parametric Test) สามารถวิเคราะห์ข้อมูล โดยวิธีของนอนพาราเมตริกสำหรับการทดสอบแบบต่างๆ เช่น Sign Test Wilcoxon
 Friedman Kolmokorov – Smirnov ฯลฯ

7. การวิเคราะห์ข้อมูลสำหรับคำตอบแบบหลายคำตอบ (Multiple Response Analysis) สามารถวิเคราะห์ข้อมูลจากแบบสอบถามที่มีตัวเลือกมาให้และผู้ตอบสามารถตอบ ได้มากกว่า 1 คำตอบ

1.2.2 ความสามารถในการนำเสนอข้อมูลด้วยกราฟ

โปรแกรม SPSS สำหรับ Window สามารถนำเสนอข้อมูลในรูปของกราฟ หรือตารางแบบต่างๆ เช่น กราฟแท่ง (Bar, Histogram) กราฟเส้น (Line) กราฟวงกลม (Pie) และกราฟชนิดอื่นๆ (Area, High – Low)

1.2.3 ความสามารถในการทำงานด้านอื่น ๆ

ในการใช้งานโปรแกรม SPSS นอกจากจะทำการวิเคราะห์ข้อมูลด้วยวิธีการทางสถิติแล้วผู้ใช้อาจ จะมีการดำเนินการกับข้อมูลในลักษณะต่างๆ เช่น สร้างตัวแปรเพิ่ม เรียงลำดับข้อมูล คัดเลือกข้อ มูลมาทำการวิเคราะห์ ฯลฯ ซึ่งสามารถแบ่งเป็นประเภทต่างๆ ได้ดังนี้

1. การเปลี่ยนรูปแบบข้อมูล (Data Transformation) โดยการเปลี่ยนค่าใหม่ จัดค่าใหม่ หรือสร้างตัวแปรใหม่ด้วยฟังก์ชันพิเศษต่างๆ ทางคณิตศาสตร์ที่โปรแกรมให้มา

การจัดกลุ่มตัวแปร (Define Set of Variables) โดยการเลือกตัวแปร หรือจัดกลุ่มตัวแปร
 ไว้เป็นชุดต่างๆ เพื่อนำมาวิเคราะห์เป็นชุดๆ ในภายหลัง

 การเลือกข้อมูล (Select Case) โดยการเลือกข้อมูลด้วยเงื่อนไขต่างๆ ที่ต้องการ หรือการ เลือกข้อมูลโดยการสุ่มตัวอย่าง 4. การสร้างข้อมูลแบบอนุกรมเวลา (Create Time Series) โดยการสร้างข้อมูลที่เกิดขึ้น ตามเวลา เช่น วัน เดือน ไตรมาส ฯลฯ สำหรับการวิเคราะห์แบบอนุกรมเวลา

5. **การดำเนินการกับข้อมูลในลักษณะอื่น ๆ** โดยการเรียงลำดับข้อมูล การให้น้ำหนักหรือ ความสำคัญแก่ชุดข้อมูล การสลับที่ข้อมูลระหว่างแถวและคอลัมน์

 6. การจัดการกับแฟ้มข้อมูล โดยการรวมแฟ้มข้อมูลตั้งแต่ 2 แฟ้ม ด้วยวิธีการต่างๆ เช่น รวม ตัวแปร รวมชุดข้อมูล ฯลฯ

1.2.4 ความสามารถในการเชื่อมโยงข้อมูลกับโปรแกรมอื่นๆ

การทำงานของโปรแกรม SPSS for Windows version 9.0 เป็นการทำงานภายใต้ระบบปฏิบัติ การ Windows ดังนั้นเราสามารถใช้ความสามารถขั้นพื้นฐาน เช่น การเลือกบริเวณเพื่อ copy cut paste ฯลฯ แล้วนำข้อมูลนั้นไปใช้กับโปรแกรมอื่นๆ เช่น Excel, Microsoft Word, Mathcad หรือนำข้อมูลจาก Excel, Microsoft Word, Mathcad มาใช้กับ SPSS for Windows

ตัวอย่างเช่น ข้อมูลในรูปแบบ column สามารถนำมาเป็นข้อมูลในรูปแบบตัวแปรของ SPSS for Windows ได้ หรือข้อมูลที่วิเคราะห์ได้จาก SPSS for Windows สามารถ copy รูปแบบตารางไป เป็นตารางของ Microsoft Word ได้ทันที

1.3 การเข้าสู่การทำงานของโปรแกรม SPSS for Windows

สำหรับคอมพิวเตอร์ที่ติดตั้งโปรแกรม SPSS for Windows เสร็จเรียบร้อยแล้ว การเข้าสู่การ ทำงานมีขั้นตอนดังนี้

- 1. เปิดเครื่องคอมพิวเตอร์
- 2. รอจนจอภาพขึ้น Icon ของโปรแกรมต่างๆ ที่มีในคอมพิวเตอร์ขณะนั้น

3. เลื่อนเมาส์ไปคลิกที่ Start จะได้เมนูย่อยเป็นดังนี้

4. ต่อไปคลิกที่ <u>P</u>rograms จะได้เมนูย่อยเป็นดังนี้

5. ต่อไปคลิกที่ SPSS 9.0 for Windows จะได้ Logo ของ SPSS 9.0 for Windows

และมีเมนูเริ่มต้นให้เราเลือกทำงานตามความเหมาะสมเช่น Run the tutorial เปิดแฟ้มตามที่ กำหนด พิมพ์ข้อมูล ฯลฯ ขณะนี้เพื่อความสะดวกและเข้าใจได้โดยง่ายขอให้คลิก Cancel

SPSS for \	#indows X
_ What wo	uld you like to do?
LESSON 1	C Run the tutorial
	C <u>B</u> un an existing query
Ê	← Create new guery using Database Capture Wizard
9755 11/1	C Open an existing file
	More Files D:\SPSS and MATHCAD\data\example4.sav
┌ <u>D</u> on't sl	how this dialog in the future
	OK Cancel

จะเข้าสู่การทำงานของ SPSS for Windows Data Editor

🛗 U	🛗 Untitled - SPSS for Windows Data Editor										
<u>F</u> ile	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
<u></u>											
		var va		var	var	var					
,	1										
2	2										

ขณะเราพร้อมที่จะทำงานกับ SPSS for Windows แล้ว

1.4 WINDOW ของการทำงานแบบต่าง ๆ ของ SPSS for Windows การทำงานของโปรแกรม SPSS มีการจำแนกส่วนของ WINDOW ที่สำคัญดังนี้

1. SPSS for Windows Data Editor

SPSS for Windows Data Editor เป็น Window สำหรับเก็บแฟ้มข้อมูลที่จะนำมาวิเคราะห์ ด้วยโปรแกรม SPSS ซึ่งผู้ใช้อาจจะสร้างแฟ้มข้อมูลใหม่ หรือนำข้อมูลที่สร้างจากโปรแกรมอื่นๆ เรียกเข้ามาไว้ใน Data Editor แล้วใช้งานต่อไป Data Editor จะเปิดได้ครั้งละ 1 Window เท่า นั้น

ข้อควรทราบเกี่ยวกับ SPSS for Windows Data Editor

	10 1	2 ↓ ntitled -	4 1 ↓ SPSS fo	r Windows Data	a Editor		
$3 \rightarrow$	File	<u>E</u> dit <u>V</u>	iew <u>D</u> ata	<u>Iransform</u> An	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	Help
	Ê		🖳 🗹) 🗐 🏪 📴	<u> M 1 i i i i i i i i i i i i i i i i i i</u>	≞ ⊈ ⊨	<u> </u>
				I			
			×	var	var	Agt	var
5 -	> 1		2.00				
	2	2	3.00				
	3	3	7.00 •	(\			
	4	ı 🗌	5.00				
	:	i	12.00				
	e	i -					
				6			

- หมายเลข 1 ชื่อชนิดของ Window ใน SPSS ขณะนี้คือ SPSS for Windows Data Editor
- หมายเลข 2 ชื่อแฟ้มข้อมูลที่กำลังใช้งาน หากยังไม่ได้ตั้งชื่อ SPSS จะใช้ชื่อว่า Untitled
- หมายเลข 3 แถบเมนูของ SPSS for Windows Data Editor
- หมายเลข 4 ชื่อตัวแปร x ของข้อมูล
- หมายเลข 5 ลำดับที่ของค่าสังเกตในแฟ้มข้อมูล
- หมายเลข 6 ค่าของข้อมูล ค่าสังเกตตัวที่ 3 ของตัวแปร x
- 2. SPSS for Windows Viewer

SPSS for Windows Viewer เป็น Window สำหรับเก็บบันทึกผลลัพธ์ของการวิเคราะห์ข้อมูล ที่เกิดขึ้นจากการใช้งานโปรแกรม SPSS โดยจะบันทึกผลลัพธ์ที่เกิดขึ้นเองทุกครั้งที่มีการใช้งาน ของโปรแกรม SPSS และผลลัพธ์จะถูกบันทึกอย่างต่อเนื่องจนกว่าจะมีการสั่งให้บันทึกผลลัพธ์ ใน Window Output อื่นๆ ผู้ใช้สามารถ เปิด Window Output ได้มากกว่า 1 Window Output ถ้ามี การเปิด Window Output มากกว่า 1 Window จะต้องมีการกำหนด Window หนึ่งให้ทำหน้าที่ เก็บผลลัพธ์ที่เกิดจากการประมวลผล

ข้อควรทราบเกี่ยวกับ SPSS for Windows Viewer

- หมายเลข 1 ชื่อชนิดของ Window ใน SPSS ขณะนี้คือ SPSS for Windows Viewer
- หมายเลข 2 ชื่อแฟ้ม Output File ที่กำลังใช้งาน หากยังไม่ได้ตั้งชื่อจะใช้ชื่อว่า Output1
- หมายเลข 3 แถบเมนูของ SPSS for Windows Viewer
- หมายเลข 4 แผนภูมิต้นไม้แสดงลำดับและตำแหน่งของการแสดงผล
- หมายเลข 5 ผลของการวิเคราะห์ข้อมูล

3. SPSS for Windows Syntax Editor

SPSS for Windows Syntax Editor เป็น Window สำหรับเก็บบันทึกคำสั่งที่ได้จากการใช้งาน โปรแกรม SPSS ตามขั้นตอนต่างๆ ที่ทำของผู้ใช้ขณะนั้น(โดยการคลิกที่ paste) ให้ผู้ใช้นำคำสั่ง ที่เกิดขึ้นนี้มาใช้ได้อีกโดยไม่ต้องสั่งการทำงานแบบเก่าซ้ำอีก หรือผู้ใช้สามารถเปลี่ยนแปลงแก้ไข

ใหม่ได้

8

👔 Syntax1 - SPSS for Windows Syntax Editor 📃 🗖 🗙
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>R</u> un <u>W</u> indow <u>H</u> elp
≝∎≝ © <u>≡</u> ≝ k M → © ⊠ !
DESCRIPTIVES VARIABLES=x
/STATISTICS=MEAN STDDEV MIN MAX .
SPSS for Windows Processor i
1 SP55 for Windows Processor 1

4. SPSS for Windows Chart Editor

SPSS for Windows Chart Editor เป็น Window ของการสร้าง หรือแก้ไขกราฟหนึ่งเพื่อให้ผู้ใช้ เปลี่ยนแปลงแก้ไขกราฟ ที่สร้างขึ้นมา เช่น เปลี่ยนรูปแบบตัวอักษร เปลี่ยนสี ฯลฯ

1.5 สรุปเนื้อหาของคำสั่งและขั้นตอนการทำงานโดยย่อของ SPSS for Windows

1. ประเภทของ Windows ในโปรแกรม SPSS for Windows

1.1 SPSS for Windows Data Editor

เป็น Window ที่เก็บแฟ้มข้อมูลที่จะนำมาวิเคราะห์ด้วยโปรแกรม SPSS

1.2 SPSS for Windows Viewer

เป็น Window ที่เก็บบันทึกรวบรวมผลลัพธ์ที่เกิดขึ้นจากการใช้งานโปรแกรม SPSS สามารถ เปิดได้ครั้งละหลายๆ Window พร้อมๆ กัน

1.3 SPSS for Windows Syntax Editor

เป็น Window ที่เก็บบันทึกคำสั่งที่ได้จากการใช้งานโปรแกรม SPSS ตามขั้นตอนต่างๆ มารวบ รวมไว้ เพื่อประโยชน์ในการนำคำสั่งมาใช้ภายหลัง

1.4 SPSS for Windows Chart Editor

เป็น Window ที่เก็บบันทึกรวบรวมกราฟ ต่างๆ ทั้งหมดที่เกิดขึ้นจากการโปรแกรม SPSSและ เป็น Window ของกราฟ และมีเมนูสำหรับให้ผู้ใช้เปลี่ยนแปลง แก้ไขรายละเอียดต่างๆ

1.5 Help Window

เป็น Window ที่เก็บข้อมูลรายละเอียดต่างๆ ของโปรแกรม SPSS

9

2. Menu ของโปรแกรม SPSS for Windows Data Editor

10

<u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u>

File ใช้เปิดแฟ้มข้อมูล บันทึกข้อมูล พิมพ์ข้อมูล ฯลฯ

Edit ใช้ย้ายข้อมูล คัดลอกข้อมูล ค้นหาข้อมูล ลบข้อมูล

View ปรับรูปแบบและขนาดตัวอักษร แสดง Value Label , Toolbars

Data ใช้จัดการกับข้อมูลเช่น สร้างตัวแปร แก้ไข เรียงลำดับข้อมูล รวมแฟ้ม แทรกตัวแปร Transform ใช้สร้างตัวแปรเพิ่ม หรือ จัดค่าตัวแปรใหม่

- Analyze ใช้เรียกคำสั่งเกี่ยวกับการวิเคราะห์ข้อมูลทางสถิติ
- Graphs ใช้สร้างกราฟในรูปแบบต่างๆ

Utilities ใช้แสดงรายละเอียดตัวแปร กำหนดกลุ่มตัวแปร กำหนดรูปแบบเมนู

Window ใช้จัดเรียง Windows ในรูปแบบต่างๆ การเลือกแสดงสถานะต่างๆ ของ Window กำหนดหรือเรียก Windows ที่ต้องการขึ้นมาทำงาน

Help ใช้ขอคำอธิบายการใช้โปรแกรม SPSS for Windows

- 3. การจัดเตรียมข้อมูลโดย SPSS for Windows Data Editor
- 3.1 กำหนดชื่อตัวแปรและรายละเอียดของตัวแปร
 - เลือกเซลล์หรือคอลัมน์ที่ต้องการ กำหนด หรือ เปลี่ยนชื่อตัวแปร
 - Data / Define Variable

 กำหนดชื่อตัวแปรในบ็อกซ์ของ Variable name ถ้าต้องการเปลี่ยนแปลงรายละเอียดของตัวแปร ให้แตกต่างจากที่โปรแกรมกำหนดให้สามารถ เปลี่ยนแปลงได้ 4 ประเภท ดังนี้

<u>V</u> ariable Na	me: <u> VARUUUUI</u>							
Variable Description								
Туре:	Numeric8.2							
Variable La	bel:							
Missing	None							
Alignment	Right							
- Change Set	tings							
	Туре	Missing Values						
	Labels	Column <u>F</u> ormat						
- Measureme	nt							
€ S <u>c</u> ale	C <u>O</u> rdinal	C Nominal						

1.1 กำหนดประเภทของตัวแปร

- 1.2 กำหนดข้อความขยายชื่อและอธิบายค่าตัวแปร ่
- 1.3 กำหนดค่าที่ขาดหายไปหรือค่าไม่สมบูรณ์
- 1.4 กำหนดความกว้าง/จัดข้อความของคอลัมน์
- เลือกประเภทของข้อมูล

3.2 การพิมพ์ข้อมูล

- 2.1 ใช้แป้น Enter สำหรับการพิมพ์ข้อมูลครั้งละ 1 ตัวแปร
- 2.2 ใช้แป้น 🗸 -> 🕇 สำหรับการพิมพ์ข้อมูลแล้วเลื่อนไปเซลล์ถัดไป
- 2.3 ใช้แป้น Tab สำหรับการพิมพ์ข้อมูลครั้งละ 1 ชุด (แถว)

3.3 การบันทึกข้อมูล

- File / Save Data สำหรับการบันทึกภายใต้ชื่อเดิม
- File / Save As... สำหรับการบันทึกภายใต้ชื่อใหม่

3.4 การเรียกใช้ข้อมูลที่บันทึกไว้แล้ว

File / Open / Data... เลือกหรือพิมพ์ชื่อแฟ้มที่ต้องการ

3.5 การพิมพ์ ข้อมูล คำสั่ง หรือ ผลลัพธ์ออกเครื่องพิมพ์

- เลือก Window ที่ต้องการ (Data Editor,SPSS Viewer , SPSS Syntax...)
- File / Print... / OK

Dumrong Tipyotha

เลือกปุ่ม Type...

เลือกปุ่ม Labels...

เลือกปุ่ม Missing Values

เลือกปุ่ม Column Format

- 4. การทำงานที่สำคัญใน SPSS for Windows Data Editor
- 4.1 การค้นหาชุดข้อมูลและตัวแปร
- 4.1.1 การค้นหาชุดข้อมูล

12

- Data / Go to Case...
- พิมพ์ต่ำแหน่งของชุดข้อมูลที่ต้องการค้นหา

4.1.2 การค้นหาตัวแปร

- Utilities / Variables...
- เลือกตัวแปรที่ต้องการ

4.2 การคัดลอก หรือ ย้ายข้อมูล

- เลือกข้อมูลที่ต้องการคัดลอก หรือ ย้ายข้อมูล
- Edit / Copy หรือ Edit / Cut
- เลือกเซลล์ซึ่งเป็นตำแหน่งที่ต้องการคัดลอกข้อมูลมาไว้
- Edit / Paste

4.3 การแทรก หรือ ลบชุดข้อมูล

4.3.1 การแทรกชุดข้อมูล

- คลิก ที่หัวแถวที่ต้องการแทรกไว้ (จะแทรกไว้เหนือแถวที่เลือก)
- Data / Insert Case

4.3.2 การลบชุดข้อมูล

- คลิกที่หัวแถวหรือกลุ่มของหัวแถว (drag ตามแถว)
- พิมพ์ตำแหน่งของชุดข้อมูลที่ต้องการค้นหา

4.4 การแทรก หรือ ลบตัวแปร

4.4.1 การแทรกตัวแปร

- คลิกที่ชื่อตัวแปรที่ต้องการแทรก (จะแทรกไว้ข้างหน้าตัวแปรที่เลือก)
- Data / Insert Variable

4.4.2 การลบตัวแปร

- คลิกที่ชื่อตัวแปร หรือกลุ่มของตัวแปร
- Edit / Clear (หรือกดแป้น Del)

5. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Descriptive Statistics

- 5.1 การแจกแจงความถี่แบบทางเดียว
 - Analyze / Descriptive Statistics / Frequencies..
 - เลือกตัวแปรไว้ในบ็อกซ์ของ Variable(s)
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics, Chart หรือ Format
 - เลือกปุ่ม OK
- 5.2 การคำนวณค่าสถิติเบื้องต้น
 - Analyze / Descriptive Statistics / Descriptive..
 - โล้อกตัวแปรไว้ในบ็อกซ์ของ Variable(s)
 - ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

5.3 การตรวจสอบข้อมูล

- Analyze / Descriptive Statistics / Explore..
- เลือกตัวแปรมาไว้ในบ็อกซ์ของ Dependent List
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics, Plots หรือ Options
- เลือกปุ่ม OK
- 5.4 การแจกแจงความถี่ตั้งแต่ 2 ทาง
 - Analyze / Descriptive Statistics / Crosstabs..
 - 🗩 เลือกตัวแปรอย่างน้อย 1 ตัว ที่ต้องการให้อยู่ด้านแถวไว้ในบ็อกซ์ของ Row[s]
 - โล้อกตัวแปรอย่างน้อย 1 ตัว ที่ต้องการให้อยู่ด้านหลักไว้ในบ๊อกซ์ Column[s]
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics , Cell หรือ Format
 - เลือกปุ่ม OK
- 6. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Compare Means
- 6.1 การคำนวณค่าสถิติเบื้องต้นจำแนกตามกลุ่ม
 - Analyze / Compare Means / Means...
 - เลือกตัวแปรไว้ในบ็อกซ์ของ Dependent List และ Independent List
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

<u>Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

) 🗖 🖬 🖬

<u>F</u>requencie

<u>D</u>escripti

Explore.

Crosstabs

Reports

Correlate

Reports

Analyze Graphs Utilities Window Help

Reports Descriptive Statistics

Compare <u>M</u>eans

<u>G</u>eneral Linear Model Correlate

Descriptive Statistics

General Linear Model

<u>M</u>eans...
 One-<u>S</u>ample T Test

; = >0

Compare Means

Descriptive Stat

Compare Means

General Linear Model

Analyze Graphs Utilities	<u>W</u> indow <u>H</u> elp
Reports	• <mark>⊨</mark>
Descriptive Statistics	Erequencies
Compare <u>M</u> eans	<u>D</u> escriptives
<u>G</u> eneral Linear Model	Explore
<u>C</u> orrelate	<u>C</u> rosstabs

े 🖪 🔌 🎯

One-Sample T Test

<u>M</u>eans.

Independent-Samples T Test,

- 6.2 การทดสอบค่าเฉลี่ย 1 กลุ่ม
 - Analyze / Compare Means / One-Sample T Test...
 - โล้อกตัวแปรไว้ในบ็อกซ์ของ Test Variable[s]
 - ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK
- 6.3 การทดสอบค่าเฉลี่ย 2 กลุ่มที่เป็นอิสระต่อกัน
 - Analyze / Compare Means / Independent-Samples T Test...
 - เลือกตัวแปรไว้ในบ็อกซ์ของ Test Variable[s] และ Grouping Variables
 - ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

6.4 การทดสอบค่าเฉลี่ย 2 กลุ่มที่มีความสัมพันธ์กัน

- Analyze / Compare Means / Paired-Samples T Test
- เลือกตัวแปรมาไว้ในบ็อกซ์ของ Paired Variables Analyze Graphs Utilities Window Help
- ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว 64

- Analyze / Compare Means / One-Way ANOVA...
- เลือกตัวแปรอย่างน้อย 2 ตัวไว้ในบ๊อกซ์ของ Dependent List และ Factor(s)
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Contrasts, Options...
- กำหนดการทดสอบหาคู่ที่ค่าเฉลี่ยต่างกัน Post Hoc
- เลือกป่ม OK

6.5 การวิเคราะห์ความแปรปรวนแบบจำแนกหลายเดียว

- Analyze / General Linear Model / Univariate...
- เลือกตัวแปรอย่างน้อย 2 ตัวไว้ในบ๊อกซ์ของ Dependent Variables และ Fixed Factor
- คำหนดรายละเอียดเพิ่มเติมที่บ๊อกซ์ Covariate[s] หรือ Options...
- ดำหนดการทดสอบหาคู่ที่ค่าเฉลี่ยต่างกัน Post Hoc
- เลือกปุ่ม OK

14

ें 🖪 🔌 🎯

Means One-<u>S</u>ample T Test..

Independent-Samples T Test

Paired-Samples T Test.

One-Way ANOVA

Reports

Correlate

Regression Loglinear

Descriptive Statistics Compare <u>M</u>eans

General Linear Model

7. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Correlate หรือ Regression

- 7.1 การหาความสัมพันธ์ของข้อมูลเชิงปริมาณ
 - Analyze / Correlate / Bivariate...
 - โล้อกตัวแปรไว้ในบ็อกซ์ของ Variables
 - โล้อกวิธีการวิเคราะห์ทางสถิติที่จะใช้ในส่วนของ Correlation Coefficients
 - โล้อกวิธีการทดสอบในส่วนของ Test of Significance
 - ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

7.2 การหาความสัมพันธ์บางส่วนของข้อมูลเชิงปริมาณ

- Analyze / Correlate / Partial..
- โลือกตัวแปรไว้ในบ็อกซ์ของ Variables และ Controlling for
- เลือกวิธีการทดสอบในส่วนของ Test of Significance...
- ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK

7.3 การพยากรณ์โดยวิธีวิเคราะห์การถดถอย

- Analyze / Regression / Linear...
- เลือกตัวแปรตามไว้ในบ็อกซ์ของ Dependent
- เลือกตัวแปรอิสระอย่างน้อย 1 ตัวไว้ในบ๊อกซ์ของ Independent[s]
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม WLS, Statistics, Plot, Save, Options
- เลือกปุ่ม OK
- 7.4 การเลือกรูปแบบของการพยากรณ์
 - Analyze / Regression / Curve Estimation...
 - เลือกตัวแปรตามไว้ในบ๊อกซ์ของ Dependent
 - โลือกตัวแปรอิสระไว้ในบ๊อกซ์ของ Independent
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม WLS, Statistics, Plot, Save, Options
 - เลือกปุ่ม OK

<u>Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

Reports

D<u>e</u>scriptive Statistics Compare <u>M</u>eans General Linear Model

<u>' 🖪 🔌 🄕</u>

Bivariate

- Window Help Reports <u>s vo</u> Descriptive Statistics Compare <u>M</u>eans <u>G</u>eneral Linear Model rade bor <u>C</u>orrelate Rearession 110 3.78 Loglinear 3.89 123 Classify Data Reductio 3.67 218 Sc<u>a</u>le <u>N</u>onpara Binomial.
- 8. การวิเคราะห์ข้อมูลด้วยเมนู Analyze / Nonparametric Tests
 8.1 การทดสอบอัตราส่วน
 - Analyze / Nonparametric Tests / Chi–Square...
 - เลือกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variable List
 - คำหนดค่าความถี่ใหม่ที่ต้องการไว้ในส่วนของ Expected Values
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

8.2 การทดสอบสัดส่วน

- Analyze / Nonparametric Tests / Binomial...
- โล้อกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variables List
- กำหนดค่าสัดส่วนใหม่ที่ต้องการไว้ในส่วนของ Test Proportion
- ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK

8.3 การทดสอบความเป็นตัวอย่างสุ่ม

- Analyze / Nonparametric Tests / Runs...
- โลือกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variable List
- โล้อกวิธีการแบ่งกลุ่มข้อมูลเพิ่มอีกในส่วนของ Cut Point
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK
- 8.4 การทดสอบรูปแบบการแจกแจงของข้อมูล
 - Analyze / Nonparametric Tests / 1-Sample K-S
 - โลือกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variable List
 - โล้อกวิธีการแบ่งกลุ่มข้อมูลเพิ่มอีกในส่วนของ Cut Point
 - กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

- Nonparametric Tests
 Chi-Square...

 Time Series
 Binomial...

 Survival
 Burs...

 Multiple Response
 1-Sample K-S...

 Missing Value Analysis...
 2 Independent Samples...

 K Independent Samples...
 K Independent Samples...
- 8.5 การทดสอบสำหรับข้อมูล 2 กลุ่มที่เป็นอิสระต่อกัน 💾
 - Analyze / Nonparametric Tests / 2 Independents Samples...
 - เลือกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variable List

<u>Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

16

- เลือกตัวแปรที่ต้องการเป็นตัวแบ่งกลุ่มไว้ในบ๊อกซ์ของ Grouping Variable
- เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Tvpe
- ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK

8.6 การทดสอบสำหรับข้อมูล k กลุ่มที่เป็นอิสระต่อกัน

- Analyze / Nonparametric Tests / k Independent Samples...
- โลือกตัวแปรที่ต้องการทดสอบไว้ในบ๊อกซ์ของ Test Variables List
- โล้อกตัวแปรที่ต้องการเป็นตัวแบ่งกลุ่มไว้ในบ๊อกซ์ของ Grouping Variable
- โล้อกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
- ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
- เลือกปุ่ม OK
- 8.7 การทดสอบสำหรับข้อมูล 2 กลุ่มที่มีความสัมพันธ์
 - Analyze / Nonparametric Tests / 2 Related Samples...
 - เลือกตัวแปรที่ต้องการทดสอบ 2 ตัวไว้ในบ๊อกซ์ของ Test Variable List
 - เลือกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
 - ดำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Options...
 - เลือกปุ่ม OK

8.8 การทดสอบสำหรับข้อมูล k กลุ่มที่มีความสัมพันธ์

- Analyze / Nonparametric Tests / k Related Samples...
- โลือกตัวแปรอย่างน้อย 2 ตัวแปรไว้ในบ๊อกซ์ของ Test Variable List
- โล้อกวิธีทางสถิติที่จะใช้ทดสอบในส่วนของ Test Type
- กำหนดรายละเอียดเพิ่มเติมที่ปุ่ม Statistics.....
- เลือกปุ่ม OK
- 9. การปรับปรุงข้อมูลด้วยเมนู Transform
- การเปลี่ยนค่าตัวแปรไว้ในตัวแปรเดิม 9.1
 - Transform / Recode / Into Same Variables
 - โล้อกตัวแปรที่ต้องการเปลี่ยนค่าไว้ในบ๊อกซ์ของ Variables

Into Same Variable:

Into Different Variable

<u>Transform</u> <u>Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp

Compute ..

Count.

Random Number Seed.

Categorize Variables..

Survival

2 Independent Samples. K Independent Samples

Nonnarametric Tests Chi-Square. Binomial Time Series <u>S</u>urvival Buns... Multiple Response 1-Sample K-S. 2 Independent Samples. Missing Value Analysis. K Independent Samples

- เลือกปุ่ม Old and New Values
 - 🔶 กำหนดค่าที่ต้องการเปลี่ยนในบ๊อกซ์ 🛛 Old Value
 - ♦ กำหนดค่าใหม่ที่จะแทนค่าเดิมในบ๊อกซ์ New Value
- เลือกปุ่ม Continue
- อ้ำต้องเปลี่ยนข้อมูลบางชุดให้เลือกที่ปุ่ม If...
- เลือกปุ่ม OK
- 9.2 การเปลี่ยนค่าตัวแปรไว้ในตัวแปรใหม่
 - Transform / Recode / Into Different Variables
 - โลือกตัวแปรที่ต้องการเปลี่ยนค่าไว้ในบ๊อกซ์ของ Variables
 - กำหนดชื่อตัวแปรใหม่ในบ๊อกซ์ของ Output Variable
 - กำหนดข้อความขยายชื่อตัวแปรไว้ในบ๊อกซ์ของ Label / เลือก Change
 - เลือกปุ่ม Old and New Values
 - ♦ กำหนดค่าที่ต้องการเปลี่ยนในบ๊อกซ์ Old Value
 - ิ ♦ กำหนดค่าใหม่ที่จะแทนค่าเดิมในบ๊อกซ์ New Value
 - เลือกปุ่ม Continue
 - ด้าต้องเปลี่ยนข้อมูลบางชุดให้เลือกที่ปุ่ม If...
 - เลือกปุ่ม OK
- 9.3 การสร้างตัวแปรใหม่จากการคำนวณและเงื่อนไข
 - Transform / Compute
 - ดำหนดชื่อตัวแปรใหม่ในบ๊อกซ์ของ Target Variable
 - ดำหนดนิพจน์ทางคณิตศาสตร์ไว้ในบ๊อกซ์ของ Numeric Expression
 - ถ้าต้องการสร้างตัวแปรใหม่
 แบบมีเงื่อนไขให้เลือกที่ปุ่ม IF...
 - เลือกปุ่ม OK

 Iransform
 Analyze
 Graphs
 Utilities
 Window
 Help

 Compute...
 Bandom Number Seed...
 Image: Compute Seed...
 Image: Compute Seed...
 Image: Compute Seed...

 Recode
 Into Same Variables...
 Into Different Variables...

 Iransform
 Analyze
 Graphs
 U

 Compute...
 ...
 ...
 Random Number Seed...

.

18

10. การเปิด Windows หลายแบบพร้อมกัน

เมื่อเริ่มใช้โปรแกรม SPSS ครั้งแรกของการเรียกโปรแกรมขึ้นมาจะปรากฏ SPSS for Windows Data Editor เมื่อทำการวิเคราะห์ข้อมูลจะเกิด Window SPSS for Windows Viewer ถ้าต้องการเปิด Window อื่นๆ เพิ่มเติม สามารถทำได้ดังนี้

คลิกที่เมนู File และเลือกรายการ New จะมีชนิดของ Window ให้เลือก 5 ชนิดคือ

11. การบันทึกข้อมูลใน Windows

ผู้ใช้สามารถบันทึกข้อมูลใน Window ที่ถูกเปิดขึ้นมาใช้งาน โดยบันทึกไว้ในรูปของแฟ้ม ซึ่ง โปรแกรม SPSS ได้จัดแบ่งประเภทของแฟ้มดังนี้

ชนิดแฟ้มของ Window	ส่วนขยายของแฟ้ม
SPSS for Windows Data Editor	*.SAV
SPSS for Windows Viewer	*.SPO
SPSS for Windows Syntax Editor	*.SPS
SPSS Script window	*.SBS
SPSS for Windows Chart Editor	*.SCT

การบันทึกข้อมูลที่อยู่ใน Window ใดๆ สามารถดำเนินการได้ดังนี้

เลือก Window ที่จะบันทึกข้อมูลโดยการใช้ เมาส์คลิกบริเวณใดๆ ใน Window ที่ต้องการ
 จะปรากฏแถบแสงที่ชื่อ Window นั้น เปิดเมนู File และเลือกรายการใดรายการหนึ่ง

- Save ชื่อชนิดของ Window สำหรับบันทึกภายใต้ชื่อแฟ้มเดิมที่เคยบันทึกไว้แล้ว
- Save as สำหรับการบันทึกภายใต้ชื่อแฟ้มใหม่
- กำหนดชื่อ ตำแหน่งไดรฟ์ ประเภทของแฟ้ม
- เลือกปุ่ม Save

12. การเปิดแฟ้มข้อมูล

แฟ้มข้อมูลของ Window ที่ถูกบันทึกไว้แล้วเมื่อต้องการนำมาใช้ต้องทำดังนี้

คลิกเมนู File และเลือกรายการ Open จะปรากฏรายการให้เลือกตามชนิดของ Window ต่างๆ ในความหมายของต่อไปนี้

- Data สำหรับเปิด SPSS for Windows Data Editor
- Syntax สำหรับเปิด SPSS for Windows Syntax Editor
- 💿 Output สำหรับเปิด SPSS for Windows Viewer
- Draft Output สำหรับเปิด SPSS for Windows Viewer ที่เป็นข้อความ
- Script สำหรับเปิด SPSS for Windows ที่จัดการเกี่ยวกับโปรแกรม
- พิมพ์ชื่อที่ต้องการ แล้วคลิก Open

13. การบันทึกข้อมูล

การบันทึกข้อมูลใน Window มีขั้นตอนที่สำคัญดังนี้

- เลือกชนิด Window ที่ต้องการบันทึกข้อมูลเช่น Data , Output , Syntax , ...
- เลือกเมนู File
- เลือกรายการ Save หรือ Save as
- กำหนดชื่อแฟ้ม และตำแหน่งที่จะบันทึกตามความต้องการ
- เลือกปุ่ม Save

1.6 Icon บนเมนูบาร์กับการทำงานของ SPSS for Windows

 e	🞬 example4 - SPSS for Windows Data Editor														
<u>F</u> ile	<u>E</u> di	it <u>V</u>	iew	<u>D</u> ata	<u>T</u> ransl	form	<u>A</u> nal	lyze	<u>G</u> raph	s <u>U</u>	tilities	<u>W</u> in	idow	<u>H</u> elp	I
Ē		9	<u>.</u>	cu l	<u>iii.</u>	*	!?	酋		Ě		⊡	T.	<u> </u>	9
Τ															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10

SPSS for Windows Data Editor

- 1. เปิดแฟ้มข้อมูล
- 3. พิมพ์ข้อมูล
- 5. Undo
- 7. ไปหาค่าสังเกตที่ต้องการ
- 9. คันหาข้อมูล
- 11. แทรกตัวแปร
- 13. กำหนดตัวแปรน้ำหนัก
- 15. แสดงผลเป็น Value Label หรือค่าตัวเลข 16.

- 2. Save ข้อมูล
- 4. ดูบันทึกคำสั่งล่าสุดที่วิเคราะห์ข้อมูล
- 6. ไป Windows chart Editor
- 8. แสดงรายละเอียดของตัวแปร
- 10. แทรกค่าสังเกต
- 12. แยกแฟ้มเป็น 2 ส่วน
- 14. Select Case

Use set

SPSS for Windows Viewer

1 0	utpul	2 - SP	SS for	Window	s Viewer				
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>I</u> nsert	F <u>o</u> rmat	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	$\underline{W} indow$	<u>H</u> elp
È		9 Q	9	<u> </u>		- [?] (<u>ک</u> ا	<u>.</u>	+ +
		1	2		3				

1. พิมพ์ Output ดูแบบ Preview

3. กลับไปที่ SPSS for Windows Data Editor

2. Export Output

SPSS for Windows Chart Editor

👬 C	hart 1	- SPS	6 for Wi	ndows	Chart I	Editor							
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>G</u> allery	<u>C</u> hart	<u>S</u> eries	F <u>o</u> rma	at	<u>A</u> naly:	ze	<u>G</u> raphs	<u>H</u> elp		
<u> </u>		يا ե			• ×	1	ш		~	т	🔼 💕 🛁	Å	ý.
<u> </u>									Ι				
1	2			3	4	5	6	7	8	9	10		

- 1. ดูบันทึกคำสั่งล่าสุดที่วิเคราะห์ข้อมูล
- 3. กำหนดรูปแบบการแรเงากราฟ
- 5. กำหนดชนิดของเส้น
- 7. กำหนดชนิดของ Bar graph Label
- 9. กำหนดชนิดของตัวอักษร

SPSS for Windows Syntax Editor

- 2. สั่งให้โปรแกรมใน Syntax Editor ทำงาน
- 3. สั่งให้ Syntax ทำงานโดยเริ่มต้นที่บรรทัดที่ Cursor อยู่

1. เปิดแฟ้มชนิด Syntax

เปิดแฟ้มตามชนิดของ Windows ขณะนั้น

พิมพ์ข้อมูลของ Windows ขณะนั้น

บันทึกข้อมูลตามชนิดของ Windows ขณะนั้น

4. กำหนดสีของกราฟ

2. กลับไปที่ SPSS for Windows Data Editor

- 6. กำหนดชนิดของ Bar graph
- 8. เลือกชนิดของกราฟเส้น
- 10. หมุนกราฟ

บทที่ 2

แบบสอบถามและการสร้างแฟ้มของมูล

สิ่งที่สำคัญของผู้ที่ต้องการวิเคราะห์ข้อมูลต้องทำคือ การวางแผนเก็บข้อมูล การออกแบบรูป แบบของแบบสอบถาม การแปลความหมายของแบบสอบถามเพื่อเป็นข้อมูลของการวิเคราะห์ ด้วยโปรแกรม SPSS for Windows ตัวอย่างเช่น บริษัทแห่งหนึ่งต้องการเก็บรวบรวมข้อมูลและ วิเคราะห์ข้อมูลของพนักงานเกี่ยวกับ เพศ อายุ ระดับการศึกษา สถานะภาพการแต่งงาน เงิน เดือน ระดับคะแนนผลการเรียนเมื่อจบการศึกษา และ เงินตอบแทนประจำปี จึงทำการออกแบบ ของแบบสอบถามดังนี้

แบบสอบถามข้อมูลพนักงาน

•	S	Y	y a	ิย
สาห	รบ	เจาเ	งนาท่	กรอกขอมูล

1.	เลขประจำตัว		
2.	เพศ 🗋 ชาย	🗖 หญิง	
3.	ิอายุ	ปี	
4.	ระดับการศึกษา		
	🗖 ต่ำกว่าระดับปริญญาตรี	🗖 จบระดับปริญญาตรี	
	🗖 จบระดับปริญญาโท	🗖 จบระดับปริญญาเอก	
5.	สถานะภาพ		
	🗖 โสด	🗖 แต่งงานแล้ว	
	🗖 เป็นหม้าย	🗖 หย่าร้าง	
6.	เงินเดือน	บาท	
7.	ระดับคะแนน		
8.	เงินตอบแทนประจำปี	บาท	

ข้อกำหนดในการสร้างแฟ้มข้อมูล

จากแบบสอบถามที่ผู้ที่ต้องการวิเคราะห์ข้อมูล เมื่อต้องการจะทำเป็นข้อมูลสำหรับ SPSS for Windows ต้องทำการกำหนดค่าต่างๆ เช่น ชื่อแฟ้ม (file name) ชื่อตัวแปร (variable name) ชนิดของค่าตัวแปร กำหนดค่าข้อมูลที่ไม่สมบูรณ์ (missing value) คำอธิบายความหมายของชื่อ ตัวแปร (variable label), คำอธิบายความหมายของค่าตัวแปร (value label)

ข้อ	อกำหนดของแฟ้มข้อมูลา์	ที่เราต้องการเป็นดังนี้	ชื่อแฟ้มข้	้อมูล	Example4.sav
1.	เลขประจำตัว	กำหนดชื่อตัวแปร		id	
		กำหนดชนิดของข้อมูล		จำนว	นเต็ม 3 หลัก
		ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่เ	สมบูรณ์	ไม่มี	
		คำอธิบายความหมายของชื่อตัวแ	ปร	ไม่มี	
		คำอธิบายความหมายของค่าตัวแ	.ปร	ไม่มี	
2.	เพศ	กำหนดชื่อตัวแปร		sex	
		กำหนดชนิดของข้อมูล		จำนว	นเต็ม 1 หลัก
		ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่เ	สมบูรณ์	9	
		คำอธิบายความหมายของชื่อตัวแ	ปร	ไม่มี	
		คำอธิบายความหมายของค่าตัวแ	ปร	1. Ma	ale 2. Female
3.	อายุ	กำหนดชื่อตัวแปร		age	
		กำหนดชนิดของข้อมูล		จำนว	นเต็ม 2 หลัก
		ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่เ	สมบูรณ์	99	
		คำอธิบายความหมายของชื่อตัวแ	ปร	ไม่มี	
		คำอธิบายความหมายของค่าตัวแ	ปร	ไม่มี	
4.	ระดับการศึกษา	กำหนดชื่อตัวแปร		educ	
		กำหนดชนิดของข้อมูล		จำนว	นเต็ม 1 หลัก
		ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่เ	สมบูรณ์	9	
		คำอธิบายความหมายของชื่อตัวแ	เปร	Level	of education
		คำอธิบายความหมายของค่าตัวแ	ปร		

บทที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม

	1. Under graduate	2. Graduate
	3. Post graduate	4. Doctorate
5. สถานะภาพ	กำหนดชื่อตัวแปร	status
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 1 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9
	คำอธิบายความหมายของชื่อตัวแปร	
	คำอธิบายความหมายของค่าตัวแปร	
	1. single	2. Married
	3. Widowhood	4. Divorce
6. เงินเดือน	กำหนดชื่อตัวแปร	income
	กำหนดชนิดของข้อมูล	จำนวนเต็ม 4 หลัก
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9999
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	ไม่มี
7. ระดับคะแนน	กำหนดชื่อตัวแปร	grade
	กำหนดชนิดของข้อมูล	จำนวนจริง xxx.xx
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	9.99
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	ไม่มี
8. เงินตอบแทนประจำปี	กำหนดชื่อตัวแปร	bonus
	กำหนดชนิดของข้อมูล	จำนวนจริง xxxxxx.xx
	ค่าที่กำหนดให้สำหรับข้อมูลที่ไม่สมบูรณ์	ไม่มี
	คำอธิบายความหมายของชื่อตัวแปร	ไม่มี
	คำอธิบายความหมายของค่าตัวแปร	ไม่มี
คำแนะนำสำหรับเจ้าหน้าท	กี่พิมพ์ข้อมูล	
1. เลขประจำตัว	พิมพ์ข้อมูลตามค่า	จริงจากแบบสอบถาม
2. เพศ 🔲 ชาย	พิมพ์ข้อมูลเป็นเลข	11

บทที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม

	D หเ	ญิง	พิมพ์ข้อมูลเป็นเลข 2	
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ห้พิมพ์ข้อมูลเป็นเลข 9	
3.	อายุ		พิมพ์ข้อมูลตามค่าจริงจากแบบส	้อบถาม
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ร้พิมพ์ข้อมูลเป็นเลข 99	
4.	ระดับการศึกษา	🗖 ต่ำกว่าระดับปริญญาตรี	พิมพ์ข้อมูลเป็นเลข 1	
		🗖 จบระดับปริญญาตรี	พิมพ์ข้อมูลเป็นเลข 2	
		🗖 จบระดับปริญญาโท	พิมพ์ข้อมูลเป็นเลข 3	
		🗖 จบระดับปริญญาเอก	พิมพ์ข้อมูลเป็นเลข 4	
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ร้พิมพ์ข้อมูลเป็นเลข 9	
5.	สถานะภาพ	🗖 โสด	พิมพ์ข้อมูลเป็นเลข 1	
		🗖 แต่งงานแล้ว	พิมพ์ข้อมูลเป็นเลข 2	
		🗖 เป็นหม้าย	พิมพ์ข้อมูลเป็นเลข 3	
		🗖 หย่าร้าง	พิมพ์ข้อมูลเป็นเลข 4	
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ร้พิมพ์ข้อมูลเป็นเลข 9	
6.	เงินเดือน		พิมพ์ข้อมูลตามค่าจริง	
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ห้พิมพ์ข้อมูลเป็นเลข 9999	
7.	ระดับคะแนน		พิมพ์ข้อมูลตามค่าจริงจากแบบส	้อบถาม
	หมายเหตุ	ไม่ตอบ หรือ ข้อมูลไม่สมบูรณ์ให้	ห้พิมพ์ข้อมูลเป็นเลข 9.99	
8.	เงินตอบแทนปร	ะจำปี	พิมพ์ข้อมูลตามค่าจริงจากแบบส	้อบถาม
ตัว	ออย่างแบบสอบ	เถามข้อมูลพนักงานที่กร _้ อกแส่	้ำว	
			สำหรับเจ้าหน้าที่กร	รอกข้อมูล
1.	เลขประจำตัว			
2.	เพศ 🗹 ช	าย 🔲 หญิง		
3.	ิอาย ุ 37 ปี			
4.	ระดับการศึกษา — เ			
	🗖 ต่ำกว่าระ	ะดับปริญญาตรี 🛛 🗹 จบร	ระดับปริญญาตรี	
	🔲 จบระดับ	ปริญญาโท 🗖 จบระ	ะดับปริญญาเอก	

บทที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม 5. สถานะภาพ 🗋 โสด 🗋 แต่งงานแล้ว 🗖 เป็นหม้าย 🛛 🗹 หย่าร้าง เงินเดือน 5500 บาท 7. ระดับคะแนน 3.78 8. เงินตอบแทนประจำปี 11000.00 บาท การสร้างแฟ้มข้อมูลใน SPSS for Windows Data Editor 2.1 เริ่มต้นการสร้างแฟ้มข้อมูลที่ SPSS for Windows Data Editor Intitled - SPSS for Windows Data Edito <u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u> var var var var var **ขั้นที่ 1** คลิกที่ <u>D</u>ata 🛗 Untitled - SPSS for Windows <u>File Edit View Data Iransform Analyze</u> <u>G</u>raphs <u>U</u>tilities <u>W</u>indow <u>H</u>elp <u>D</u>efine Variable. 2 🕒 🗐 🖷 Define Dates... Templates... Insert <u>V</u>ariable var var var var Insert Case

Go to Case..

Weight Cases.

2	S <u>o</u> rt Cases	
3	Tra <u>n</u> spose Merge Files	•
4	<u>Agg</u> regate Orthogonal Design	
5	 Split File	-
6	Select <u>C</u> ases	

ขั้นที่ 2 คลิกที่ Define Variable..

🛗 Untitled - SPSS for Windows Data Ed	litor		
<u>File E</u> dit <u>V</u> iew <u>Data</u> <u>T</u> ransform <u>A</u> nalyze	e <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp
Define Variable □ Define Variable	4		<u></u>
<u>I</u> emplates			
Insert <u>V</u> ariable var	var	var	var
1 Go to Ca <u>s</u> e			

จะได้เมนูย่อยเป็น	Define Variable
л	Variable Name: VAR00001
	Variable Description
	Type: Numeric8.2
	Variable Label:
	Missing None
	Alignment: Right
	Change Settings Type <u>Labels</u> Column <u>Format</u>
	Measurement
	OK Cancel Help

หมายเหต	າ Variable Name	พิมพ์ชื่อตัวแปร
	Туре	กำหนดชนิดตัวแปรให้เป็น ตัวเลข , ข้อความ
	Missing Values	กำหนดลักษณะของข้อมูลที่ไม่สมบูรณ์
	Label	กำหนดคำอธิบายให้กับตัวแปร และค่าของตัวแปร
	Column Format	กำหนดความกว้าง column , จัดชิดซ้าย , ขวา , กลาง
	Measurement	กำหนดลักษณะข้อมูลเป็น Scale , Ordinal , Nominal
อ้ บที่ 3	พิมพ์สื่อตัวแปร id ที่ส่อง	Variable Name Define Variable

.

ขั้นที่ 3 พิมพ์ชื่อตัวแปร id ที่ช่อง Variable Name

ขั้นที่ 4 คลิกที่ Type.. เพื่อกำหนดชนิดข้อมูล

Define Variable Type:		x
Numeric Dot Scientific notation Date Dolar Custom currency String	<u>W</u> idth: <mark>8</mark> Decimal <u>P</u> laces: 2	Continue Cancel Help

, numo	
	⊻ariable Name: id
	└ Variable Description
	Type: Numeric8.2
	Variable Label:
	Missing None
	Alignment: Bight
	Change Settings
มูล	Type Migsing Values
X	Labels Column Format
tinue	Measurement
ncel	€ S <u>c</u> ale С <u>O</u> rdinal С <u>N</u> ominal
elp .	OK Cancel Help

บทที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม

เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 3 และ Decimal <u>P</u>laces เป็น 0

Define Variable Type:		×
<u>Numeric</u> <u>Comma</u> <u>Dot</u> <u>Scientific notation</u> <u>Date</u> Dollar Cystom currency String	<u>W</u> idth: <mark> 3_</mark> Decimal <u>P</u> laces: 0	Continue Cancel Help

คลิก Continue จะกลับไปที่เมนูย่อย ให้คลิกที่ OK จะได้ผลดังนี้

-								
🛅 U	ntitle	ed - 9	SPSS for W	/indows	Data Edito	r I		
<u>F</u> ile	<u>E</u> dit	<u>∨</u> ie	w <u>D</u> ata <u>I</u>	ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp	
Ē	6							
		id	var		var	var	var	var
	1							
;	2							
-	-					•		1

ขั้นที่ 5 การกำหนดตัวแปร sex ให้เลื่อน pointer มาที่ column ที่ 2

🎬 Untitled - SPSS for Windows Data Editor									
<u>F</u> ile	<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp								
≥ ∎@ <u>-</u> <u>-</u> <u>+</u> <u>0</u> <u>4</u> <u>4</u> <u>1</u> <u>8</u> <u>0</u> <u>0</u>									
		id	`	/ar	var	va	г	var	var
1	1		,	<u>۲</u>					
2	2								
					1				

คลิกที่ Data และ คลิกที่ Define Variable.. จะได้เมนูย่อย หมายเหตุ กดดับเบิลคลิกที่ column ที่ 2 ก็จะได้เมนูย่อยเหมือนกัน

Define ¥ariable		×
<u>V</u> ariable Name:	VAR00001	
🗆 Variable Descri	ption	
Туре:	Numeric8.2	
Variable Label:		
Missing	None	
Alignment:	Right	
_	Туре	Missing Values
Change Setting	s Tupe	Missing Values
	Labels	Column Format
_ Measurement -		
G Scale	C Ordina	L C Nominal
** SUdie		

บทที่ 2 การสร้างแฟ้มข้อมูลและแบบสอบถาม

พิมพ์ชื่อตัวแปร sex

30

efine Variable		
⊻ariable Name:	sex	_
- Variable Descri	ption	
Туре:	Numeric8.2	
Variable Label:		
Missing	None	
Alignment:	Right	
_	Туре	Missing Values
		Missing Values
_	Labels	Column <u>F</u> ormat
-Measurement-		
	С <u>O</u> rdina	C Nominal

ขั้นที่ 6 กำหนดชนิดของตัวแปร sex โดยการคลิกที่ Type..

Define Variable Type:		×
 <u>■ Numeric</u> <u>□</u>comma <u>□</u> Dot <u>S</u>cientific notation 	<u>W</u> idth: <mark>8</mark> Decimal <u>P</u> laces: 2	Continue Cancel Help

เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 1 และ Decimal <u>P</u>laces เป็น 0

Define Variable Type:		×
		Continue
C Dot	<u>W</u> idth: 1	Cancel
C Scientific notation	Decimai <u>Fraces</u> , Ju	Help

คลิก Continue จะกลับไปที่เมนูย่อย จะเห็นว่า Type กลายเป็น Numeric 1.0

efine Variable			1
<u>V</u> ariable Name	sex	_	
- Variable Desci	ription		
Туре:	Numeric1.0 ←		
Variable Label	Ŀ		
Missing	None		
Alignment:	Right		
<u>.</u>	lype	Missing Values	
	Labels	Column <u>F</u> ormat	
- Measurement- ເຈັ S <u>c</u> ale	<u>⊂</u> <u>O</u> rdinal	⊂ <u>N</u> ominal	
ขั้นที่ 7 กำหนด Missing Value

โดยการคลิกที่ Missing Value.. จะได้เมนูย่อยเป็น

Define Missing	Values:	×
🕫 <u>N</u> o missing v	alues	Continue
C Discrete miss	sing values	Cancel
I	1 1	Help
C <u>B</u> ange of mis	sing values	
Low:	<u>H</u> igh:	-
C Range plus of	one discrete missing value	•
Low:	High:	-
Di <u>s</u> crete valu	e:	

Continue

Cancel

Help

Define Missing Va

9

C No missing values

Discrete missing values

<u>Ange of missing values</u>

 <u>Low:</u>
 <u>High:</u>

 <u>High:</u>

 <u>High:</u>

 <u>Low:</u>

 <u>High:</u>

 <u>Discrete value:</u>

- Г

เลือกชนิดเป็น Discrete missing value.. และพิมพ์ค่าในช่องเป็นเลข 9

ต่อไปคลิก Continue จะกลับไปที่เมนูย่อย จะเห็นว่า Missing เป็นเลข 9 แล้ว

v anabie Malli	e: sex
Variable Desi	cription
Туре:	Numeric1.0
Variable Lab	el:
Missing	9 <
Alignment:	Right
-	Type Missing Values Labels. Column Format
Measurement	

ขั้นที่ 7 การกำหนดคำอธิบายเกี่ยวกับตัวแปร

ให้คลิกที่ <u>L</u>abel.. จะได้เมนูย่อยเป็น

Define Labels:	×
⊻ariable Label:	Continue
┌ Value Labels	Cancel
Value:	Help
Valu <u>e</u> Label:	
Add	
Change	
Bemove	
]

31

- **ขั้นที่ 7.1** ไปที่ช่อง Value พิมพ์ค่า 1 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label
- **ขั้นที่ 7.2** พิมพ์ความหมายของค่า เป็น Male เสร็จแล้วคลิกที่ Add

Define Labels:	x
⊻ariable Label:	Continue
Value Labels	Cancel
Value:	Help
Valu <u>e</u> Label:	
Add 1="Male"	
Change	
<u>R</u> emove	
,	

- **ขั้นที่ 7.3** ไปที่ช่อง Value พิมพ์ค่า 2 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label
- **ขั้นที่ 7.4** พิมพ์ความหมายของค่าเป็น Female เสร็จแล้วคลิกที่ Add

Define Labels:	>
⊻ariable Label:	Continue
Value Labels	Cancel
Value:	
Value Label:	
Add 1 = "Male" 2 = "Female"	
<u>R</u> emove	

คลิก Continue จะได้เมนูย่อยเป็น

efine Variable			
<u>V</u> ariable Name:	sex	_	
– Variable Descrip	ption		
Туре:	Numeric1.0		
Variable Label:			
Missing	9		
Alignment:	Right		
	Labels.	Column <u>F</u> ormat	
measurement -			
r Scale	⊂ <u>O</u> rdinal	С <u>N</u> ominal	

การกำหนดความกว้างของ column ให้คลิกที่ Column Format จะได้เมนูย่อยเป็น

Define Column Format:					
Column <u>W</u> idth:	Continue				
Text Alignment	Cancel				
↓ Lert ↓ Lenter ↓ Hight	Help				

ลิวกด Define Labels:

เปลี่ยนค่า Column Width เป็น 3

Continue
Cancel
Help

เสร็จแล้วคลิก continue และ OK ตามลำดับ จะได้ผลดังนี้

🛗 Untitled - SPSS for Windows Data Editor									
<u>File Edit View Data Iransform Analyze Graphs Utilities Window Help</u>									
<u> </u>	ĕ∎# ¤ ∽ ⊾ ⊾ № M <u>4</u>1 ∰ ⊞ 1 ₽∏ ⊗⊘								
	id	sex	var	var	var	var			
1									
2									

ขณะนี้เรากำหนดค่าต่างๆ เกี่ยวกับตัวแปร sex เสร็จแล้ว

ในทำนองเดียวกันการกำหนดค่าเกี่ยวกับตัวแปรอื่นๆ สามารถทำได้ตามขั้นตอนโดยย่อดังนี้ การกำหนดตัวแปร อายุ age

ขั้นที่ 8 คลิกที่ Data และ คลิกที่ Define Variable..

ขั้นที่ 8.1 พิมพ์ชื่อตัวแปร age

ขั้นที่ 8.2 กำหนดชนิดของตัวแปร age โดยการคลิกที่ Type..

เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 2 และ Decimal <u>P</u>laces เป็น 0

ขั้นที่ 8.3 กำหนด Missing Value.. โดยการคลิกที่ Missing Value..

เลือกชนิดเป็น Discrete missing value.. และพิมพ์ค่าในช่องเป็นเลข 99

ขั้นที่ 8.4 กำหนดความกว้างของ column ให้คลิกที่ Column Format

เปลี่ยนค่า Column Width เป็น 3

การกำหนดตัวแปร ระดับการศึกษา educ

ขั้นที่ 9 คลิกที่ Data และ คลิกที่ Define Variable..

ขั้นที่ 9.1 พิมพ์ชื่อตัวแปร educ

ขั้นที่ 9.2 กำหนดชนิดของตัวแปร educ โดยการคลิกที่ Type..

เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 1 และ Decimal <u>P</u>laces เป็น 0

ขั้นที่ 9.3 กำหนด Missing Value.. โดยการคลิกที่ Missing Value..

เลือกชนิดเป็น Discrete missing value.. และพิมพ์ค่าในช่องเป็นเลข 9 ข**ั้นที่ 9.4** การกำหนดคำอธิบายเกี่ยวกับตัวแปรให้คลิกที่ Label..

ขั้นที่ 9.4.1 ไปที่ช่อง Variable Label พิมพ์ Lavel of education

- **ขั้นที่ 9.4.2** ไปที่ช่อง Value พิมพ์ค่า 1 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Under graduate เสร็จแล้วคลิกที่ Add
- **ขั้นที่ 9.4.3** ไปที่ช่อง Value พิมพ์ค่า 2 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Graduate เสร็จแล้วคลิกที่ Add
- **ขั้นที่ 9.4.4** ไปที่ช่อง Value พิมพ์ค่า 3 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Post graduate เสร็จแล้วคลิกที่ Add
- **ขั้นที่ 9.4.5** ไปที่ช่อง Value พิมพ์ค่า 4 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Doctorate เสร็จแล้วคลิกที่ Add

ขั้นที่ 9.5 กำหนดความกว้างของ column ให้คลิกที่ Column Format เปลี่ยนค่า Column Width เป็น 4

การกำหนดตัวแปร สถานะภาพ status

- ขั้นที่ 10. คลิกที่ Data และ คลิกที่ Define Variable..
 - **ขั้นที่ 10.1** พิมพ์ชื่อตัวแปร status
 - **ขั้นที่ 10.2** กำหนดชนิดของตัวแปร status โดยการคลิกที่ **Type**.. เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 1 และ Decimal <u>P</u>laces เป็น 0
 - **ขั้นที่ 10.3** กำหนด Missing Value.. โดยการคลิกที่ **Missing Value..** เลือกชนิดเป็น **Discrete missing value**.. และพิมพ์ค่าในช่องเป็นเลข 9
 - **ขั้นที่ 10**.4 การกำหนดคำอธิบายเกี่ยวกับตัวแปรให้คลิกที่ <u>L</u>abel..
 - **ขั้นที่ 10.4.1** ไปที่ช่อง Value พิมพ์ค่า 1 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Single เสร็จแล้วคลิกที่ Add
 - **ขั้นที่ 10.4.2**ไปที่ช่อง Value พิมพ์ค่า 2 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Married เสร็จแล้วคลิกที่ Add
 - **ขั้นที่ 10.4.3** ไปที่ช่อง Value พิมพ์ค่า 3 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Widowhood เสร็จแล้วคลิกที่ Add

ขั้นที่ 10.4.4 ไปที่ช่อง Value พิมพ์ค่า 4 เสร็จแล้วกด Tab เพื่อไปที่ช่อง Value Label พิมพ์ความหมายของค่าเป็น Divorce เสร็จแล้วคลิกที่ Add

ขั้นที่ 10.5 กำหนดความกว้างของ column ให้คลิกที่ Column Format เปลี่ยนค่า Column Width เป็น 5

การกำหนดตัวแปร เงินเดือน income

ขั้นที่ 11 คลิกที่ Data และ คลิกที่ Define Variable..

- **ขั้นที่ 11.1** พิมพ์ชื่อตัวแปร income
- **ขั้นที่ 11.2** กำหนดชนิดของตัวแปร income โดยการคลิกที่ **Type**.. เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 4 และ Decimal <u>P</u>laces เป็น 0
- **ขั้นที่ 11.3** กำหนด Missing Value.. โดยการคลิกที่ **Missing Value**.. เลือกชนิดเป็น **Discrete missing value**.. และพิมพ์ค่าในช่องเป็นเลข 9999
- **ขั้นที่ 11.4** กำหนดความกว้างของ column ให้คลิกที่ Column Format เปลี่ยนค่า Column Width เป็น 6

การกำหนดตัวแปร ระดับคะแนน grade

- ขั้นที่ 11 คลิกที่ Data และ คลิกที่ Define Variable..
 - **ขั้นที่ 11.1** พิมพ์ชื่อตัวแปร grade
 - **ขั้นที่ 11.2** กำหนดชนิดของตัวแปร grade โดยการคลิกที่ **Type.**. เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 6 และ Decimal <u>P</u>laces เป็น 2
 - **ขั้นที่ 11.3** กำหนด Missing Value.. โดยการคลิกที่ **Missing Value..** เลือกชนิดเป็น **Discrete missing value**.. และพิมพ์ค่าในช่องเป็นเลข 9.99
 - **ขั้นที่ 11.4** กำหนดความกว้างของ column ให้คลิกที่ Column Format เปลี่ยนค่า Column Width เป็น 6

การกำหนดตัวแปร เงินตอบแทนประจำปี bonus

ขั้นที่ 12 คลิกที่ Data และ คลิกที่ Define Variable..

- **ขั้นที่ 12**.1 พิมพ์ชื่อตัวแปร bonus
- ขั้นที่ 12.2 กำหนดชนิดของตัวแปร bonus โดยการคลิกที่ Type..

เลือกชนิดเป็น <u>N</u>umeric เปลี่ยน <u>W</u>idth เป็น 9 และ Decimal <u>P</u>laces เป็น 2

ขั้นที่ 12.3 กำหนดความกว้างของ column ให้คลิกที่ Column Format

เปลี่ยนค่า Column Width เป็น 10

ผลบนจอภาพเมื่อกำหนดค่าต่างๆ เสร็จแล้วคือ

🎬 Untitled - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	<u>File Edit View D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
<u> </u>	* 								
	id	sex	age	educ	status	income	grade	bonus	
1									
2									

จากข้อมูลที่เก็บมาได้ของพนักงาน 50 คน ได้ข้อมูลดังนี้

id	sex	age	educ	status	income	grade	bonus
1	1	37	2	4	5500	3.78	11000.00
2	2	29	3	1	4100	3.89	12300.00
3	2	48	1	2	5400	3.67	21600.00
4	1	99	1	2	9999	2.78	19998.00
5	2	33	2	9	9999	3.00	29997.00
6	2	45	3	4	8300	3.45	16600.00
7	2	38	1	4	7700	3.89	7700.00
8	2	23	3	1	3900	3.67	11700.00
9	1	34	2	4	4500	2.56	9000.00
10	1	50	2	2	6700	2.69	6700.00
11	2	43	2	2	4700	3.56	18800.00
12	2	37	3	2	3900	3.00	3900.00
13	1	24	2	1	3300	2.45	9900.00
14	1	46	2	2	4900	2.45	14700.00
15	1	32	1	1	4000	3.87	8000.00
16	1	42	2	3	6600	3.67	13200.00
17	1	38	4	2	8000	3.23	32000.00
18	2	41	2	3	7000	3.45	21000.00
19	2	99	1	9	2000	3.21	2000.00
20	1	54	2	2	7400	3.00	22200.00
21	2	32	3	9	6200	2.56	24800.00
22	1	43	1	2	4700	2.45	18800.00
23	2	22	1	1	3400	3.78	3400.00
24	1	40	2	2	5900	2.67	17700.00
25	1	37	4	9	7500	3.45	22500.00
26	1	28	1	1	3100	2.78	9300.00

27	1	44	3	2	6800	2.56	13600.00
28	1	56	2	2	6400	2.78	19200.00
29	1	35	3	1	5800	3.33	5800.00
30	2	42	1	2	3900	2.56	11700.00
31	1	21	2	1	4700	2.67	14100.00
32	1	39	2	2	5900	2.89	17700.00
33	1	45	1	2	4900	2.56	4900.00
34	1	31	1	2	3100	3.23	9300.00
35	1	51	2	3	5400	3.01	5400.00
36	1	23	3	1	6300	2.77	12600.00
37	1	40	3	2	7100	2.89	21300.00
38	1	47	2	3	6600	2.77	19800.00
36	1	53	2	2	7200	2.31	21600.00
40	2	27	2	1	1700	2.67	5100.00
41	1	29	4	1	5000	2.89	15000.00
42	1	40	3	2	6000	3.67	18000.00
43	2	30	1	1	3000	2.56	12000.00
44	2	53	2	2	4700	3.00	9400.00
45	1	31	1	1	2800	2.74	5600.00
46	1	45	2	2	5700	2.67	22800.00
47	1	22	2	4	4300	3.07	4300.00
48	2	34	1	1	3900	2.56	7800.00
49	2	33	3	2	6700	2.12	20100.00
50	1	54	2	2	4800	2.66	19200.00

เมื่อพิมพ์ข้อมูลเสร็จแล้วจะได้ผลเป็น

<mark>⊞Untitled - SPSS for Windows Data Editor</mark> Eile <u>E</u> dit <u>V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
	id sex age educ status income grade bonus									
1	1	1	37	2	4	5500	3.78	11000.00		
2	2	2	29	3	1	4100	3.89	12300.00		
3	3	2	48	1	2	5400	3.67	21600.00		

2.2 การบันทึกแฟ้มข้อมูล

ขั้นที่ 1 คลิก File / Save

	onaue	u - JI ,	J J 101		
<u>E</u> il	e <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs
	<u>N</u> ew			•	[2] #4 ×≣ r
	<u>0</u> pen			Ctrl+O	
	Data <u>b</u> a	ise Capt	ure	•	
	<u>R</u> ead T	ext Dat	a		: status
	<u>S</u> ave			Ctrl+S	
_	Save <u>A</u>	S			1 1
จะได้เมนูย่อย	Save Data Save jn: File <u>n</u> ame: Save as <u>type</u>	a As	ocuments	<u> </u>	?I× ■ ☆ ∰
		V Write	variable nan	nes to spreadsheet	Cancel
-					
ขั้นที่ 2 บักทึกเป็นแฟ้มข้อมูล ^เ	: Save Data	As			? ×
พ ค. เ	Save jn:	🛛 🔄 My De	ocuments	_	
ในช่อง File name					

โดยพิมพ์ชื่อ Example4

, File <u>n</u> ame:	Example4		<u>S</u> ave
Save as type:	SPSS (*.sav)	•	Paste
	₩rite variable names to spreadsheet		Cancel

ขั้นที่ 3 คลิก Save จะเห็นได้ว่า Untitled เปลี่ยนเป็น Example4 แล้ว

🚞 еха	₩ m example4 - SPSS for Windows Data Editor									
<u>File Edit V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
≥ ∎⊜ ¤ ∽ <u>⊾ k k 4</u> ≣∎± <u></u> ≡ ⊗⊘										
1:id	1:id 0									
id sex age educ status income grade bonus										
1	1	1	37	2	4	5500	3.78	11000.00		

2.3 การเปิดแฟ้มข้อมูล

ขณะนี้ขอสมมติว่าได้สร้างแฟ้มข้อมูลชื่อ example4.sav บันทึกไว้แล้วประกอบด้วยตัวแปร 8 ตัว และมีค่าสังเกต 50 ค่า (**หมายเหตุ** หากไม่ต้องการพิมพ์ข้อมูลของตัวอย่างเอง ติดต่อขอ copy แผ่นข้อมูลของหนังสือเล่มนี้ได้ที่ผู้เขียน)

ขั้นที่ 1. เข้าสู่ SPSS for Windows Data Editor

ขั้นที่ 2. เลือกคำสั่ง <u>F</u>ile

คลิกที่คำสั่ง Open

จะได้เมนูย่อย

	55 101	WINDOWS	vala cui	iui			
e <u>E</u> dit <u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
<u>N</u> ew					= ■	al⊞	`⊌ @
<u>0</u> pen			Ctrl+C				
Data <u>b</u> ase Cap	lture			*			
<u>R</u> ead Text Da	ta				,	var	var
<u>S</u> ave			Ctrl+S				
Save <u>A</u> s							
) pen File							?
	~					- 1 -	
Look in:	🔄 da	ita			<u> </u>	<u>n</u>	
🛗 example1		i exam	ole16	iii e	example2	2	iiii example)
example10		examp	ole17		xample2	3	🛗 example
9255		🛅 examp	ole18	- 🛅 e	xample2	4	🛅 example.
🔠 example11			1.40	SPSS		E	and the second sec
example11		🛅 examp	ble 19	€	xampiez	0	🛅 example:
example11 example12 example13		i examp examp	ole19 ole2		xampiez xample2	6	i example:
example11 example12 example13 example14		examp examp examp	ole 19 ole2 ole20		xampie2 xample2 xample2	9 16 17	i example example example example
example11 example12 example13 example13 example14 example15		 examp examp examp examp examp 	ole 19 ole2 ole20 ole21		xampiez xample2 xample2 xample2	9 16 17	example example example example example
example11 example12 example13 example13 example14 example14 example15 <		i examp examp examp examp examp	ble19 ble2 ble20 ble21		xampiez xample2 xample2 xample2	5 16 17 18	example example example example example
example11 example12 example13 example13 example14 example15 <		i examp examp examp examp	ble19 ble2 ble20 ble21		xampiez xample2 xample2 xample2	5 16 17 18	example example example example example
example11 example12 example13 example13 example14 example14 File <u>n</u> ame:		examp examp examp examp	ole 19 ole 2 ole 20 ole 21		xampiez xample2 xample2 xample2	5 77 78	example: example: example: example: <u>example:</u> <u>o</u> pen
example11 example12 example13 example13 example14 example14 example15 file name: Files of type:	 SPSS	examp examp examp examp (*.sav)	ole 19 ole 2 ole 20 ole 21		xample2 xample2 xample2 xample2	5 6 7 8 —	example: example: example: example:
example11 example12 example12 example13 example14 example14 example15 example5 File <u>n</u> ame: Files of type:	 SPSS	examp examp examp examp (*.sav)	ole 19 ole 2 ole 20 ole 21		xample2 xample2 xample2		i example example example example <u>O</u> pen <u>P</u> aste

ขั้นที่ 3. พิมพ์ชื่อแฟ้มข้อมูล example4

อ้าน ดับเทิ่/	ดลิกที่ปุ่น Onen	ละได้ข้อบอบบลอ	กาพดังนี้
ขนท 4.	พฒาที่มี Obeu	. สรายเมอชี่ เมา ห.ส.อา	IIMPINIA

🛗 example4 - SPSS for Windows Data Editor										
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
*										
1:id	1:id 0									
	id	sex	age	educ	status	income	grade	bonus		
1	1	1	37	2	4	5500	3.78	11000.00		
2	2	2	29	3	1	4100	3.89	12300.00		
3	3	2	48	1	2	5400	3.67	21600.00		

ขณะนี้เราเปิดแฟ้มข้อมูล Example4.sav เข้าสู่การทำงานของ SPSS for Windows Data Editor เรียบร้อยแล้ว

2.4 การดูรายละเอียดของตัวแปร

เราสามารถตรวจสอบรายละเอียดต่างๆ เกี่ยวกับแฟ้มข้อมูลได้ ตามขั้นตอนดังนี้

ขั้นที่ 1. คลิกคำสั่ง <u>U</u>tilities..

📺 example4 - SPSS for Windows Data Editor											
<u>F</u> ile <u>E</u>	dit <u>V</u> ie	iew <u>D</u> ata	a <u>T</u> ran	sform <u>A</u> r	nalyze <u>G</u> raph	is L	<u>tilities</u> <u>W</u> indo	w <u>H</u> elp			
Variables File Info											
						_	Define Sets				
	id	sex	age	educ	status	i	Use Sets				
1	1	1	37	2	4	_	Auto New C	ase			
2	2	2	29	3	1	–	Run <u>S</u> cript				
-	-	-		-		\vdash	<u>M</u> enu Editor	·			

ขั้นที่ 2. คลิกคำสั่ง <u>V</u>ariables.. จะได้เมนูย่อย

😹 Variables	Weight Lases	l
it sex age educ status income grade bonus	Variable Information: id Label: Type: F3 Missing Values: none Measurement Level: Scale Value Labels:	
	<u>G</u> o To <u>P</u> aste Close Help	

ต้องการดูรายละเอียดของตัวแปรใดให้คลิกที่ชื่อของตัวแปรที่ต้องการ เช่นลองเลื่อน pointer ไปที่ ตัวแปร sex จะเห็นรายละเอียดของตัวแปร sex

👷 Variables	x
id Bac age educ status income grade bonus	Variable Information: sex Label: Type: F1 Missing Values: 9 Measurement Level: Ordinal Value Labels: 1 Male 2 Female
	<u>G</u> o To <u>P</u> aste Close Help

เมื่อดูเสร็จแล้วให้คลิก Close

2.5 การสั่งให้ SPSS for Windows Data Editor แสดง value label

สำหรับข้อมูลที่กำหนด Value labels ไว้แล้วหากต้องการให้แสดงผลในลักษณะของ value labels ต้องทำดังนี้จากจอภาพของ SPSS for Windows Data Editor

🧰 еха	📅 example4 - SPSS for Windows Data Editor										
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
<u> 2</u>	2 										
	id sex age educ status income grade bonus										
1	1	1	37	2	4	5500	3.78	11000.00			

ขั้นที่ 1. คลิกที่คำสั่ง <u>V</u>iew

หน้า Value Labels ไม่มีเครื่องหมายถูก

ขั้นที่ 2. คลิกที่คำสั่ง <u>V</u>alue Labels..

หน้า Value Labels มีเครื่องหมายถูก การแสดงผลของตัวแปรจะแสดงค่า Value Labels ตามที่กำหนดไว้

🛅 exampl	e4 - SP	SS for \	#indow:	s Dat	a Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata <u>T</u>	ransform	<u>A</u> nal	yze <u>G</u> raph
	✓ <u>S</u> tati <u>T</u> ool	us Bar bars s		!?	<u>m</u> <u>*</u>
i	✓ Grid	<u>L</u> ines	edu	IC	status
	<mark>▶ ⊻</mark> alu	ie Labels	-	2	4

1	iii e	xampl	e4 - S	SPSS f	or Wir	ndows	s Dal	ta Ec	litor
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ran	sform	Ana	lyze	<u>G</u> raph
Г	B		✓ <u>s</u> I	tatus Ba oolbars.	3ſ	*	!?	<i>#</i>	
		i	E ✔ G	onts rid <u>L</u> ine	s	edu	C	sta	tus
ſ		1		alue La	abels	Grad	uŁ	Div	/orce

I	🛗 example4 - SPSS for Windows Data Editor										
	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
		id	sex	age	educ	status	income	grade			
	1	1	Male	37	Graduate	Divorce	5500	3.78			
	2	2	Female	29	Post graduate	Single	4100	3.89			
		-	1 onnaio	20	i oot graddato	Olligio		0.00			

การแสดงผลจะเปลี่ยนไปเช่น ตัวแปร sex 1→ Male 2→Female ตามที่กำหนดไว้ตอนที่สร้างแฟ้มข้อมูล

2.6 การแสดงรายละเอียดของแฟ้มข้อมูล

จากเมนูของ SPSS for Windows Data Editor คลิกที่ Utilities / File Info..

ľ	💼 exa	mple4 ·	SPSS for	Windo	ws Data Editor		
	<u>F</u> ile <u>E</u>	dit <u>V</u> i∈	w <u>D</u> ata .	<u>T</u> ransfor	m <u>A</u> nalyze <u>G</u> raph	s <u>U</u> tilities <u>W</u> indow <u>H</u> el	þ
	<u>ا ک</u>	1al	🛃 Variables	Ь			
Г		1 B	File I <u>n</u> fo	F			
				Define Sets			
I		id	sex	age	educ	<u>U</u> se Sets	
ľ	1	1	Male	37	Graduat	■ ✓ Auto New Case	Б
ł		2	E a marala		Deet weekwet	Run <u>S</u> cript	H
l	2	2	Female	- 29	Post graduat	e — Menu Editor	Ц
1	2	3	Fomolo	48	Under greduet	<u>m</u> ena Eulioi	hl

จะได้ผลของคำสั่งที่ SPSS for Windows Viewer ดังนี้

🖀 Output1 - SPSS for Wind	ows Viewer										
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rm	at <u>A</u> nalyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow <u>H</u> elp									
											
<u>+++-</u>	← → → → → → → → → → → → → → → → → →										
Output Generation	File Infor	rmation									
🛶 📺 Title		List of variables on the working file									
🔂 Notes	Name										
Text Output	ID										
		Measurement Level: Scale									
		Column Width: Unknown Alignment: Right									
		Print Format: F3									
		Write Format: F3									

้ผลของคำสั่ง Utilities / File Info จะได้รายละเอียดของตัวแปรในแฟ้ม Example4.sav คือ

File Information List of variables on the working file Name Position ID 1 Measurement Level: Scale Column Width: Unknown Alignment: Right Print Format: F3 Write Format: F3 2 SEX Measurement Level: Ordinal Column Width: 5 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9 Value Label 1 Male 2 Female AGE 3 Measurement Level: Scale Column Width: Unknown Alignment: Right Print Format: F2 Write Format: F2 Missing Values: 99 EDUC Level of education 4 Measurement Level: Ordinal Column Width: 11 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9 Value Label 1 Under graduate 2 Graduate 3 Post graduate 4 Doctorate 5 STATUS Measurement Level: Ordinal Column Width: 6 Alignment: Right Print Format: F1 Write Format: F1 Missing Values: 9 Value Label 1 Single 2 Married 3 Widowhood

4 Divorce

6 INCOME Measurement Level: Scale Column Width: Unknown Alignment: Right Print Format: F4 Write Format: F4 Missing Values: 9999 7 GRADE Measurement Level: Ordinal Column Width: Unknown Alignment: Right Print Format: F5.2 Write Format: F5.2 Missing Values: 9.99 BONUS 8 Measurement Level: Scale Column Width: Unknown Alignment: Right Print Format: F8.2 Write Format: F8.2

44

บทที่ 3

การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

การวิเคราะห์ข้อมูลทางสถิติที่สำคัญคือ การคำนวณค่าสถิติเบื้องต้น การแจกแจงความถี่ของ ข้อมูลแบบ 1 ทาง การแจกแจงความถี่ของข้อมูลแบบ 2 ทาง การตรวจสอบความถูกต้องของข้อ มูล คำสั่งหลักในการคำนวณค่าสถิติเบื้องต้นของ SPSS for Windows คือ คำสั่ง Analyze ซึ่งมี คำสั่งย่อยต่างๆ ในการทำงานเช่น

♠ Analyze / Descriptive Statistics / Frequencies... แจกแจงความถี่ คำนวณค่าสถิติเบื้อง ต้น

♥ Analyze / Descriptive Statistics / Descriptive	คำนวณค่าสถิติเบื้องต้น
♦ Analyze / Descriptive Statistics / Explore	คำนวณค่าสถิติเบื้องต้น
Analyze / Descriptive Statistics / Crosstabs	แจกแจงความถี่ คำนวณค่าสถิติเบื้อง
ต้น	

3.1 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Descriptive Statistics / Descriptive..

คำสั่ง Analyze / Descriptive Statistics / Descriptive.. เป็นคำสั่งใช้ในการหาค่าสถิติเบื้องต้น เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด การใช้คำสั่งนี้ได้ต้องมีข้อมูลใน SPSS for Windows Data Editor

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4 เข้ามาใน SPSS for Windows Data Editor

ขั้นที่ 2. คลิกเมาส์ไปที่ Analyze จอภาพจะเป็นดังนี้

💼 exa	📰 example4 - SPSS for Windows Data Editor										
<u>F</u> ile <u>E</u>	dit <u>V</u> i∈	w <u>D</u> at	a <u>T</u> ran	isform (Analyze	<u>G</u> raph	is <u>U</u> tiliti	ies 🛓	<u>√</u> indow <u>H</u> e	əlp	
Ê	18	<u> </u>	o 🖳	<u></u>	<u>?</u>		Ě 🗄	- 1	<u> </u>	0	
1:id			0								
	id	sex	age	educ	sta	atus	incor	ne	grade	bonı	IS
1	1	1	37	2	2	4	5	500	3.78	1100	0.00
	example4 - SPSS for Windows Data Editor										
		_	<u>F</u> ile <u>E</u>	dit <u>V</u> ie	w <u>D</u> at	a <u>T</u> ran	sform	Analy	ze <u>G</u> raphs	<u>U</u> tilities	∐⊻in
			<u> 2</u>	18	<u> </u>	0 LL.	<u></u>	R	eports		2
		[1:id		1				Compare <u>M</u> eans		
				id	60 Y	300	uha	<u>G</u>	eneral Linea	r Model	•
				14	300	aye	cuu	<u>C</u> o	orrelate		
			1	1	1	37		B	egression		1
			2	2	2	29			glinear 2001fu		
			3	3	2	48	<u> </u>	D.	assing ata Reductio	n	
			L		2	40	<u> </u>	Sc	ale		
			4	4	1	99		N	– onparametric	: Tests	•
			5	5	2	33		Tj	me Series		2
			6	6	2	45		<u>ы</u> М	urvivai ultiple Respo	onse	5
			7	7	2	38	<u> </u>	м	issing <u>V</u> alue	Analysis	
na	Tin	voti	ົງຊໍ່		_		. –			Ma	v C

Dumrong Tipyotha

ขั้นที่ 3. เลื่อนเมาส์ไปชี้ที่ <u>D</u>escriptive Statistics จอภาพจะเปลี่ยนแปลงเป็นเป็นดังนี้

้ขั้นที่ 4. ต่อไปน้ำเมาส์ไปคลิกที่ Descriptive... จะได้เมนูย่อย

1 2	Image: Sex (a) age Image:	OK Paste <u>R</u> eset Cancel Help
	☐ Save standardized values as variables	Options

หมายเหตุ 1. เครื่องหมายแสดงชนิดตัวแปรว่าเป็นข้อมูลตัวเลข

2. ตัวแปรที่มี Value Labels จะแสดงค่า Value Label ด้วย เช่นตัวแปร educ

ขั้นที่ 5. การเลือกตัวแปร age เพื่อทำการคำนวณ ให้นำเมาส์ไปคลิกที่ตัวแปร age แล้วไปจึงนำ

เมาส์ไปคลิกที่ปุ่ม 🕩 บนจอภาพจะกลายเป็น

👷 Descriptives		×
 Id Id sex Level of education [edu status income grade bonus 	r <u>V</u> ariable(s): 	OK <u>P</u> aste <u>B</u> eset Cancel Help
☐ Save standardized value	es as variables	Options

ขั้นที่ 6. เสร็จแล้วให้กดปุ่ม ____ จะได้ผลการคำนวณที่ SPSS for Windows Viewer ดังนี้

3.2 การเปลี่ยนรูปแบบของตารางในการแสดงผลของ SPSS for Windows Viewer การแสดงผลของการคำนวณหากตารางแนวนอนมีความยาวมากจะทำให้เราไม่มีความสะดวกที่ จะเห็นผลการคำนวณทั้งหมดในหน้าจอ

ดังนั้นเราควรจะทำการ Transpose ให้ตารางแสดงผลในแนวตั้ง

ขั้นที่ 1. จากจอภาพใน SPSS for Windows Viewer ให้เลือกตารางที่ต้องการ ในที่นี้ขอให้ เลือก

ตารางโดยการคลิกที่ชื่อของตาราง จะเห็นว่าบนจอภาพจะมีลูกศรสีแดงขึ้นที่ตาราง

ขั้นที่ 2. คลิกที่เมนู <u>E</u>dit และเลื่อนเมาส์ไปที่ SPSS Pivot Tables Object จะได้เมนูย่อยให้ เลือก Edit หรือ Open

ขั้นที่ 3. ให้คลิกที่ Edit จอภาพ จะเปลี่ยนแปลงโดยที่เมนูบาร์จะ เป็นเมนูของการแก้ไขตาราง

หมายเหตุ ขณะ นี้เมนูบาร์มีคำสั่ง Pivot แล้ว

Eile <u>E</u> dit	⊻iew	Insert	Pivot	F <u>o</u> rmat	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	v <u>H</u> elp			
= E (Dutput Desci Desci Desci N	riptives tle otes escriptiv	/e Sta	De	escrip	tives						
	-			1				Des	criptive St	atistics		
	_			•			N	Des	criptive St	atistics Maximum	Mean	Std. Deviation
				•	AGE		N	Des	criptive Standard	atistics Maximum 56	Mean 37.94	Std. Deviation 9.55

 $\downarrow 1$

หมายเหตุ การเลื่อน pointer เข้ามาในตารางและกดดับเบิลคลิกจะให้ผลการทำงานเหมือนกับ การทำตาม ขั้นที่ 1 - 3

ขั้นที่ 4. ให้คลิกที่ Pivot จะได้เมนูย่อยของการเปลี่ยนรูปแบบตาราง

ขั้นที่ 5. ให้คลิกที่ Transpose Rows and Columns จะได้ตารางในรูปแบบแนวตั้ง

Output1 - SPSS for Windo <u>Fi</u> le <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>P</u> ivot	ws View F <u>o</u> rmat	rar <u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
 ☐ Output ☐ Descriptives ☐ Tite ☐ Notes ↓ ☐ Descriptive Sta 	De	escrip	tives	ntino St	atistics	
	Г		A	GE	Valid N (I	listwise)
	+	N Minimum Maximum Mean Std. Deviation		48 21 56 37.94 9.55		48

ขั้นที่ 6. การออกจากการทำงานส่วนนี้ให้เลื่อน Pointer นอกบริเวณตารางและคลิกเมาส์นอก บริเวณของตาราง

3.3 การกำหนดตำแหน่งทศนิยมของการคำนวณในตารางของ SPSS Viewer

ตารางผลการคำนวณที่ได้เราสามารถกำหนดการแสดงผลว่าต้องการให้แสดงผลการคำนวณ เป็นทศนิยม k ตำแหน่งได้ตามความต้องการ สมมติว่าเราต้องการให้แสดงผลการคำนวณของ Mean ให้เป็นทศนิยม 6 ตำแหน่ง มีขั้นตอนการใช้คำสั่งดังนี้ จากจอภาพ

ขั้นที่ 1. จากจอภาพใน SPSS for Windows Viewer ให้เลือกตารางที่ต้องการเลื่อนเมาส์เข้าใน บริเวณของตาราง แล้วกดดับเบิลคลิกจะได้ผลเป็นดังนี้

ขั้นที่ 3. คลิกที่เมนู Format จะได้เมนูย่อยเป็นดังนี้

ขั้นที่ 4. คลิกที่ Cell Properties.. จะได้ผลดังนี้

ขั้นสุดท้ายให้นำเมาส์มาคลิกนอกบริเวณตารางจะกลับไปที่ SPSS for Windows Viewer

3.4 การคำนวณค่าสถิติเบื้องต้นอื่น ๆด้วย คำสั่ง Descriptives...

จากขั้นตอนที่เราเลือกตัวแปร age เสร็จแล้ว

 id sex Level of education [edu status income grade bonus 	⊻ariable(s): () age	OK <u>P</u> aste <u>R</u> eset Cancel Help
Save standardized values	s as variables	<u>O</u> ptions

Descriptives Mean ☐ Sum Continue - Dispersior Cancel 🔽 Mi<u>n</u>imum ✓ Std. deviation Help Variance ✓ Maximum ☐ Bange □ S.E. mean Distribution □ Ske<u>w</u>ness Display Order Variable list C Alphabetic C Ascending means C Descending means

ฏ_{ptions...} บนจอภาพจะมีเมนู

Descriptives: Opt	ions		×
I ean	∀ <u>S</u> um		Continue
Std. deviation	🔽 Minin	num	Cancel
I ∕ <u>V</u> ariance	🔽 Ma <u>x</u> ir	num	Help
₩ <u>R</u> ange	▼ S. <u>E</u> .	mean	
Distribution			
₩ <u>K</u> urtosis	⊽ Ske <u>v</u>	iness	
Display Order			
Variable list			
C Alphabetic			
C Ascending me	ans		
C Descending m	eans		

ย่อย ให้เลือกค่าสถิติต่างๆ เพิ่มเติม ค่าสถิติอื่นๆ ที่ต้องการคำนวณให้คลิกที่กรอบสี่เหลี่ยม เพื่อให้เกิดเครื่องหมายถูก

หากต้องการคำนวณค่าสถิติอื่นเพิ่มเติม ให้นำเมาส์ไปคลิกที่ปุ่ม [

- 🗌 มีเครื่องหมายถูก แสดงว่า ให้คำนวณค่า
- 🗌 ไม่มีเครื่องหมายถูก แสดงว่า ไม่ให้คำนวณค่า
- O เลือกอย่างใดอย่างหนึ่งเท่านั้น

โดยการคลิกให้เกิดจุดสีดำหน้าข้อที่ต้องการ

ในตัวอย่างนี้ขอให้เลือกทุกกรอบสี่เหลี่ยมให้เป็น เครื่องหมายถูกเสร็จแล้วให้คลิก Continue และ <mark>ok</mark> ตามลำดับ จะได้ผลการคำนวณดังนี้

ทำการ Transpose ตารางได้เป็น

🖀 Output1 - SPSS for Windows Viewer							
<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
							
Output Output Output Output Output Tel Output)escripti	V es Descrip	tive Statistic	s		
				AGE	Valid N (listwise)		
└─ → [iii] Descriptive Sta		N	Statistic	48	48		
		Range	Statistic	35			
		Minimum	Statistic	21			
		Maximum	Statistic	56			
	Ι.	Sum	Statistic	1821			
	 →	Mean	Statistic	37.94			
			Std. Error	1.38			
		Std.	Statistic	9.55			
		Variance	Statistic	91.251			
		Skewness	Statistic	.025			
			Std. Error	.343			
		-					

ผลการคำนวณทั้งหมดคือ

		AGE	Valid N (listwise)		
Ν	Statistic	48	48		
Range	Statistic	35			
Minimum	Statistic	21			
Maximum	Statistic	56			
Sum	Statistic	1821			
Mean	Statistic	37.94			
	Std. Error	1.38			
Std.	Statistic	9.55			
Variance	Statistic	91.251			
Skewness	Statistic	.025			
	Std. Error	.343			
Kurtosis	Statistic	812			
	Std. Error	.674			

Descriptive Statistics

3.6 สูตรของค่าสถิติและเปรียบเทียบการคำนวณ MATHCAD กับ SPSS

ตัวอย่าง 3.4.1 กำหนดข้อมูล 14 ตัวคือ 3 , 3 , 6 , 4 , 5 , 8 , 1 , 2 , 3 , 8 , 4 , 5 , 2 , 6 จงคำนวณค่าสถิติเปื้องต้นด้วยคำสั่ง Analyze / Descriptive Statistics / Descriptives.. **วิธีทำ** สร้างข้อมูลแล้ว Save ไว้ที่ชื่อ example5.sav

💼 еха	🖀 example5 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	<u>E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r	halyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp		
<u> </u>	o o e e e e e e e e e e e e e e e e e e						
1:x B							
	×	var	var	var	var		
1	3						
2	3						

ใช้คำสั่ง Analyze / Descriptive Statistics / Descriptives... และเลือกค่าสถิติต่างๆ ที่มีใน Options ได้ผลการคำนวณเป็นดังนี้

		i	
		Х	Valid N (listwise)
Ν	Statistic	14	14
Range	Statistic	7	
Minimum	Statistic	1	
Maximum	Statistic	8	
Sum	Statistic	60	
Mean	Statistic	4.29	
	Std. Error	.58	
Std.	Statistic	2.16	
Variance	Statistic	4.681	
Skewness	Statistic	.421	
	Std. Error	.597	
Kurtosis	Statistic	614	
	Std. Error	1.154	

Descriptive Statistics

ความหมายของค่าสถิติและที่มาของสูตร

Ν	จำนวนข้อมูล
Range	พิสัยของข้อมูล มาจากสูตร ค่ามากสุด – ค่าน้อยสุด
Minimum	ค่าต่ำสุดของข้อมูล
Maximum	ค่าสูงสุดของข้อมูล
Sum	ผลบวกของข้อมูลทุกตัว
Mean	ค่าเฉลี่ยเลขคณิต
Median	ค่ามัธยฐาน
Mode	ค่าฐานนิยม
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตรฐาน (SPSS ถือว่าข้อมูลที่คำนวณเป็นข้อมูลตัวอย่าง)
Variance	ค่าความแปรปรวน (ใน SPSS ถือว่าข้อมูลที่คำนวณเป็นข้อมูลตัวอย่าง)
Skewness	เป็นค่าที่บอกว่าข้อมูล ที่เรามีอยู่นั่นเมื่อนำไปเขียน โค้งความถี่ จะมีลักษณะ
ความเบ้ของเส้น	โค้งเป็นอย่างไร

- Skewness < 0 โค้งความถี่จะมีลักษณะ เบ้ทางด้านซ้าย หรือ เบ้ทางด้านลบ
- Skewness = 0 โค้งความถี่จะมีลักษณะสมมาตร เป็นรูประฆังคว่ำ หรือ normal curve
- Skewness > 0 โค้งความถี่จะมีลักษณะ เบ้ทางด้านขวา หรือ เบ้ทางด้านบวก

เป็นค่าที่บอกว่าข้อมูล ที่เรามีอยู่นั่นเมื่อนำไปเขียนโค้งความถี่ จะมีลักษณะของเส้น Kurtosis โค้งมีการกระจายเป็นอย่างไร

- Kurtosis < 0 ข้อมูลมีการกระจายมาก โค้งความถี่จะมีลักษณะค่อนข้างแบน
- Kurtosis = 0 ข้อมูลมีการกระจายแบบปกติ โค้งความถี่จะมีลักษณะคล้ายการแจกแจงปกติ
- Kurtosis > 0 ข้อมูลมีการกระจายน้อย โค้งความถี่จะมีลักษณะสูงโด่ง

Mean (Std. Error) เป็นค่าที่ได้มาจากสูตร <u>Stan dard Deviation</u>

การคำนวณด้วยโปรแกรม MATHCAD

$$ORIGIN := 1 \qquad x := \begin{vmatrix} 3 \\ 3 \\ 6 \\ 4 \\ 5 \\ 8 \\ 1 \\ 2 \\ 3 \\ 8 \\ 4 \\ 5 \\ 2 \\ 6 \end{vmatrix}$$

$$n := lengtl(x) \qquad n = 14 \qquad mir(x) = 1$$

$$max(x) = 8 \qquad mediar(x) = 4 \qquad mean(x) = 4.286$$

$$var(x) = 4.347 \qquad stdev(x) = 2.085$$

$$gaseinering avit afield substanding avit after avi$$

สูตรค่าความแปรปรวนและส่วนเบี่ยงเบนมาตรฐานของข้อมูล เมื่อกำหนดว่าข้อมูลนั้นคือ ตัวอย่าง

variance_sample_formula :=
$$\frac{\sum_{i=1}^{n} (x_i - mean(x))^2}{n-1}$$

variance_sample_formula = 4.6813

standard_deviation_sample_formula :=
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - mean(x))^2}{n-1}}$$

standard_deviation_sample_formula = 2.1636

ข้อควรจำ var(x) ของ MATHCAD เป็นค่าความแปรปรวนของประชากร

stdev(x) ของ MATHCAD เป็นค่าส่วนเบี่ยงเบนมาตรฐานของประชากร

Variance ของ SPSS เป็นค่าความแปรปรวนของตัวอย่าง

Standard Deviation ของ SPSS เป็นค่าส่วนเบี่ยงเบนมาตรฐานของตัวอย่าง

ตัวอย่าง 3.5.2 จงสร้างแฟ้มข้อมูล(กำหนดตัวแปรชื่อ score) ที่ประกอบด้วยข้อมูล 3,3,6 ,4,5,1,2,3,8,4,5,6 Save ไว้ที่ชื่อ example2.sav และคำนวณค่าสถิติเบื้อง ต้น

วิธีทำ เริ่มต้นที่ SPSS for Windows Data Editor

Eile E	mple2 - SPSS f dit ⊻iew Data 1 @ ∞	or Windows Da Iransform An	ata Editor alyze <u>G</u> raphs <u>L</u>
	score	var	var
1	3.00		
2	3.00		
3	6.00		
4	4.00		
5	5.00		
6	1.00		
7	2.00		
8	3.00		
9	8.00		
10	4.00		
11	5.00		
12	6.00		

ใช้คำสั่ง Analyze / Descriptive Statistics / Descriptive... จะได้ผลการคำนวณดังนี้

	-		
		SCORE	Valid N (listwise)
Ν	Statistic	12	12
Range	Statistic	7.00	
Minimum	Statistic	1.00	
Maximum	Statistic	8.00	
Sum	Statistic	50.00	
Mean	Statistic	4.1667	
	Std. Error	.5618	
Std.	Statistic	1.9462	
Variance	Statistic	3.788	
Skewness	Statistic	.342	
	Std. Error	.637	
Kurtosis	Statistic	.004	
	Std. Error	1.232	

Descriptive Statistics

ครั้งที่ 1.	ครั้งที่ 2
76	81
60	52
85	87
58	70
91	86
75	77
82	90
64	63
79	85
88	83

ด้วอย่าง 3.5.3 การสร้างแฟ้มข้อมูล 2 ตัวแปรเช่นข้อมูลคะแนนสอบย่อย 2 ครั้งของนิสิต 10 คน

ทำการบันทึกโดยใช้ชื่อแฟ้ม example2.sav และวิเคราะห์ข้อมูลเพื่อหาค่าสถิติเบื้องต้น

วิธีทำ จาก SPSS for Windows Data Editor สร้างแฟ้มแล้ว Save ชื่อ example3.sav

🧱 еха	🎬 example3 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp		
<u> 2</u> 5	18 🔍 🗠) 🖳 🏪 🕼	M <u>*</u>		<u>v</u>		
1:test	1	76					
	test1	test2	var	var	var		
1	76.00	81.00					
2	60.00	52.00					
3	85.00	87.00					
4	58.00	70.00					
5	91.00	86.00					
6	75.00	77.00					
7	82.00	90.00					
8	64.00	63.00					
9	79.00	85.00					
10	88.00	83.00					
-							

้ใช้คำสั่ง Analyze / Descriptive Statistics / Descriptive... จะได้ผลการคำนวณดังนี้

		TEST1	TEST2	Valid N (listwise)			
N	Statistic	10	10	10			
Range	Statistic	33.00	38.00				
Minimum	Statistic	58.00	52.00				
Maximum	Statistic	91.00	90.00				
Sum	Statistic	758.00	774.00				
Mean	Statistic	75.8000	77.4000				
	Std. Error	3.6812	3.8505				
Std.	Statistic	11.6409	12.1765				
Variance	Statistic	135.511	148.267				
Skewness	Statistic	427	-1.200				
	Std. Error	.687	.687				
Kurtosis	Statistic	-1.173	.683				
	Std. Error	1.334	1.334				

Descriptive Statistics

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

3.6 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Descriptive Statistics / Frequencies...

คำสั่ง Analyze / Descriptive Statistics / Frequencies... ใช้ในการคำนวณ

- ความถี่ข้อมูลแบบ 1 ทาง หาจำนวนซาย หญิง หาจำนวนคนที่มี status ต่างๆ กัน
- ค่าสถิติเบื้องต้นเช่น ค่าเฉลี่ย มัธยฐาน เปอร์เซนต์ไทล์
- เขียนกราฟความถี่ของข้อมูล

58

ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Frequencies... กับตัวแปร age ใน แฟ้มข้อมูล example4.sav

ขั้นที่ 1. นำแฟ้ม example4.sav เข้ามาใน SPSS for Windows Data Editor โดยใช้คำสั่ง File / Open

💼 exa	mple4 ·	- SPSS	for Wi	ndows D	ata Editor			
<u>F</u> ile <u>E</u>	dit <u>V</u> ie	w <u>D</u> at	a <u>T</u> ran	sform <u>A</u> r	nalyze <u>G</u> raph	is <u>U</u> tilities <u>\</u>	<u>∧</u> indow <u>H</u>	elp
***						0		
1:id	d 🛛							
	id	sex	age	educ	status	income	grade	bonus
1	1	1	37	2	4	5500	3.78	11000.00
2	2	2	29	3	1	4100	3.89	12300.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Descriptive Statistics / Frequencies... บนจอภาพจะเป็นดังนี้

	🗰 example4 - SPSS for Windows Data Editor						
<u>File Edit View Data Iransform Analyze Graphs Utilities Window H</u> elp							
🚅 🔲 📾 👦 📖 🏪 Reports 🔹 🕨 📼 🖘 🙈							
Descriptive Statistics	s						
1:id 1 Compare <u>M</u> eans > <u>D</u> escriptive	s						
id any and adu <u>G</u> eneral Linear Model • <u>E</u> xplore	h						
Iu sex age euuCorrelate →Crosstabs	. Ц						
1 1 1 37 <u>B</u> egression ▶ 3.78 1	1000.00						

้ขั้นที่ 3. การเลือกคำสั่งให้เอาเมาส์ไปคลิกที่ Frequencies จะได้เมนูย่อยของคำสั่งดังนี้

sex sex sey Level of education [ed status fincome grade bonus	►	able(s):		OK <u>P</u> aste <u>R</u> eset Cancel Help
✓ Display frequency tables				

- หมายเหตุ 1. ลำดับตัวแปรเรียงตามลำดับของ column
 - 2. เมื่อเข้ามาครั้งแรกตัวแปรตัวแรกจะมีแถบสีแล้ว
- ขั้นที่ 4. เลือกตัวแปรโดยการเอาเมาส์คลิกที่ตัวแปรที่ต้องการ เช่น ตัวแปร age ขึ้นเป็นแถบสี

ขั้นที่ 5. ต่อไปให้คลิกที่ปุ่ม 🕩 ตัวแปรที่เราต้องการเลือกจะมาอยู่ทางช่องขวามือ

Trequencies Treq	•	⊻ariable(s): ∳aoe		CK Paste <u>R</u> eset Cancel Help
y. Elopidy nedacinely (ablee		1 - 1	_	
	Statistics	<u>C</u> harts	<u>F</u> ormat	

ขั้นที่ 6. คลิกที่ OK ผลการคำนวณที่ SPSS for Windows Viewer เป็นดังนี้

ผลการคำนวณทั้งหมดเป็นดังนี้

Frequencies

Statistics

AG	E	
Ν	Valid	48
	Missing	2

AGE

				Valid	Cumulativ
		Frequency	Percent	Percent	e Percent
Valid	21	1	2.0	2.1	2.1
	22	2	4.0	4.2	6.3
	23	2	4.0	4.2	10.4
	24	1	2.0	2.1	12.5
	27	1	2.0	2.1	14.6
	28	1	2.0	2.1	16.7
	29	2	4.0	4.2	20.8
	30	1	2.0	2.1	22.9
	31	2	4.0	4.2	27.1
	32	2	4.0	4.2	31.3
	33	2	4.0	4.2	35.4
	34	2	4.0	4.2	39.6
	35	1	2.0	2.1	41.7
	37	3	6.0	6.3	47.9
	38	2	4.0	4.2	52.1
	39	1	2.0	2.1	54.2
	40	3	6.0	6.3	60.4
	41	1	2.0	2.1	62.5
	42	2	4.0	4.2	66.7
	43	2	4.0	4.2	70.8
	44	1	2.0	2.1	72.9
	45	3	6.0	6.3	79.2
	46	1	2.0	2.1	81.3
	47	1	2.0	2.1	83.3
	48	1	2.0	2.1	85.4
	50	1	2.0	2.1	87.5
	51	1	2.0	2.1	89.6
	53	2	4.0	4.2	93.7
	54	2	4.0	4.2	97.9
	56	1	2.0	2.1	100.0
	Total	48	96.0	100.0	
Missing	99	2	4.0		
Total	l	50	100.0		

ความสามารถอื่นๆ ของคำสั่ง Frequencies.... ที่สามารถทำได้

- หาค่าสถิติเบื้องต้น (เหมือนคำสั่ง Descriptive)
- หา เปอร์เซ็นไทล์ 1,2,3,...,99
- เขียนกราฟความถี่ แบบบาร์กราฟ และกราฟแบบฮีสโตแกรม

ขั้นที่ 7. จากขั้นตอนที่มีแฟ้มข้อมูล

และเลือกตัวแปร age แล้ว

id ⊕	Variable(s):	 OK
⊕ sex	V -2-	<u>P</u> aste
🗰 status		<u>R</u> eset
(₩) income (₩) grade		Cance
🔶 bonus		Help
Z Diaplay frequency tables	,	

ขั้นที่ 8. ให้คลิกที่ปุ่ม <u>Statistics...</u> จะได้เมนูย่อย สำหรับเลือกคำนวณค่าสถิติที่ต้องการ

Frequencies: Statistics	×
Percentile Values Quartiles Quartiles	Central Tendency Continue
Dispersion	Distribution 「Ske <u>w</u> ness 「 <u>K</u> urtosis

ต้องการคำนวณค่าสถิติใดให้ใส่ **เครื่องหมายถูก** ในช่องสี่เหลี่ยม (ในที่นี้ขอให้เลือกหมด ยกเว้น Percentile) ผลบนจอภาพจะเป็นดังนี้

equencies: Statistics - Percentile Values Cut points for 10 equal groups Percentile(s) <u>Add</u> <u>Change</u>	Central Tendency
 Dispersion IF Std. deviation IF Minimum IF Variance IF Magimum IF Range IF S.E. mean	✓ Alues are group midpoints ✓ Distribution ✓ Skewness ✓ Kurtosis

Cut points for 10 equal groups

Frequencies: Sta

✓ Quartiles

Percentile(s):

☑ Display frequency tables

การเลือกเปอร์เซ็นไทล์

- 1. คลิกที่ Percentile(s)
- ที่ช่องหลัง Percentile(s)
 พิมพ์ค่าเปอร์เซ็นไทล์ที่ต้องการ เช่น เปอร์เซ็นไทล์ 45
 จะสังเกตเห็นว่าปุ่ม Add จะดำขึ้น
- 3. คลิก Add

การกำหนดเสร็จแล้วจอภาพจะเป็น

ขั้นที่ 9 .เสร็จแล้วให้คลิก	Continue
------------------------------------	----------

จอภาพจะกลับไปที่เมนูย่อยของ

คำสั่ง Frequencies

<u>R</u> emove	┌─ Values are group midpoints
Dispersion	Distribution
🔽 S <u>t</u> d. deviation 🔽 Minimum	✓ Skewness
⊽ ⊻ariance ⊽ Ma <u>x</u> imum	V Kurtosis
▼Ra <u>n</u> ge ▼S. <u>E</u> . mean	
quencies: Statistics	
Percentile Values	Central Tendency Continu
🔽 <u>Q</u> uartiles	
Cut points for 10 equal groups	Median Holp
✓ Percentile(s):	Mode Help
Add 45	
<u>C</u> hange	
Remove	┌─ Values are group midpoints
Dispersion	Distribution
🔽 Std. deviation 🔽 Minimum	✓ Skewness
⊽ <u>V</u> ariance ⊽ Ma <u>x</u> imum	✓ Kurtosis
IZ Ra <u>n</u> ge IZ S. <u>E</u> . mean	

Central Tendency

Cancel

Help

I∕ <u>M</u>ean

🔽 Me<u>d</u>ian

₩ Mode

ขั้นที่ 10. การสั่งให้เขียนกราฟของการแจกแจง

ความถี่ให้คลิกที่ <u>C</u>harts... จะได้เมนูย่อย

- Chart Type	Continue
None Second Action	Cancel
C Pie charts	Help
← <u>H</u> istograms	
√ With normal curve	

Statistics... Charts... Format...

ให้คลิกที่ Bar charts	Frequencies: Charts	
	Chart Type Continue None Cancel © Bar charts Help © Histograms T With normal curve	
	Image: Frequencies Image: Percentages	
เสร็จแล้วให้คลิก Continue ด	อภาพจะกลับไปที่เมนูย่อยของคำสั่ง Frequencies	
หมายเหตุ ในกรณีที่ไม่ต้อการ	ตารางแจกแจงความถี่ให้ยกเลิกเครื่องหมายถูกที่หน้า Displa	ay
frequency tables		
☐ <u>D</u> isplay frequenc	<u>S</u> tatistics <u>C</u> harts <u>F</u> ormat	
<u> </u>		
ต่อไปให้คลิกที่ OK จะได้	ัผลการคำนวณค่าสถิติต่างๆ ที่ SPSS for Windows Viewer	~
🞬 Output1 - SPSS f	or Windows Viewer	
Eile Edit View Insu	it Format Analyze Graphs Utilities Window Help	
	미미 <u>토</u> 토토	
E Frequenci Title → Title → Statist Bar ch	Statistics AGE AGE N Valid 48 Missing 2 Mean 37.94 Std. Error of Mean 1.38 Median 38.00 Mode 37 ^a Std. Deviation 9.55 Variance 91.25 Skewness .025 Std. Error of Skewness .343	
หมายเหตุ ตารางผลการคำนวถ	นสามารถกำหนดให้แสดงผลตามแนวนอน หรือ แนวตั้งก็ได้	

หมายเหตุ ตารางผลการคานวณสามารถกาหนดเหแสดงผลตามแนวนอน หรอ แนวตงก เพื่อประหยัดพื้นที่เราควรเลือกใช้การแสดงผลตามแนวตั้ง ผลการคำนวณคือ

Frequencies

AGE		
Ν	Valid	48
	Missing	2
Mean		37.94
Std. Error of Mean		1.38
Median		38.00
Mode		37 ^ε
Std. Deviation		9.55
Variance		91.25
Skewness		.025
Std. Error of Skewnes	S	.343
Kurtosis		812
Std. Error of Kurtosis		.674
Range		35
Minimum		21
Maximum		56
Sum		1821
Percentiles	10	23.00
	20	29.00
	25	31.00
	30	32.00
	40	34.60
	45	37.00
	50	38.00
	60	40.40
	70	43.30
	75	45.00
	80	46.20
	90	53.00

a. Multiple modes exist. The smallest value is shown

Bar chart

กราฟของความถี่แบบ Histogram

3.7 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Descriptive Statistics / Explore...

คำสั่ง Analyze / Descriptive Statistics / Explore... สามารถคำนวณค่าสถิติเบื้องต้นต่างๆ ได้ เช่น ค่าเฉลี่ย มัฐยฐาน ความแปรปรวน ส่วนเบี่ยงเบนมาตรฐาน ฯลฯ และสามารถหาช่วงความ เชื่อมั่น 95% ของค่าเฉลี่ยประชากรได้

ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Explore...

กับตัวแปร age ในแฟ้มข้อมูล example4.sav

ขั้นที่ 1. นำข้อมูลเข้า SPSS for Windows Data Editor โดยใช้คำสั่ง File / Open

🎬 example4 - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	<u>File Edit View Data Iransform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
~ 6	299 - 199 - 199 - 199 - 199 - 199								
	id	sex	age	educ	status	income	grade	bonus	
1	1	1	37	2	4	5500	3.78	11000.00	

ขั้นที่ 2. เลือกคำสั่ง Analyze / Descriptive Statistics / Explore...

🛗 example4 - SPSS for Windows Data Editor												
<u>File Edit View Data Iransform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp												
								I ,				
							Descriptive Statistics		Erequencies			
					Compare <u>M</u> eans		 <u>D</u>escriptives 		es			
		<u>G</u> ener	<u>G</u> eneral Linear Model		•	Explore						
	<u>'</u>	u	sex	ayı	e	eau	<u>C</u> orrela	<u>C</u> orrelate		→	<u>C</u> rosstabs	
1	1	1	1	3	7		<u>R</u> egression		×	3.78 ′	11000.00	

ขั้นที่ 3. คลิกที่ Explore บนจอภาพจะขึ้นเมนูย่อยของคำสั่ง Explore ดังนี้

st Explore	×
	Dependent List: Caste Eastor List: Cancel Help
)	Label <u>C</u> ases by:
Display	Statistics Plots

ขั้นที่ 4. เลือกตัวแปร age มาไว้ที่ Dependent List

Explore id	Dependent List: Cancel Help
	Label <u>C</u> ases by:
Display Both C St <u>a</u> tistics C Plots	Statistics Plots Options

ขั้นที่ 5. คลิกที่ OK จะได้ผลการคำนวณเป็นดังนี้

ผลการคำนวณทั้งหมดคือ

Explore

Case Processing Summary

	Cases								
	Va	lid	Mis	sing	Total				
	Ν	Percent	Ν	Percent	Ν	Percent			
AGE	48	96.0%	2	4.0%	50	100.0%			

หมายเหตุ ● จำนวนข้อมูลต้องคิดจาก n = 48 ซึ่งตัดค่าที่ไม่สมบูรณ์ออกไป 2 ตัว
			Statistic	Std. Error
AGE	Mean		37.94	1.38
	95% Confidence	Lower Bound	35.16	
	Interval for Mean	Upper Bound	40.71	
	5% Trimmed Mean		37.91	
	Median		38.00	
	Variance		91.251	
	Std. Deviation		9.55	
	Minimum		21	
	Maximum		56	
	Range		35	
	Interquartile Range		14.00	
	Skewness		.025	.343
	Kurtosis		812	.674

Descriptives

AGE

AGE Stem-and-Leaf Plot

Frequency	Stem & Leaf
6.00	2.122334
4.00	2.7899
9.00	3.011223344
7.00	3.5777889
9.00	4.000122334
6.00	4.555678
6.00	5.013344
1.00	5.6
Stem width	n: 10

Each leaf: 1 case(s) กราฟแบบ Stem-and-Leaf Plot ที่ได้

หมายเหตุ ความสามารถอื่นๆ ของคำสั่ง Analyze / Descriptive Statistics / Explore....โดย เลือกค่าเพิ่มเติมได้ที่ปุ่ม Statistics

<u>Statistics</u> Plots <u>Options</u>
Explore: Statistics
☑ Descriptives Confidence Interval for Mean: 95 %
✓ M-estimators ✓ Qutliers
፼ Percentiles Continue Cancel Help

ต้องการตารางเปอร์เซ็นไทล์ คลิกที่ Percentiles

หรือต้องการเปลี่ยนเปอร์เซ็นต์ช่วงความเชื่อมั่น ให้พิมพ์ค่าใหม่ลงไป

เสร็จแล้ว คลิก Continue และ Ok ตามลำดับ ตารางแสดงค่าเปอร์เซ็นไทล์ต่างๆ ดังนี้

	vveignted	
	Average(Definition	Tukey's
	1)	Hinges
Percentiles	AGE	AGE
5	22.00	
10	23.00	
25	31.00	31.00
50	38.00	38.00
75	45.00	45.00
90	53.00	
00		

ความหมายทางสถิติจากผลการวิเคราะห์

- Interquartile Range = 14.00 หมายถึงค่าได้มาจาก ควอไทล์ที่ 3 ควอไทล์ที่ 1
- 5% Trimmed Mean = 37.91 หมายถึงค่าเฉลี่ยที่ได้มาจากข้อมูล 90 % ของทั้งหมด

โดยการตัดค่าที่มากออกไป 5 % และตัด ค่าที่น้อยออกไป 5 %

• 95% Confidence Interval for Mean Lower Bound = 35.16

คลิกที่ Percentiles

จะได้เมนูย่อย

Percentiles

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

เป็นช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากร

เพราะฉะนั้น ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยที่แท้จริงของประชากรคือ 35.16 < µ < 40.71

ฐุตรช่วงความเชื่อมั่น 95% ของค่า μ คือ

$$\overline{X} - t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}}) < \mu < \overline{X} + t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}})$$
 เมื่อ df = n - 1

· -

เปรียบเทียบผลการคำนวณด้วย MATHCAD การหาค่า t_{0.025, df = 47}

$$\begin{aligned} \text{TOL} &:= 0.00000: \qquad \text{v} := 47 \qquad \text{h}(t) := \left[\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \sqrt{\pi} \cdot v}\right] \cdot \left[1 + \left(\frac{t^2}{v}\right)\right]^{\frac{v+1}{2}} \quad t := 1 \\ & T(A) := \operatorname{root}\left[A - \left(0.5 - \int_{0}^{|t|} \quad \text{h}(t) \, dt\right), t\right] \qquad T(0.025) = 2.012 \end{aligned}$$

บทที่ 3 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Descriptive Statistics

3.8 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Descriptive Statistics / Crosstabs.

คำสั่ง Statistics / Summarize / Crosstabs ใช้ในการคำนวณ

ความถี่ข้อมูลแบบจำแนก 2 ทาง

70

- ค่าสถิติเบื้องต้นเช่น ค่าเฉลี่ย มัธยฐาน เปอร์เซ็นไทล์
- เขียนกราฟเปรียบเทียบความถี่ของข้อมูล
- คำนวณค่าสถิติไคสแควส์เพื่อทดสอบความเป็นอิสระของข้อมูลได้

ตัวอย่างการใช้คำสั่ง Analyze / Descriptive Statistics / Crosstabs.. กับตัวแปร educ และ sex โดยทำการแจกแจงความถี่จำแนกตาม ระดับการศึกษา และ เพศ ในแฟ้มข้อมูล example4.sav ขั้นที่ 1. นำข้อมูลเข้า SPSS for Windows Data Editor โดยใช้คำสั่ง File / Open

<u>File Edit View Data Iransform Analyze Graphs Utilities Window Help</u>	1					
andalala la visi si si si alata	1					
* * * * * * *						
id sex age educ status income grade bu	onus					
1 1 1 37 2 4 5500 3.78 1 ⁻	1000.00					

ข**ั้นที่ 2**. เลือกคำสั่ง Analyze / Descriptive Statistics / Crosstabs..

🛅 es	kamp	ole4 ·	SPSS	for W	√indow	s Data Eo	ditor				
<u>F</u> ile	<u>E</u> dit	<u>∨</u> ie	w <u>D</u> at	a <u>T</u> r	ansform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indo	w <u>H</u> elp	
_ <u>⊜</u>		a			. I 🐂	Repo	orts		> 🗖	പ്രതി	
<u> </u>	_		<u> </u>	<u> </u>	-	D <u>e</u> sc	riptive Sta	atistics		Frequencies.	. _
						Comp	oare <u>M</u> ear	ns	•	Descriptives.	
		ы		0.00		<u>G</u> ene	eral Linear	Model	•	Explore	
		Iu	sex	aye	eut	<u>C</u> orre	late		- - -	<u>C</u> rosstabs	
· ·	1	1	1	37	7	<u>R</u> egr	ession		P∏	3.78 11	000.00
				I	1				· I	1	

ขั้นที่ 3. คลิกที่ <u>C</u>rosstabs.. บนจอภาพจะขึ้นเมนูย่อยของคำสั่ง Crosstabs..

🚓 Crosstabs		×
 id eex ege evel of education [ed etatus income 	Figw(s):	OK Paste <u>R</u> eset Cancel
 Image: Image of the second sec	Previous Layer 1 of 1	Help
	•	
Display clustered <u>b</u> ar cha	rts	
☐ Suppress <u>t</u> ables		
	Statistics Cells Format	

ขั้นที่ 4 . เลือกตัวแปร educ มาไว้ที่ช่อง <u>R</u> ow(s) เลือกตัวแปร sex มาไว้ที่ช่อง <u>C</u> olumn(s)	 Crosstabs id id age is status income income income bonus 	Row(s): Column(s): Column(s): Previous Layer 1 of 1 Next
	│ ┌─ Display clustered <u>b</u> ar cha ┌─ Suppress <u>t</u> ables	arts Statistics Cells Eormat
ขั้นที่ 5. คลิกที่ OK จะได้ผลการคำนวณร์ <u>Crosstabs</u> <u>Crosstabs</u> <u>Crosstabs</u>	ที่ SPSS for Win Idow <u>Help</u> 	ıdows Viewer ดังนี้
Level of education	Valid N Percent 50 100.0%	Cases Missing N F 0

ผลการคำนวณทั้งหมดคือ

Crosstabs

Case Processing Summary

			Ca	ses		
	Va	lid	Mis	sing	Total	
	Ν	Percent	Ν	Percent	Ν	Percent
Level of education * SEX	50	100.0%	0	.0%	50	100.0%

Level of education * SEX Crosstabulation

Count		_		
		SE	EX	
		Male	Female	Total
Level of	Under graduate	7	7	14
education	Graduate	17	5	22
	Post graduate	5	6	11
	Doctorate	3		3
Total		32	18	50

หมายเหตุ ในกรณีที่เราเลือก Display clustered bar charts

จะได้กราฟของการแจกแจงความถี่ดังนี้

			Asymp.		
			Sig.		
	Value	df	(2-sided)		
Pearson Chi-Square	6.203 ^a	3	.102		
Likelihood Ratio	7.193	3	.066		
Linear-by-Linear Association	.500	1	.480		
N of Valid Cases	50				

a. 3 cells (37.5%) have expected count less than 5. The minimum expected count is 1.08.

หมายเหตุ ค่า Pearson Chi-Square 6.203 , df = 3 และ Asymp Sig (2-sided) สามารถนำ ไปสรุปผลได้ว่า ระดับการศึกษา กับ เพศ ไม่เป็นอิสระต่อกัน ที่ระดับนัยสำคัญ 0.05 ซึ่งเนื้อหา การทดสอบความเป็นอิสระต่อกันจะได้เรียนในบทที่ 7 หัวข้อ 7.7

บทที่ 4

การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports

คำสั่ง Analyze / Report ของ SPSS for Windows เป็นคำสั่งในลักษณะของการรวบรวมข้อ มูล นำเสนอข้อมูล และสามารถทำการการวิเคราะห์ข้อมูลทางสถิติเบื้องต้นได้ ตัวอย่างคำสั่ง ต่างๆ เช่น

- Analyze / Reports / OLAP Cubes..
- ♥ Analyze / Reports / Case Summaries..
- ♦ Analyze / Reports / Case Summaries in Rows..
- Analyze / Reports / Case Summaries in Columns..

4.1 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Reports / OLAP Cubes..

คำสั่ง Analyze / Reports / OLAP Cubes.. เป็นคำสั่งใช้ในการตรวจสอบข้อมูลเบื้องต้น สามารถหาค่าสถิติเบื้องต้นต่างๆ เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยง เบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด จำแนกตามกลุ่มได้

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4 เข้ามาใน SPSS for Windows Data Editor

🗃 example4 - SPSS for Windows Data Editor								
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
Ê	2 							
1:id 0								
	id	sex	age	educ	status	income	grade	bonus

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / OLAP Cubes..

🚞 e	example4 - SPSS for Windows Data Editor										
<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	<u>D</u> ata	a <u>T</u> ra	ansform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>₩</u> in	dow <u>H</u> elp	
ŝ		s) 🛛	⊡ ⊮			Repo	rts		►	OLAP Cubes	
						Descriptive Statistics			•	Case Summaries	
						Compare <u>M</u> eans			•	Case Summanes	
					Τ.	<u>G</u> eneral Linear Model		Model	•	Report Summaries in Hows	
		a :	sex	age	elean	Corre	late		→_	Report Summaries in Columns	

จะได้เมนูย่อยของคำสั่ง Analyze / Reports / OLAP Cubes..เป็นดังนี้

	Summary Variable(s):	OK
(₩) sex (₩) age		Paste
Level of education [ed status		<u>R</u> eset
 income 		Cancel
🗰 grade 🏟 bonus		Help
- Contac	<u>G</u> rouping Variable(s):	
		Statisti <u>c</u> s.
		<u>T</u> itle

ขั้นที่ 3. เลือกตัวแปร age ไปไว้ที่ช่อง Summary Variable(s) เลือกตัวแปร sex ไปไว้ที่ช่อง Grouping Variable(s)

배 OLAP Cubes		x
🛞 id	Summary Variable(s):	ок
Level of education [ed	(₩) age	Paste
income		Basat
🔶 grade	_	<u>eset</u>
li bonus	ļ	Cancel
		Help
	<u>G</u> rouping Variable(s):	
	🚸 sex	
	•	Statisti <u>c</u> s <u>T</u> itle

เสร็จแล้วคลิก OK จะได้ผลดังนี้

Tutout1 - SPSS for Wind	owe V	iewer											
<u>File Edit View Insert Form</u>	at <u>A</u> r	nalyze <u>G</u> ra	aphs I	<u>U</u> tilities	<u>W</u> indo	w <u>H</u> e	P						
2													
🖃 🔚 Output		OLAP	[,] Cu	bes									
⊡ E OLAP Cubes		Case Processing Summary											
Notes									Cases	3			
Case Processin					Inclu	ded			Exclude	ed		Tot	al
				N	1	Perc	ent	N		Percen	it N		Percent
		AGE *	SEX		48	96	6.0%		2	4.0	%	50	100.0%
							OLAP	Cube	es				
		SEX: To	tal										
									Std.		% of Total	% 0	f Total
			SI	um	1	1	Mear	1	Deviati	on	Sum		N
		AGE		1821		48	37.	.94	9.	.55	100.0%		100.0%

การตรวจสอบข้อมูลจำแนกตามกลุ่มชาย หญิง ให้ทำตามขั้นตอนดังนี้ ขั้นที่ 4. นำเมาส์มากดดับเบิลคลิกที่ตาราง Sex:Total จะได้ผลดังนี้

ข**ั้นที่ 4**. เลือกคำสั่ง Pivot และ Move Layers to Columns

จะได้ผลของตารางของตัวแปร Sex ดังนี้

OLAP Cubes

					Std.	% of Total	% of
SEX		Sum	Ν	Mean	Deviation	Sum	Total N
Male	AGE	1211	31	39.06	9.97	66.5%	64.6%
Female	AGE	610	17	35.88	8.65	33.5%	35.4%
Total	AGE	1821	48	37.94	9.55	100.0%	100.0%

การคำนวณค่าสถิติต่างๆ เพิ่มเติม ข**ั้นที่ 5**. จากขั้นตอนที่เลือกตัวแปรเสร็จแล้ว

🐞 id		Summary Variable(s):	ок
Level of education [ed status		(₩) age	Paste
 income grade 	\mathbf{F}		<u>R</u> eset
 glade bonus 			Cancel
			Help
	_	<u>G</u> rouping Variable(s):	
	•		Statisti <u>c</u> s
			<u>T</u> itle

ให้คลิก Statistics จะได้เมนูย่อยเป็น

atistics		<u>C</u> ell Statistics
tedian ▲ irouped Median tid Error of Mean timimum taximum lange irst .at /ariance .utosis kewness tid Error of Kurtosis kewness tid Error of Skewness tid Error of Skewness iamonic Mean ieometric Mean ▼	ſ	Sum Number of Cases Mean Standard Deviation Percent of Total Sum Percent of Total N
Continue	Cancel	Help

ลองเลือก Minimum , Maximum มาไว้ที่ช่องขวามือ อเมา เกษองสุดเล

Median Grouped Median Std. Error of Mean Range First Last Variance Kurtosis Std. Error of Kurtosis Skewness Std. Error of Skewness Harmonic Mean Recmethic Mean Percent of Sum in(sex) Percent of N in(sex)	Sum Number of Cases Mean Standard Deviation Percent of Total Sum Percent of Total N Minimum Maximum
Continue	Cancel Help

เสร็จแล้วคลิก Continue และ Ok ตามลำดับ จะได้ผลดังนี้

					Std.	% of Total	% of		
SEX		Sum	Ν	Mean	Deviation	Sum	Total N	Minimum	Maximurn
Male	AGE	1211	31	39.06	9.97	66.5%	64.6%	21	56
Female	AGE	610	17	35.88	8.65	33.5%	35.4%	22	53
Total	AGE	1821	48	37.94	9.55	100.0%	100.0%	21	56

OLAP Cubes

76

4.2 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Reports / Case Summaries..

ผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Case Summaries.. จะได้รายละเอียด ของข้อมูลจำแนกตามกลุ่ม พร้อมค่าสถิติเบื้องต้นต่างๆ เช่น ค่าเฉลี่ยเลขคณิต ค่าฐานนิยม ค่า ส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด ที่คำนวณแบบจำแนกตามกลุ่มและแบบคิดรวมทั้ง กลุ่ม

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4 เข้ามาใน SPSS for Windows Data Editor

🗰 example4 - SPSS for Windows Data Editor											
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
2	e 🛛 🗠 🖾 🖕 🗛 📲 🕮 🔊 🖉										
1:id	1:id 0										
	id	sex	age	educ	status	income	grade	bonus			
1	1	1	37	2	4	5500	3.78	11000.00			

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / Case Summaries..

🚞 ex	🞬 example4 - SPSS for Windows Data Editor											
<u>F</u> ile	<u>E</u> dit <u>V</u>	iew [<u>)</u> ata	<u>I</u> ran	sform	<u>Analyze</u> <u>G</u> raphs	<u>Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp					
F						Reports Descriptive Sta Compare <u>M</u> ear	Reports D <u>e</u> scriptive Statistics Compare <u>M</u> eans			OL <u>A</u> P Cubes Case Summaries Depend Commaries in Down		
	id	se	xa	age	edu	<u>G</u> eneral Linear Correlate	Model))_	Repo	ort <u>S</u> ummaries in C	olumns	
1	1		1	37				•	3.78	11000.00		

คลิกที่ Case Summaries.. จะได้เมนูย่อยเป็น

⊯A Summarize Cases	×
	OK
(₩) sex (♣) age	<u>P</u> aste
Evel of education [edu status	<u>R</u> eset
income	Cancel
 ♦ bonus 	Help
Grouping Variable(s):	
✓ Display cases	
Imit cases to first 100 Imit Show only valid cases	
☐ Show <u>c</u> ase numbers <u>Statistics</u> <u>Options</u>	

ขั้นที่ 3. เลือกตัวแปร age ไปไว้ที่ช่อง Variables..

เลือกตัวแปร sex ไปไว้ที่ช่อง Grouping Variable(s)

	ଭ
บนจอภาพจะเ	ปน

🚓 Summarize Cases		>
🛞 id	Variables:	ок
 Level of education [edu status 	re age	<u>P</u> aste
income		Reset
 Image of the second sec		Cancel
		Help
	<u>G</u> rouping Variable(s):	
I Jiroji cases to first	100	
Show only valid cases	s .	
☐ Show <u>c</u> ase numbers	<u>S</u> tatistics <u>O</u> ptions	

ขั้นที่ 4. คลิกปุ่ม Statistics เพื่อให้ SPSS คำนวณค่าสถิติอื่นๆ เพิ่มเติม

เลือกค่า Mean , Variance มาไว้ทางขวามือ

Summary Report: Stati	istics	Cell Statistics:	×
Grouped Median Std. Error of Mean Sum Minimum Maximum Range First Last Kurtosis Std. Error of Kurtosis Std. Error of Skewne Harmonic Mean Geometric Mean Percent of Total Sur, ▼	l	Number of Cases Median Variance	
ContinueC	ancel	Help	

บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports

เสร็จแล้วคลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณดังนี้ เรื⁰⁰¹⁰⁰¹¹ spss for Windows Viewer

ผลการคำนวณทั้งหมดคือ

Summarize

Case Processing Summary^a

	Cases							
	Inclu	Ided	То	tal				
	Ν	Percent	Ν	Percent	Ν	Percent		
AGE * SEX	48	96.0%	2	4.0%	50	100.0%		

a. Limited to first 100 cases.

Case Summaries

			AGE
SEX	Male	1	37
		2	34
		3	50
		4	24
		5	46
		6	32
		7	42
		8	38
		9	54
		10	43
		11	40
		12	37
		13	28
		14	44
		15	56
		16	35
		16	35
		17	21
		17	21
		18	39
		18	39
		19	45
		19	45
		20	31
		20	31
		21	51
		21	51

	22		23
	23		40
	24		47
	25		53
	26		29
	27		40
	28		31
	29		45
	30		22
	31		54
	Total	N	31
		Median	40.00
		Variance	99.329
Female	1		29
	2		48
	3		33
	4		45
	5		38
	6		23
	7		43
	8		37
	9		41
	10		32
	11		22
	12		42
	13		27
	14		30
	15		53
	16		34
	16		34
	17		33
	17		33
	Total	N	17
	Total	N	17
		Median	34.00
		Median	34.00
		Variance	74.860
		Variance	74.860
Total	N		48
Total	N		48
	Median		38.00
	Median		38.00
	Variance		91.251
	Variance		91.251
 	- · · ·	~ ~ _	

a Limited to first 100 cases.

จากตัวอย่างนี้จะเห็นว่าผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Case Summaries.. จะได้รายละเอียดของข้อมูลทุกตัวในแฟ้มข้อมูล จำแนกตามกลุ่ม พร้อมค่าสถิติ เบื้องต้นต่างๆ ที่คำนวณแบบจำแนกตามกลุ่ม และ แบบคิดรวมทั้งกลุ่ม

บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports

4.3 การคำนวณค่าสถิติเบื้องต้นโดยใช้คำสั่ง

Analyze / Reports / Report Summaries in Rows...

Analyze / Reports / Report Summaries in Columns...

ผลการวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports / Report Summaries in Rows.... จะได้ รายละเอียดของข้อมูลจำแนกตามกลุ่ม พร้อมค่าสถิติเบื้องต้นต่างๆ เช่น ค่าเฉลี่ยเลขคณิต ค่า ฐานนิยม ค่ามัธยฐาน ค่าส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด ค่าต่ำสุด ที่คำนวณแบบจำแนกตาม กลุ่มและแบบคิดรวมทั้งกลุ่ม

ขั้นที่ 1. เปิดแฟ้มข้อมูล example4 เข้ามาใน SPSS for Windows Data Editor

🚞 exa	mple4 ·	SPSS	for Wi	ndows D	ata Editor			
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
<u></u>	* # # * # * # * # # # # * * * *							
1:id	1:id 0							
	id	sex	age	educ	status	income	grade	bonus
1	1	1	37	2	4	5500	3.78	11000.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Reports / Report Summaries in Rows..

🛗 ежа	ampl	e4 - S	PSS	for Wi	ndows	: Data Ec	litor			
<u>F</u> ile <u>E</u>	Edit	<u>∨</u> iew	<u>D</u> ata	<u>I</u> ran	sform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	∐ir	ndow <u>H</u> elp
e	┛╡	3	.		<u> </u>	Repo	irts risting Ch		P	OLAP Cubes
						Com	npuve sta paro Moar	ausues		Case Su <u>m</u> maries
	_					Comp	ale <u>M</u> eal	10 11 - 1 - 1		<u>Report Summaries in Rows</u>
	i.	ds	ex	age	edu	<u>L</u> ene Corre	ral Linear late	Model		Report <u>S</u> ummaries in Columns

คลิกที่ Report Summaries in Rows.. จะได้เมนูย่อยเป็น

Report: Summaries in I to the sex constant of the sex of the sec	Tows	OK Paste
Level of education [ed status income grade bonus	Format	<u>R</u> eset Cancel Help
		☐ Pre <u>v</u> iew Report S <u>u</u> mmary
	Sort Sequence Summary Ascending Options Desgending Eormat	Optio <u>n</u> s Layout Titles
☐ Display cas <u>e</u> s	☐ Data are already sorted	

ขั้นที่ 3. เลือกตัวแปร id ไปไว้ที่ช่อง Data C เลือกตัวแปร educ ไปไว้ที่ช่อง Break (

คลิก OK จะได้ผลการคำนวณเป็นรายงาน ข้อมูลของ เลขที่ (id) และ ระดับการศึกษา (educ)

Level of	
education	ID
Under graduate	15
e	26
	45
	23
	43
	48
	4
	22
	33
	34
	3
	30
	7
	19
Graduate	13
	31
	40
	10
	14
	20
	24
	28
	32
	36

ไปไว้ที่ช่อง Data Columns uc ไปไว้ที่ช่อง Break Columns

บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports

	46
	50
	11
	44
	16
	35
	38
	18
	1
	9
	47
	5
Post graduate	29
8	36
	2
	8
	27
	37
	42
	12
	49
	6
	21
Doctorate	41
	17
	25

บทที่ 4 การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Reports

ในทำนองเดียวกันคำสั่ง Analyze / Reports / Report Summaries in Columns... สามารถทำ รายงานข้อมูลได้แบบเดียวกับ Analyze / Reports / Report Summaries in Rows...

ตัวอย่างเช่น การจำแนกจำนวนในข้อมูลตาม เพศ(sex) และ ระดับการศึกษา(educ)

Report

Level of education

84

Page	1
sex	
Sum	

Under graduate	21
Graduate	27
Post graduate	17
Doctorate	3

บทที่ 5

การแก้ไขแฟ้มข้อมูลด้วยคำสั่ง Data และ คำสั่ง Transforms

การทำงานกับแฟ้มข้อมูลของ SPSS for Windows เราสามารถทำการแก้ไขแฟ้มข้อมูล ปรับ ปรุงแฟ้มข้อมูล เช่น เพิ่มตัวแปร ลดตัวแปร เพิ่มค่าสังเกต ลดค่าสังเกต สร้างตัวแปรใหม่จากตัว แปรเก่า เปลี่ยนแปลงค่าของตัวแปร ฯลฯ การปรับปรุงแฟ้มข้อมูลแบบต่างๆ เหล่านี้เราใช้คำสั่ง Data และ Transform ตัวอย่างเช่น

คำสั่ง Data	มีคำสั่งย่อยา	องคำสั่ง Data ที่ใช้งานกันมากคือ
Data / Defined	Variables	สร้างตัวแปรใหม่
Data / Insert Va	ariable	แทรกตัวแปรใหม่
Data / Insert C	ase	แทรกค่าสังเกต
Data / Go to Ca	ase	เคลื่อนที่ไปยังค่าสังเกตที่ต้องการ
Data / Sort Cas	ses	เรียงลำดับข้อมูล
Data / Merge F	iles	รวมแฟ้ม 2 เข้าด้วยกัน
Data / Weight	Cases	กำหนดตัวแปรน้ำหนักของข้อมูล

คำสั่ง Transform	มีคำสั่งย่า	อยของคำสั่ง Transform ที่ใช้งานกันมากคือ
Transform / Comp	oute	น้ำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่
Transform / Recoo	de	กำหนดค่าใหม่ให้กับตัวแปรเดิม
เพื่อความสะดวกใน	เการเรียนค	คำสั่ง Data และ Transforms ขอให้สร้างข้อมูลและ Save ไว้ในดิสก์
File_xy1.sav	มีตัวแปร	x , y และค่าสังเกต 5 ตัว
File_xy2.sav	มีตัวแปร	x , y และค่าสังเกต 3 ตัว
File_xw.sav	มีตัวแปร	z , w และค่าสังเกต 5 ตัว

File_xy1.sav				
×	У			
2.00	15.00			
3.00	17.00			
7.00	23.00			
9.00	45.00			
12.00	58.00			

File_xy2.sav				
У				
32.00				
48.00				
67.00				

	File_zw.sav					
		z	×			
0		100.00	17.00			
0		250.00	35.00			
0		370.00	64.00			
		420.00	72.00			
		550.00	89.00			

5.1 การเพิ่มตัวแปร การลดตัวแปร การแทรกตัวแปร

การทำงานกับแฟ้มข้อมูลงานที่เราต้องทำอยู่ประจำคือ การเพิ่มตัวแปร การลดตัวแปร และ

การแทรกตัวแปร

5.1.1 การแทรกตัวแปร และ การเพิ่มตัวแปร

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

🛗 file_xy1 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	∐tilities <u>W</u> indow	<u>H</u> elp	
<u> 2</u>	18 🔍 🗠) 💷 🏪 🗗	M		<u></u>	
	×	У	var	var	var	
1	2.00	15.00				
2	3.00	17.00				
3	7.00	23.00				
4	9.00	45.00				
5	12.00	58.00				

สมมติว่าเราต้องการแทรกตัวแปร t ระหว่างตัวแปร x และ y เพื่อให้แฟ้มข้อมูลใหม่มีข้อมูลดังนี้

×	t	У
2.00	12.00	15.00
3.00	18.00	17.00
7.00	19.00	23.00
9.00	21.00	45.00
12.00	23.00	58.00

篇file_xy1 - SPSS for Windows Data Editor File Edit View Data Iransform Analyze Graphs Utilities Window Help					
1. y	x	y y	var	var	var
1	2.00	15.00			
2	3.00	17.00			
3	7.00	23.00			
4	9.00	45.00			
5	12.00	58.00			

ขั้นที่ 2. ให้เลื่อน pionter ไปคลิกที่ตัวแปร y

ขั้นที่ 3 เลือกคำสั่ง Data / Insert Variable

🎬 file_xy1 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>D</u> ata <u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities <u>W</u> ind	ow <u>H</u> elp
_ <u>≥∎⊜</u> <u>=</u>	<u>D</u> efine Variabl Define Dates	e) <u>*</u> [i		<u> </u>
1:y					
	Insert <u>V</u> ariable		var	var	Val
^	Insert Case	L	Vai	Vai	Val

คลิกที่ Insert Variable บนจอภาพจะแทรกช่องตัวแปร var0001 ระหว่างแปร x และ y

🛗 file_	🛗 file_xy1 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	_tilities _ <u>W</u> indow	<u>H</u> elp	
<u> </u>	18 🔍 🗠) 💷 🏪 😭	M <u>F</u>	▦◍ॖॖ≣	<u></u>	
1:var	00001	I				
	×	var00001	У	var	var	
1	2.00		15.00			
2	3.00		17.00			
3	7.00		23.00			
4	9.00		45.00			
5	12.00		58.00			

สร้างตัวแปรใหม่ t และพิมพ์ข้อมูลใหม่เข้าไป

🛗 file_	🎬 file_xty - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp		
<u> 2</u>	18 🔍 🗠) 💷 🔚 📴	<u> M 1</u> 1	≣ ⊈ ≣	<u></u>		
	×	t	У	var	var		
1	2.00	12.00	15.00				
2	3.00	18.00	17.00				
3	7.00	19.00	23.00				
4	9.00	21.00	45.00				
5	12.00	23.00	58.00				

เสร็จแล้วขอให้ Save ไว้ที่ชื่อ File_xty.sav

5.1.2 การลดตัวแปร

T21.

สมมติว่าเราต้องการลดตัวแปร y ออกจากแฟ้ม File_xty.sav และ save ใหม่เป็นแฟ้มชื่อ

File_xt.sav

88

File_xty.sav							
×	t	У					
2.00	12.00	15.00					
3.00	18.00	17.00					
7.00	19.00	23.00					
9.00	21.00	45.00					
12.00	23.00	58.00					

×	t
2.00	12.00
3.00	18.00
7.00	19.00
9.00	21.00
12.00	23.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xty.sav เข้ามาใน SPSS for Windows Data Editor

🎬 file_xty - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	<u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u>								
*									
	×	t	У	var	var				
1	2.00	12.00	15.00						
2	3.00	18.00	17.00						
3	7.00	19.00	23.00						
4	9.00	21.00	45.00						
5	12.00	23.00	58.00						

ขั้นที่ 2. คลิกที่ช่องตัวแปร y

🏢 file_xty - SPSS for Windows Data Editor								
<u>F</u> ile <u>E</u>	<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp							
~	600							
1:y		15						
	×	t	У	var	var			
1	2.00	12.00	15.00					
2	3.00	18.00	17.00					
3	7.00	19.00	23.00					
4	9.00	21.00	45.00					
5	12.00	23.00	58.00					

📺 file_xty - SPSS for Windows Data Editor								
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
≥ ∎⊕ ¤ ∽ <u>⊾ t k 4 1≣t ≣4≣ ⊗</u> ⊘								
	×	t	var	var	var			
1	2.00	12.00						
2	3.00	18.00						
3	7.00	19.00						
4	9.00	21.00						
5	12.00	23.00						

กด Del จะได้ว่าตัวแปร y หายไป ขอให้ Save ไว้ที่ชื่อ File_xt.sav

5.1.3 การแทรกค่าสังเกต

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

🎬 file_xy1 - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	<u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u>								
~	18 🔍 🗠) 💷 🏪 📴	M <u>*</u>		<u>s</u>				
	×	У	var	var	var				
1	2.00	15.00							
2	3.00	17.00							
3	7.00	23.00							
4	9.00	45.00							
5	12.00	58.00							

สมมติว่าเราต้องการแทรกค่าสังเกต x = 5 , t = 19 ระหว่างค่าสังเกตตัวที่ 2 และ 3

		×	У
	1	2.00	15.00
	2	3.00	17.00
1	3	7.00	23.00
	4	9.00	45.00
	5	12.00	58.00
ď	•	1 4	

		×	У
	1	2.00	15.00
	2	3.00	17.00
\rightarrow	3	5.00	19.00
	4	7.00	23.00
	5	9.00	45.00
	6	12.00	58.00

ขั้นที่ 2. คลิกที่ตำแหน่งแถวที่ 3

	🛗 file_xy1 - SPSS for Windows Data Editor								
	<u>File Edit View D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
	*								
	3:x								
		×	У	var	var	var			
	1	2.00	15.00						
	2	3.00	17.00						
×	3	7.00	23.00						
	4	9.00	45.00						
	5	12.00	58.00						

ข**ั้นที่ 3**. เลือกคำสั่ง Data / Insert Case

🎬 file_xy1 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u>	<u>Data T</u> ransform <u>A</u> nalyze	e <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp			
<u></u>	<u>D</u> efine Variable Define Dates	å] <u>≯</u> ≣∣ਛੱ		<u></u>			
3:x	<u>I</u> emplates						
X	Insert <u>V</u> ariable Insert Case	var	var	var			
1	Go to Ca <u>s</u> e						

คลิกที่ Insert Case จอภาพจะเป็น

	🎬 file_xy1 - SPSS for Windows Data Editor						
	<u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u>						
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
	3:x		I				
		×	У	var	var	var	
	1	2.00	15.00				
	2	3.00	17.00				
\rightarrow	3						
	4	7.00	23.00				
	5	9.00	45.00				
	6	12.00	58.00				

พิมพ์ค่า x = 5 และ t = 19

1	🛗 file_xy1 - SPSS for Windows Data Editor								
	<u>File Edit V</u> iew <u>D</u> ata <u>Transform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
	6 • • • • • • • • • • • • • • • • • • •								
	3:у		19						
		×	У	var	var	var			
	1	2.00	15.00						
	2	3.00	17.00						
≯	3	5.00	19.00						
	4	7.00	23.00						
	5	9.00	45.00						
	6	12.00	58.00						

เสร็จแล้ว Save ไว้ที่ชื่อ File_xy1 60bs.sav

5.2 การลบค่าสังเกต

การลบค่าสังเกตออกจากแฟ้มข้อมูล

ขั้นที่ 1 นำเมาส์ไปคลิกที่หมายเลขบรรทัดของค่าสังเกต เช่นขณะนี้เราต้องการลบค่าสังเกตตัว ที่ 5 ทิ้งไป **โกระ 1 Cobs - SPSS for Windows Data Editor**

	file_xy1 Gobs - SPSS for Windows Data Editor									
	<u>File</u>	ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
	5:x	3								
		×	У	var	var	var				
	1	2.00	15.00							
	2	3.00	17.00							
	3	5.00	19.00							
	4	7.00	23.00							
+	€ ל	9.00	45.00							
	6	12.00	58.00							

คลิกเมาส์ตรงบรรทัดที่ 5 แล้วกด Del จะได้ผลดังนี้

誧 file	🎬 file_xy1 Gobs - SPSS for Windows Data Editor							
<u>F</u> ile <u>I</u>	<u>File Edit View Data Iransform Analyze Graphs Utilities Window Help</u>							
<u>🖻 </u>	* • • • • • • • • •							
5:x	5:x 12							
	×	У	var	var	var			
1	2.00	15.00						
2	3.00	17.00						
3	5.00	19.00						
4	7.00	23.00						
5	12.00	58.00						

ค่าสังเกตที่ 5 ของเก่าหายไป และ เลื่อนค่าสังเกตตัวที่ 6 ขึ้นมาเป็นค่าสังเกตตัวที่ 5 แทน

5.3 การรวมแฟ้มข้อมูลแบบเพิ่มตัวแปร

แฟ้มข้อมูล 2 แฟ้มที่มีตัวแปรต่างกันสามารถนำมารวมเป็นแฟ้มเดียวกันได้โดยใช้คำสั่ง Data /

Merge Files / Add Variablesตัวอย่างเช่น

File_xy1.sav				
×	У			
2.00	15.00			
3.00	17.00			
7.00	23.00			
9.00	45.00			
12.00	58.00			

 zw.sav

 z
 w

 100.00
 17.00

 250.00
 35.00

 370.00
 64.00

 420.00
 72.00

 550.00
 89.00

	File_xyzw.sav						
	×	У	z	w			
	2.00	15.00	100.00	17.00			
	3.00	17.00	250.00	35.00			
ļ	7.00	23.00	370.00	64.00			
	9.00	45.00	420.00	72.00			
	12.00	58.00	550.00	89.00			

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

🛅 file_	🛗 file_xy1 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	Eile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
<u> </u>	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	×	У	var	var	var			
1	2.00	15.00						
2	3.00	17.00						
3	7.00	23.00						
4	9.00	45.00						
5	12.00	58.00						

ขั้นที่ 2. เลือกคำสั่ง Data / Merge File / Add Variables

🎬 file_xy1 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	dit <u>V</u> iew	Data Iransform Analya	ze <u>G</u> raphs <u>I</u>	Utilities <u>W</u> indow	Help		
		<u>D</u> efine Variable D <u>e</u> fine Dates <u>T</u> emplates	å <u>}</u> ≣i≟		<u></u>		
	×	Insert <u>V</u> ariable Insert Case	var	var	var		
1		Go to Case	_				
2	:	S <u>o</u> rt Cases					
3		Merge Files	Add Case	I es			
4	!	Aggregate Ort <u>h</u> ogonal Design 🕨	Add <u>V</u> ari	ables / alues			

คลิกที่ Add Variables จะได้เมฯย่อยเป็น

Add Variables:	Read File		? ×
Look in: 🦷	🛾 data	<u> </u>	* 📰
简 1	🛗 example14	🛅 example20	🗎 example27
🛗 Aggr	🛗 example15	🛗 example21	🛗 example28
🛅 example1	🛗 example16	🛗 example22	🛅 example29
🛅 example10	🛗 example17	🛅 example23	🛅 example3
🛅 example11	🛗 example18	🛗 example24	🛗 example3C
🛅 example12	🛗 example19	🛗 example25	🛗 example31
🛗 example13	🛗 example2	🛗 example26	🛗 example4
•			<u> </u>
File <u>n</u> ame:			<u>O</u> pen
Files of <u>type</u> :	iPSS (*.sav)	<u>•</u>	Cancel

ขั้นที่ 3. พิมพ์ชื่อแฟ้ม File_zw.sav แล้วคลิก Open จะได้ผลดังนี้ (**หมายเหตุ** ในดิสก์ต้องมี แฟ้ม File_zw.sav อยู่ก่อน)

	X (*) y (*) z (+) 	<u>P</u> aste Beset
Rengme	- w(r)	Cance Help
Match cases on key variables in sorted files Both files provide cases Egternal file is keyed table Working Data File is keyed table	, Key⊻ariables:]	

คำอธิบายของ SPSS บอกว่าแฟ้มใหม่ที่จะได้ประกอบด้วยตัวแปร 4 ตัวคือ x , y , z , w

ขั้นที่ 3. คลิก OK จะได้แฟ้มใหม่เป็น

	\mathbf{k}						
🛗 Untitled - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	Help		
<u> 2</u>	*						
1:x 2							
	×	У	z	w	var		
1	2.00	15.00	100.00	17.00			
2	3.00	17.00	250.00	35.00			
3	7.00	23.00	370.00	64.00			
4	9.00	45.00	420.00	72.00			
5	12.00	58.00	550.00	89.00			

จะเห็นได้ว่าชื่อแฟ้มเปลี่ยนเป็น Untitled แล้ว

ดังนั้นเราควรจะ Save ใหม่โดยใช้ชื่อว่า File_xyzw.sav

5.4 การรวมแฟ้มข้อมูลแบบเพิ่มค่าสังเกต

์แฟ้มข้อมูล 2 แฟ้มที่มีโครงสร้างตัวแปรเหมือนกันเราสามารถรวมแฟ้มเข้าด้วยกันเพื่อให้จำนวน ค่าสังเกตเพิ่มขึ้นได้โดยใช้คำสั่ง Data / Merge Files / Add Cases ตัวอย่างเช่น

У				
15.00				
17.00				
23.00				
45.00				
58.00				
	۹. .		×	У
	รวมแฟ้มเป็น	1	2.00	15.00
v	File and con	2	3.00	17.00
32.00	File_xy1.sav	3	7.00	23.00
48.00		4	9.00	45.00
67.00		5	12.00	58.00
07.00	\rightarrow	6	8.00	32.00
થ થ	£ File_xy2.sav	7	9.00	48.00
เพมของ	่งูล ⊦ile_xy1.sav เขาม'	8	15.00	67.00
	file_xy1 - SPSS for Windows Data Editor File Edit View Data Iransform Analyze Graphs Uti	lities <u>W</u>	<u>(</u> indow <u>H</u> elp	
	y 15.00 17.00 23.00 45.00 58.00 58.00 32.00 48.00 67.00			

	×	У	var	var	var
1	2.00	15.00			
2	3.00	17.00			
3	7.00	23.00			
4	9.00	45.00			
5	12.00	58.00			

ข**ั้นที่ 2**. เลือกคำสั่ง Data / Merge File / Add Cases

🎬 file_xy1 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	dit <u>V</u> iew	<u>Data T</u> ransform <u>A</u> naly	ze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indov	v <u>H</u> elp		
<u> </u>	 	<u>D</u> efine Variable Define Dates	å] <u>∗</u> ≣∣≟		<u>v</u>		
		_ Templates					
	×	Insert <u>V</u> ariable Insert Case	var	var	var		
1		Go to Ca <u>s</u> e					
2	:	S <u>o</u> rt Cases -					
3		Tra <u>n</u> spose Merge Files	Add <u>C</u> ase	es			
4		Aggregate	Add <u>V</u> ari	ables			

คลิกที่ Add Cases จะได้เมนูย่อยเป็น

Add Variables: Re	ad File		? ×
Look jn: 🛛 🔂	data	<u> </u>	* 📰
1	🛅 example14	📺 example20	🛗 example27
🛅 Aggr	🛅 example15	🛅 example21	💼 example28
🛅 example1	🛅 example16	🛅 example22	💼 example29
🛅 example10	🛅 example17	🛅 example23	💼 example3
🛗 example11	🛗 example18	🛗 example24	🛗 example30
🛗 example12	🛗 example19	🛗 example25	🛗 example31
🛗 example13	🛗 example2	🛗 example26	🛗 example4
•			•
File <u>n</u> ame:			<u>O</u> pen
Files of type: SPS	65 (*.sav)	•	Cancel

ขั้นที่ 3. พิมพ์ชื่อแฟ้ม File_xy2.sav แล้วคลิก Open จะได้ผลดังนี้ (**หมายเหตุ** ในดิสก์ต้องมี แฟ้ม File_xy2.sav อยู่ก่อน)

Add Cases from SPSS 9.0\dat	a \file_xy2.sav X <u>V</u> ariables in New Working Data File:
	P _{ĝit}
R <u>e</u> name	Indicate case source as variable:
(*) = Working Data File (+) = SPSS 9.0\data\file_xy2.sav	OK Paste Reset Cancel Help

คำอธิบายของ SPSS บอกว่าแฟ้มใหม่ที่จะได้ประกอบด้วยตัวแปร 2 ตัวคือ x , y ขั้นที่ 3. คลิก OK จะได้แฟ้มใหม่เป็น

`	\checkmark						
🛗 Unt	🛗 Untitled - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	Help		
<u>2</u> 5	200 - <u>10 10 10 10 10 10 10 10 10 10 10 10 10 1</u>						
	×	У	var	var	var		
1	2.00	15.00					
2	3.00	17.00					
3	7.00	23.00					
4	9.00	45.00					
5	12.00	58.00					
6	8.00	32.00					
7	9.00	48.00					
8	15.00	67.00					

จะเห็นได้ว่าชื่อแฟ้มเปลี่ยนเป็น Untitled แล้ว

ดังนั้นเราควรจะ Save แฟ้มใหม่โดยใช้ชื่อว่า File_xy 80bs.sav

5.5 การเรียงลำดับข้อมูล

คำสั่ง Data / Sort Cases เป็นคำสั่งที่ช่วยในการเรียงลำดับข้อมูล

гпе_х	.yı.sav		_
	×	У	
1	2.00	15.00	
2	3.00	17.00	
3	7.00	23.00	า กต้องการเรียงลำดับของข้อมลในตัวแปร v เป็น
4	9.00	45.00	
5	12.00	58.00	
			•

	x	У
1	12.00	58.00
2	9.00	45.00
3	7.00	23.00
4	3.00	17.00
5	2.00	15.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

-					
📺 file_	xy1 - SPSS for	r Windows Data	a Editor		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	∐tilities <u>W</u> indow	<u>H</u> elp
<u></u>	18 🔍 🗠) 💷 🏪 🕼	M <u>*</u>		<u></u>
	×	У	var	var	var
1	2.00	15.00			
2	3.00	17.00			
3	7.00	23.00			
4	9.00	45.00			
5	12.00	58.00			

ข**ั้นที่ 2**. เลือกคำสั่ง Data / Sort Cases

🚞 file_	xy1 - SPSS	i for Windows I)ata Edit	or
<u>F</u> ile <u>E</u>	dit <u>V</u> iew [<u>)</u> ata <u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>I</u>
<u> </u>	i (4) 🖻	<u>D</u> efine Variable Define Dates	e da	<u>*</u> [Ě
		<u>T</u> emplates		
	x	Insert <u>V</u> ariable Insert Case		var
1		Go to Case		
2	:	S <u>o</u> rt Cases		

คลิกที่ Sort Cases จะได้เมนูย่อยเป็น

ขั้นที่ 2. เลือกตัวแปร x มาไว้ช่อง Sort by และเลือก Sort Order เป็น Descending

(₩) y		Sort by:	- OK Paste
	•		 <u>R</u> ese
		Sort Order	Cance
		Ascenaing Oescendina	Help

คลิก OK จะได้ผลดังนี้

9PS5	1 0000 (E 12		
💼 hile_	_xy1 - SPSS for	Windows Data	a Editor		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp
<u> </u>	18 🔍 🗠) 🗐 🏪 🕻	M <u>F</u>	▦◍ॖॖ≣	<u></u>
	×	У	var	var	var
1	12.00	58.00			
2	9.00	45.00			
3	7.00	23.00			
4	3.00	17.00			
5	2.00	15.00			

หมายเหตุ ชื่อแฟ้มยังเป็นชื่อเดิมคือ File_xy1.sav

5.6 การกำหนดตัวแปรน้ำหนัก

ข้อมูลที่อยู่ในรูปแบบของคะแนนและความถี่ตัวอย่างเช่น

การหาค่าเฉลี่ยของคะแนน(x) ที่มีความถี่ตามที่กำหนดต้องกำหนดให้

ตัวแปรความถี่(f) เป็นค่าน้ำหนัก การกำหนดค่าตัวแปร f เป็นค่าน้ำหนัก

เราใช้คำสั่ง Data / Weight Cases...

ขั้นที่ 1. สร้างแฟ้มข้อมูล File_xf.sav

🛗 file	_xf - SPSS for \	⊮indows Data∣	Editor		
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp
ı≊ €	I 🕘 🖳 🗠) 💷 🏪 🗗	M <u>F</u>		<u></u>
	×	f	var	var	var
1	2.00	5.00			
2	5.00	8.00			
3	7.00	15.00			
4	10.00	9.00			
5	12.00	3.00			

ขั้นที่ 2. เลือกคำสั่ง Data / Weight Cases..

บทที่ 5 การแก้ไขแฟ้มข้อมูลด้วยคำสั่ง Data และ คำสั่ง Transforms

คลิกที่ Weight Cases..จะได้เมนูย่อยเป็น

	Do not weight cases	OK
₩	C <u>W</u> eight cases by	<u>P</u> aste
	Erequency Variable:	<u>R</u> eset
		Cancel
	Current Status: Do not weight cases	Help

ข**ั้นที่ 3**. คลิกที่ Weight cases by

เลือกตัวแปร f มาไว้ที่ช่อง frequency Variable

👷 Weight Cases	8	×
(♦) ×	C Do not weight cases	ок
		Paste
	Erequency Variable:	<u>R</u> eset
		Cancel
•	Current Status: Do not weight cases	Help

ขณะนี้เรากำหนดตัวแปรน้ำหนักเสร็จแล้ว ต่อไปลองคำนวณค่าเฉลี่ยของตัวแปร x โดยใช้คำสั่ง

Analyze / Descriptive Statistics / Descriptive

เลือกตัวแปร x มาที่ช่อง Variable(s)

aft Descriptives		×
∲∳ f	Variable(s):	ок
		Baste
1	•	_ <u>R</u> eset
		Cancel
		Help
☐ Save standardized values	as variables	Options

แล้วคลิก OK จะได้ผลการคำนวณเป็นดังนี้

					Std.
	N	Minimum	Maximum	Mean	Deviation
Х	40	2.00	12.00	7.0250	2.8328
Valid N (listwise)	40				

หมายเหตุ ค่าเฉลี่ยมาจากสูตร $\frac{(2)(5) + (5)(8) + (7)(15) + (10)(9) + (12)(3)}{5 + 8 + 15 + 9 + 3} = \frac{281}{40} = 7.0250$

5.7 การนำค่าจากตัวแปรเก่าไปสร้างเป็นค่าของตัวแปรใหม่

คำสั่งที่ใช้ในการนำค่าจากตัวแปรเก่าไปสร้างเป็นตัวแปรใหม่คือ คำสั่ง Transform / Compute ตัวอย่างเช่น ในแฟ้ม File_xy1.sav มีตัวแปร x , y เราต้องการสร้างตัวแปรใหม่เพิ่มอีกตัวคือ xplusy ที่มีสูตรเป็น x + y

File_xy1.sav		
×	У	
2.00	15.00	
3.00	17.00	
7.00	23.00	L L
9.00	45.00	
12.00	58.00	

	×	У	xplusy
	2.00	15.00	17.00
1	3.00	17.00	20.00
พิ่มตัวแปร xplusy เป็น	7.00	23.00	30.00
	9.00	45.00	54.00
	12.00	58.00	70.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

File E	Image: Second system Image: Second system Second system						
	×	У	var	var	var		
1	2.00	15.00					
2	3.00	17.00					
3	7.00	23.00					
4	9.00	45.00					
5	12.00	58.00					

ขั้นที่ 2. เลือกคำสั่ง Transform / Compute..

📷 file_xy1 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	<u>i</u> dit <u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	Ut	
_ ≃ ⊑	🕞 🔲 🗐 👦 🖸 Compute						
Random Number Seed							
	C <u>o</u> unt						
			- <u>R</u> ecode	е		×	
	×	Categorize Variables					
1		2.00	Ran <u>k</u> Cases				
		Automatic Recode					
2		3.00 Create Time Series		s			
3		7.00	Replace Missing <u>V</u> alues				
4		9.00	Run Pe	ending <u>T</u> rai	nsforms		

คลิกที่คำสั่ง Compute จะได้เมนูย่อยเป็น

ขั้นที่ 2. พิมพ์ชื่อตัวแปรใหม่ xplusy ที่ช่อง Target Variable

พิมพ์สูตร x + y ที่ช่อง Numeric Expression

ขั้นที่ 3. คลิก OK จะได้ผลดังนี้

file_ <u>File</u> E	Image: Second system Image: Second system <td< th=""></td<>					
	×	У	xplusy	var	var	
1	2.00	15.00	17.00			
2	3.00	17.00	20.00			
3	7.00	23.00	30.00			
4	9.00	45.00	54.00			
5	12.00	58.00	70.00			

ขอให้ Save ข้อมูลใหม่เป็นชื่อ File_xplusy.sav

บทที่ 5 การแก้ไขแฟ้มข้อมูลด้วยคำสั่ง Data และ คำสั่ง Transforms

5.8 การปรับเปลี่ยนค่าของตัวแปรด้วยคำสั่ง Transform / Recode..

คำสั่งที่ใช้ในการเปลี่ยนค่าเก่าของตัวแปรไปเป็นค่าใหม่ คือ คำสั่ง Transform / Recode

ตัวอย่างเช่น ในแฟ้ม File_xy1.sav มีตัวแปร x , y

เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5

100

เปลี่ยนค่า x เป็น 2 ถ้ำ x ≥ 5

File_xy1.sav		
×	У	
2.00	15.00	
3.00	17.00	แล้มแล่ว ๆ แล้วอะใส้เย็ม
7.00	23.00	เปเมยนตา x แต่งงานจะเทยาน
9.00	45.00	
12.00	58.00	

ne_xyr_recoue.sav	ïle_	xyl	_recode.sav
-------------------	------	-----	-------------

x	У
1.00	15.00
1.00	17.00
2.00	23.00
2.00	45.00
2.00	58.00

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

🛗 file_	🏢 file_xy1 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	<u>File Edit View Data Iransform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp						
🛎 🗐 🔍 🔄 🏊 🕼 🐴 播曲 🎟 郵馬 📎 🚳							
	×	У	var	var	var		
1	2.00	15.00					
2	3.00	17.00					
3	7.00	23.00					
4	9.00	45.00					
5	12.00	58.00					

ขั้นที่ 2. เลือกคำสั่ง Transform / Recode / In Same Variables..

🛅 file_xy1 - SPSS for \	/indows Data Editor		
<u>File E</u> dit <u>V</u> iew <u>D</u> ata	<u>Transform</u> <u>A</u> nalyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow <u>H</u> elp	
<u> - P 6 1 2</u>	<u>C</u> ompute Random Number <u>S</u> eed	eed	
1:x	C <u>o</u> unt		
	<u>R</u> ecode	Into Same Variables	
	Categorize Variables	Into <u>D</u> ifferent Variables	

คลิกที่คำสั่ง Into Same Variables จะได้เมนูย่อยเป็น

👷 Recode into S	ame Variables	×
⊕ В ⊛у	Variables:	OK Paste Reset Cancel Help
	If Old and New Values	

ขั้นที่ 4. คลิกที่ Old and New Values จะได้เมนูย่อยเป็น

	_ Old Value	New Value	
l ——		Vajue	C System-missing
2	C System-missing	Old > Naur	
3	C System- or <u>u</u> ser-missing		-> NEW.
4 ——	C Range:	<u>A</u> 00	
	through	Change	
5	C Range:	Bemove	
	Lowest through		
5 ——	C Range:		
	through highest		
7	C All other values		. 1

- 1. เปลี่ยนค่าแบบ 1 ค่า ต่อ 1 ค่า
- 2. เปลี่ยนค่า System missing เป็นค่าใหม่
- 3. เปลี่ยนค่า System missing หรือค่า Missing ที่เรากำหนดไว้เป็นค่าใหม่
- 4. เปลี่ยนค่าเก่าในช่วงที่กำหนดเป็นค่าใหม่
- 5. เปลี่ยนค่าเก่าที่ต่ำกว่าค่าที่กำหนดเป็นค่าใหม่
- 6. เปลี่ยนค่าเก่าที่สูงกว่าค่าที่กำหนดเป็นค่าใหม่
- 7. เปลี่ยนค่าอื่นที่ไม่ได้กำหนดไว้ข้างต้นเป็นค่าใหม่

```
ขณะนี้เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5
```

เปลี่ยนค่า x เป็น 2 ถ้ำ x ≥ 5

้ขั้นที่ 6. ในช่อง New Value ให้พิมพ์ค่าเป็น 1 จะสังเกตเห็นว่าปุ่ม Add จะมีสีดำขึ้นมา

้ขั้นที่ 7. จะสังเกตเห็นว่าปุ่ม Add จะมีสีดำขึ้นมา ให้คลิกที่ Add จะได้ผลดังนี้

เสร็จแล้วคลิก Add จะได้ ผลบนจอภาพเป็นดังนี้

คลิก OK จะได้ผลบนจอภาพเป็น

SP55	4 0000					
📺 file_	iii file_xy1 - SPSS for Windows Data Editor					
<u>File E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp	
<u> 2</u>	*					
	×	У	var	var	var	
1	1.00	15.00				
2	1.00	17.00				
3	2.00	23.00				
4	2.00	45.00				
5	2.00	58.00				

การเปลี่ยนแปลงค่าและเก็บค่านั้นไว้ที่ตัวแปรใหม่

ตัวอย่างเช่น ในแฟ้ม File_xy1.sav มีตัวแปร x , y เราต้องการ เปลี่ยนค่า x เป็น 1 ถ้า x < 5 เปลี่ยนค่า x เป็น 2 ถ้า x ≥ 5 โดยค่าที่เปลี่ยนแปลงแล้วเก็บไว้ที่ตัวแปรใหม่ชื่อ newx

File_xy1.sav

×	У
2.00	15.00
3.00	17.00
7.00	23.00
9.00	45.00
12.00	58.00

เปลี่ยนค่า x แล้วจะได้เป็น

file_xy1_recode_newx.sav					
×	У	newx			
2.00	15.00	1.00			
3.00	17.00	1.00			
7.00	23.00	2.00			
9.00	45.00	2.00			
12.00	58.00	2.00			

ขั้นที่ 1. เปิดแฟ้มข้อมูล File_xy1.sav เข้ามาใน SPSS for Windows Data Editor

File E	Image:					
1	× 2.00	у 15.00	Val	Vai	Val	
2	3.00	17.00				
3	7.00	23.00				
4	9.00	45.00				
5	12.00	58.00				

9S

104

	🛅 file_xy1 - SPSS for	₩indows Data Editor	
	<u>File E</u> dit <u>V</u> iew <u>D</u> ata	<u>Iransform</u> <u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow <u>H</u> elp
		<u>C</u> ompute Random Number <u>S</u> eed C <u>o</u> unt	
	×	<u>R</u> ecode Categori <u>z</u> e Variables	 Into <u>Same Variables</u> Into <u>Different Variables</u>
คลิกที่คำสัง Into Differer	nt Variables ຈະ	ได้เมนูย่อยเป็น	
12	Recode into Different V	ariables	×
	● X	Input <u>V</u> ariable → Output Va	sriable: Name: Label:
		 Old and New Values	
		OK <u>P</u> aste <u>R</u> es	et Cancel Help

ขั้นที่ 3. เลือกตัวแปร x มาไว้ที่ช่อง Input Variables → Output Variable พิมพ์ชื่อตัวแปรใหม่ newx ในช่อง Output Variable Name

📽 Recode into Different Varia	bles	×
<u>به</u> که	Numeric ⊻ariable -> Output x> ?	iable Change
	_lf	
	Old and New Values	
	OK Paste Reset Cancel Hel	P

เสร็จแล้วคลิกที่ Change จะได้ผลบนจอภาพเป็น

## Recode int	o Different Variables	/ ¹
⊕ y	Numeric <u>V</u> ariable -> Output	Output Variable Name: newx Label:
	If	
	Qld and New Values OK <u>Paste</u> <u>R</u> eset	Cancel Help

หมายเหตุ 1. x → newx หมายความว่าค่า x เมื่อเปลี่ยนแปลงแล้วจะเก็บไว้ที่ newx
 ขั้นที่ 4. คลิกที่ Old and New Values.. จะได้เมนูย่อยเป็น

เพื่อให้ได้ผลบนจอภาพดังนี้

Recode into Different Variables: Old a	and New Values
Old Value	New Value
C System-missing C System- or <u>u</u> ser-missing	C Copy old value(s) Old> New:
Range: through	Add 1 thru 4> 1 5 thru 20> 2
C Range: Lowest through	<u>R</u> emove
C Range: through highest	Output variables are strings Width: 8 Convert numeric strings to numbers ('5'->5)
C All <u>o</u> ther values	Continue Cancel Help

เสร็จแล้วคลิก Continue และ OK ตามลำดับจะได้ผลบนจอภาพดังนี้

🛗 file	🎬 file_xy1 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp	
<u> </u>	*					
	×	У	newx	var	var	
1	2.00	15.00	1.00			
2	3.00	17.00	1.00			
3	7.00	23.00	2.00			
4	9.00	45.00	2.00			
5	12.00	58.00	2.00			

หมายเหตุ ข้อแนะนำในการทำงานควรจะใช้

คำสั่ง Transform / Recode / In Different Variables..

ดีกว่า คำสั่ง Transform / Recode / In Same Variables..

เพราะว่าหากมีข้อผิดพลาดจากการเปลี่ยนแปลงค่าเรายังมีตัวแปรเก่าอ้างอิงและใช้งานต่อไปได้

บทที่ 6

การหาช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของค่าพารามิเตอร์

การทำงานทางด้านสถิติวิเคราะห์มีงานเกี่ยวกัวการประมาณค่าพารามิเตอร์เช่น ค่าเฉลี่ย ประชากร μ ผลต่างของค่าเฉลี่ยประชากร μ₁ – μ₂ ฯลฯ การประมาณค่าเราสามารถทำได้โดย การหา ช่วงความเชื่อมั่น (1 – α)100% ของค่า μ ช่วงความเชื่อมั่น (1 – α)100% ของค่า μ₁ – μ₂ ในบทที่ 6 จะเป็นการใช้โปรแกรม SPSS ช่วยในการหาช่วงความเชื่อมั่นของค่าพารามิเตอร์ หาค่า สถิติเบื้องต้นแบบจำแนกตามกลุ่มและแบบรวมกลุ่ม และทำการวิเคราะห์ความแปรปรวนทดสอบ ว่าค่าเฉลี่ยของประชากรทุกกลุ่มเท่ากัน และ ทดสอบสมมติฐาน H₀: σ₁² = σ₂² = σ₃²...= σ_k²

คำสั่งสำคัญที่ใช้คือ Analyze / Compare Means ..

Analyze / Compare Means / Means..

คำนวณค่าสถิติเบื้องต้นจำแนกตามกลุ่ม

 Ansyze
 Graphs
 Utilities
 Window
 Help

 Regorts
 Descriptive Statistics
 Image: Compare Means
 Image: Compare Means

 Compare Means
 Means...

 General Linear Model
 One-Sample T Test...

 Correlate
 Independent-Samples I Test...

 Regression
 Paired/Samples T Test...

 Loginear
 One-Way ANOVA...

สร้างตาราง ANOVA เพื่อทดสอบค่าเฉลี่ยของประชากรหลายชุดเท่ากันหรือไม่ได้

Analyze / Compare Means / One-Sample T Test.. คำนวณค่าสถิติเบื้องต้น หาช่วงความ เชื่อมั่น (1-α)100% ของค่า μ

Analyze / Compare Means / Independent Samples T Test... คำนวณค่าสถิติเบื้องต้น จำแนกตามกลุ่ม หาช่วงความเชื่อมั่น (1-α)100% ของค่า μ₁-μ₂

Analyze / Compare Means / Pair-Samples T Test... คำนวณค่าสถิติเบื้องต้นจำแนกตาม กลุ่ม หาช่วงความเชื่อมั่น (1 – α)100% ของค่า μ₁ – μ₂ ข้อมูลที่ไม่อิสระต่อกัน หาค่าสหสัมพันธ์ (Correlation)

Analyze / Compare Means / One-Way ANOVA... คำนวณค่าสถิติเบื้องต้นจำแนกตาม กลุ่ม หาช่วงความเชื่อมั่น (1- α)100% ของค่า μ จำแนกตามกลุ่มและรวมกลุ่ม ทำตาราง ANOVA เพื่อทดสอบสมมติฐาน H_o: $\mu_1 = \mu_2 = \mu_3.... = \mu_k$ และ ทดสอบสมมติฐาน H_o: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2.... = \sigma_k^2$ ได้

6.1 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า μ

108

หลักการทางทฤษฎีในเนื้อหาวิชาของความน่าจะเป็นและสถิติของการหาช่วงความเชื่อมั่น (1-α)100% ของค่า μ จำแนกเป็นกรณีต่างๆ ดังนี้

1. กรณีประชากรมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2

สุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$ ช่วงความเชื่อมั่น (1−α)100% ของ μ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

2. กรณีประชากรมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2

สุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยของตัวอย่าง x และ ค่าความแปรปรวนของตัวอย่าง s² 2.1 n ≥ 30 ช่วงความเชื่อมั่น (1−α)100% ของ µ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

2.2 n < 30 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของ μ คือ

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
; df = n - 1

 กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ² สุ่มตัวอย่างขนาด n ≥ 30 คำนวณค่าเฉลี่ยตัวอย่าง x
 ช่วงความเชื่อมั่น (1-α)100% ของ μ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

4. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2 สุ่มตัวอย่างขนาด n ≥ 30 คำนวณค่าเฉลี่ยตัวอย่าง $\overline{\mathbf{x}}$ และ ค่าความแปรปรวนตัวอย่าง s² และประมาณค่า σ^2 ด้วย s²ช่วงความเชื่อมั่น (1- α)100% ของค่า μ คือ

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของ μ ด้วย SPSS for Windows

- 1. ข้อมูลที่นำมาทำการวิเคราะห์จะมีการแจกแจงแบบปกติหรือไม่ก็ได้
- 2. สุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$ และค่าความแปรปรวนของตัวอย่าง \mathbf{s}^2
- 3. ช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของค่า μ คือ $\overline{x} t \frac{\alpha}{2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t \frac{\alpha}{2} \frac{s}{\sqrt{n}}$; df = n 1

หมายเหตุ โปรแกรม SPSS จะคิดว่าข้อมูลที่นำมาคำนวณเป็นข้อมูลตัวอย่างเสมอ และมีคำสั่ง ให้เลือกใช้หลายแบบเช่น

♥ โดยการใช้คำสั่ง Analyze / Descriptive Statistics / Explore..

ิ ดยการใช้คำสั่ง Analyze / Compare Means / One-Sample T Test...

ตัวอย่าง 6.1.1 อายุหลอดไฟฟ้ามีการแจกแจงปกติ ค่าความแปรปรวนของประชากร σ² = 1600 สุ่มตัวอย่างหลอดไฟฟ้าจำนวน 30 หลอด หาค่าเฉลี่ยของตัวอย่างได้เท่ากับ 780 ชั่วโมง จงหาช่วงความเชื่อมั่น 95% ของค่า μ

วิธีทำ โดยใช้หลักการทางทฤษฎีของความน่าจะเป็นและสถิติ

กรณีประชากรมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2

สุ่มตัวอย่างขนาด n = 30 ค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}$ = 780 ช่วงความเชื่อมั่น 95%ของค่า μ คือ

$$\begin{aligned} \overline{x} - z_{0.025} \, \frac{\sigma}{\sqrt{n}} &< \mu < \overline{x} + z_{0.025} \, \frac{\sigma}{\sqrt{n}} \\ 780 - 1.96(\frac{40}{\sqrt{30}}) &< \mu < 780 + 1.96(\frac{40}{\sqrt{30}}) \end{aligned}$$

 $765.68 < \mu < 794.31$

ตัวอย่าง 6.1.2 ในการประมาณค่าเฉลี่ยของประชากรหลอดไฟฟ้า ผู้ทดลองได้ทำการสุ่มตัว อย่างหลอดไฟฟ้าจำนวน 30 หลอด ได้ข้อมูลดังนี้

826.30793.70829.90780.00750.70810.20717.80786.30835.80739.00

770.10722.80804.40786.90732.50823.70726.60725.60799.80801.40

765.50724.10811.00829.20818.30730.40785.70822.30731.60818.40

จงหาช่วงความเชื่อมั่น 95% ของค่า μ

วิธีทำ การวิเคราะห์ข้อมูลโดย SPSS for Windows

โดยการใช้คำสั่ง Analyze / Descriptive Statistics / Explore..

ขั้นที่ 1. สร้างแฟ้มข้อมูล ประกอบด้วย 1 ตัวแปรคือตัวแปร x มี 30 ค่าสังเกต และบันทึกลงแฟ้ม ข้อมูลชื่อ example6.sav

🛅 еха	🛗 example6 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	∐tilities <u>W</u> indow	<u>H</u> elp	
<u> </u>	* 					
	x	var	var	var	var	
1	826.30					
2	793.70					

109

ขั้นที่ 2. ใช้คำสั่ง Analyze / Descriptive Statistics / Explore..

ขั้นที่ 3. คลิกที่ Explore บนจอภาพจะกลายเป็น

Explore	Dependent List:
	Paste
	Eactor List: Cancel
	Help
- Display	
© Both ⊂ Statistics ⊂ Plots	<u>Statistics</u> Plots <u>O</u> ptions

ขั้นที่ 4. เลือกตัวแปร x ไปไว้ที่ช่อง Dependent List

Hand Service S	×
•	Dependent List: OKO
\leftarrow	Eactor List:
	Label <u>C</u> ases by:
Display ☞ <u>B</u> oth ← St <u>a</u> tistics ← Plo <u>t</u> s	Statistics Plots Options

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณที่ SPSS for Windows Viewer เป็นดังนี้

🖀 Output1 - SPSS for Windows Viewer									
Eile <u>E</u> dit <u>V</u> iew Insert Format Analyze Graphs ∐tilities <u>W</u> indow <u>H</u> elp									
<u> </u>									
⊖ ⊖ ⊖ ⊖ Cutput ⊖ ⇒ E Explore Title Detectore	Explo	ore	Case	Processing S	Summa	ry			
Case Processin			Cases						
		Valid		Missing			Tot	al	
ė 🦉 x		N	Percent	N	Perce	ent	N	Percent	
📄 Title	Х	30	100.0%	0		.0%	30	100.0%	
📑 Stem-and-li			De	scriptives					
						Statistic	: Std. Ei	rror	
	X Mean 780.0000 7.3043						043		
	95% Confidence Lower Bound 765.0610								
		Interval for N	lean Up	per Bound		794.939	90		

ผลการคำนวณโดยละเอียดคือ

Explore

Case Processing Summary

		Cases								
	Valid		Mis	sing	Total					
	Ν	Percent	N	Percent	N	Percent				
Х	30	100.0%	0	.0%	30	100.0%				

Descriptives

			Statistic	Std. Error
Х	Mean		780.0000	7.3043
	95% Confidence	Lower Bound	765.0610	
	Interval for Mean	Upper Bound	794.9390	
	5% Trimmed Mean		780.3722	
	Median		786.6000	
	Variance		1600.601	
	Std. Deviation		40.0075	
	Minimum		717.80	
	Maximum		835.80	
	Range		118.00	
	Interquartile Range		86.0500	
	Skewness		274	.427
	Kurtosis		-1.473	.833

สรุป ช่วงความเชื่อมั่น 95% ของค่า μ คือ (765.0610 , 794.9390)

หมายเหตุ ที่มาของช่วง (765.0610 , 794.9390) ได้มาจากสูตร

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} ; df = n - 1$$

$$\alpha = 0.05 \quad \frac{\alpha}{2} = 0.025 \quad df = 30 - 1 = 29 \quad t_{0.025,29} = 2.045$$

$$\overline{x} = 780.00 \quad s = 40.0075$$

ช่วงความเชื่อมั่น 95% ของค่า μ คือ $\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$

$$780.0000 - 2.045(\frac{40.0075}{\sqrt{30}}) < \mu < 780.0000 + 2.045(\frac{40.0075}{\sqrt{30}})$$

$$780.0000 - 14.937 < \mu < 780.000 + 14.937$$

$$765.063 < \mu < 794.937$$

โดยใช้คำสั่ง Analyze / Compare Means / One-Sample T-Test...

112

ขั้นที่ 1. สร้างแฟ้มข้อมูล ประกอบด้วย 1 ตัวแปรคือตัวแปร x มี 30 ค่าสังเกต และบันทึกลงแฟ้ม ข้อมูลชื่อ example6.sav

🛗 example6 - SPSS for Windows Data Editor									
<u>File Edit View Data Transform Analyze Graphs Utilities Window H</u> elp									
* .									
	x	var	var	var	var				
1	826.30								
2	793.70								

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / One-Sample T-Test...

Ĩ	🞬 example6 - SPSS for Windows Data Editor											
E	ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	∐ir	ndow <u>H</u> elp		
1	🛎 🖬 👜 🗠 🔤 🏪					Rego Desc	Reports Descriptive Statistics		*	<u>, e so</u>		
Γ						Comp	bare <u>M</u> ean	IS	Þ	' <u>M</u> eans		
			x		var	— <u>G</u> ene Corre	eral Linear elate	Model	<u>}</u>	One <u>-S</u> ample T Test Independent-Samples T Test		
Γ	1		826	6.30		<u>R</u> egr	ession		×	Paired-Samples T Test		
Γ	n	1	707	0 70 I		– L <u>o</u> gli	near		•-	<u>O</u> ne-Way ANOVA		

ขั้นที่ 3. คลิกที่ One-Sample T-Test จอภาพจะขึ้นเมนูย่อยของคำสั่ง One-Sample T-Test

ขั้นที่ 4. เลือกตัวแปร x มาไว้ที่ช่อง Test Variable(s)..

📾 One-Sample T Test		×
	Iest Variable(s):	. OK <u>P</u> aste <u>R</u> eset Cancel
	 Test <u>V</u> alue: 0	Help Options

้ขั้นที่ 5. คลิก OK จะได้ผลที่จอ SPSS for Windows Viewer ดังนี้

ผลการคำนวณทั้งหมดคือ

T-Test

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Х	30	780.0000	40.0075	7.3043

One-Sample Test

		Test Value = 0							
			Sia.	Mean	95% Col Interva Differ	nfidence I of the rence			
	t	df	(2-tailed)	Difference	Lower	Upper			
Х	106.786	29	.000	780.0000	765.0610	794.9390			

สรุป ช่วงความเชื่อมั่น 95% ของค่า μ คือ (765.0610 , 794.9390)

หมายเหตุ โดยใช้คำสั่ง Analyze / Compare Means / One-Sample T-Test...สามารถเปลี่ยน เปอร์เซ็นต์ของช่วงความเชื่อมั่นได้

จากขั้นที่ 4. เมื่อเลือกตัวแปร x มาไว้ที่ช่อง List Variable(s)..เสร็จแล้ว

ขั้นที่ 4.1 การเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นให้คลิกที่ Options บนจอภาพจะขึ้นเมนูย่อย

ขั้นที่ 4.2 ให้เปลี่ยนจาก 95% เป็น 99%

114

One-Sample T Test: Options	×
Confidence Interval: 99 %	Continue
Missing Values	Cancel
C Exclude cases listwise	Help

้ขั้นที่ 4.3 คลิกที่ Continue และ OK ตามลำดับ จะได้ผลที่จอ SPSS for Windows Viewer ดังนี้

One-Sample Test

	Test Value = 0							
					99% Confidence Interval of the			
			Siq.	Mean	Differ	ence		
	t	df	(2-tailed)	Difference	Lower	Upper		
Х	106.786	29	.000	780.0000	759.8664	800.1336		

สรุป ช่วงความเชื่อมั่น 99% ของค่า μ คือ (759.8664 , 800.1366) **หมายเหตุ** ที่มาของ (759.8664 , 800.1366) ได้จากสูตร

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \text{ ; df = n - 1}$$

α = 0.01 $\frac{\alpha}{2}$ = 0.005 df = 30 - 1 = 29 $t_{0.005,29}$ = 2.756 \overline{x} = 780.00 s = 40.0075 ช่วงความเชื่อมั้น 99% ของค่า μ คือ $\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ 780.0000 - 2.765 $(\frac{40.0075}{\sqrt{30}}) < \mu < 780.0000 + 2.765(\frac{40.0075}{\sqrt{30}})$ 780.0000 - 20.131 < $\mu < 780.0000 + 20.131$ 759.869 < $\mu < 800.131$

6.2 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของผลต่างค่าเฉลี่ย $\mu_1 - \mu_2$ กรณีประชากร 2 ชุดเป็นอิสระต่อกัน

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติในการหาช่วงความเชื่อมั่น (1-α)100% ของค่า μ₁-μ₂ จะจำแนกออกเป็น 2 กรณีคือ

🔺 กรณีที่ประชากร 2 ชุดเป็นอิสระต่อกัน

♥ กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน

สุ่มตัวอย่างขนาด n₁ จากประชากรชุดที่ 1 และ สุ่มตัวอย่างขนาด n₂ จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}_1$ และ $\overline{\mathbf{x}}_2$

1. กรณี n₁ ≥ 30 และ n₂ ≥ 30

1.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

1.2. กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2 และประมาณ σ_1^2 และ σ_2^2 ด้วย s_1^2 และ s_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\frac{\alpha}{2}}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\frac{\alpha}{2}}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$$

2. กรณี n₁ < 30 หรือ n₂ < 30

2.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

2.2 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2

2.2.1 ภายใต้ข้อกำหนด
$$\sigma_1^2 = \sigma_2^2$$
 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ $(\overline{x}_1 - \overline{x}_2) - t_{\frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

เมือ $s_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$ 2.2.2 ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ $(\overline{x}_{1} - \overline{x}_{2}) - t_{\underline{\alpha}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + t_{\underline{\alpha}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$ $\mathfrak{line} df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$ การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของ $\mu_1-\mu_2$ ด้วย SPSS for Windows 1. ข้อมูลที่น้ำมาทำการวิเคราะห์จะมีการแจกแจงแบบปกติหรือไม่ก็ได้ 2. สุ่มตัวอย่างขนาด n₁ จากประชากรชุดที่ 1 และ สุ่มตัวอย่างขนาด n₂ จากประชากรชุดที่ 2 3. หาค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}_1$ และ $\overline{\mathbf{x}}_2$ หาค่าความแปรปรวนของตัวอย่าง \mathbf{s}_1^2 และ \mathbf{s}_2^2 ภายใต้ข้อกำหนด σ_1^2 = σ_2^2 ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ $(\overline{x}_1 - \overline{x}_2) - t_{\alpha} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\alpha} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ เมือ $s_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$ **ภายใต้ข้อกำหนด** $\sigma_1^2 \neq \sigma_2^2$ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ คือ $(\overline{x}_{1} - \overline{x}_{2}) - t_{\underline{\alpha}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + t_{\underline{\alpha}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$ $\mathfrak{line} df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 \frac{1}{(n_1 - 1)} + \left(\frac{s_2^2}{n_2}\right)^2 \frac{1}{(n_2 - 1)}}$

การหาช่วงความเชื่อมั่น (1-α)100% **ของค่า** μ₁-μ₂ โดยใช้คำสั่ง Analyze / Compare Means / Independent Samples T Test.. **ตัวอย่าง 6.2.1** ทำการทดลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด n₁ = 9 จากประชากรชุดที่ 1 มีข้อมูลเป็นดังนี้

61.36 57.76 71.94 61.77 58.66 71.61 71.52 58.67 62.77 ้ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้ 58.30 67.48 53.96 56.92 62.00 59.61 52.02 61.60 64.83 64.74 58.55 52.53 55.51 66.18 55.51 54.18 จงหาช่วงความเชื่อมั่น 95% ของค่า $\mu_1 - \mu_2$

วิธีทำ การคำนวณด้วย SPSS for Windows

โดยใช้คำสั่ง Analyze / Compare Means / Independent Samples T Test..

ขั้นที่ 1. สร้างแฟ้มข้อมูล

โดยกำหนดให้มีตัวแปร 2 ตัวคือ

ตัวแปรจำแนกกลุ่มตัวอย่าง (code)

และ ตัวแปรข้อมูล (x)

แล้วบันทึกไว้ที่แฟ้มชื่อ example7.sav

🛅 еха	📺 example7 - SPSS for Windows Data Editor										
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
~	* .										
	code	×	var	var	var						
1	1	61.36									
2	1	57.76									
3	1	71.94									
4	1	61.77									
5	1	58.66									
6	1	71.61									
7	1	71.52									
8	1	58.67									
9	1	62.77									
10	2	56.92									

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Independent Samples T Test ..

🚞 еж	🧱 example7 - SPSS for Windows Data Editor									
<u>F</u> ile	<u>E</u> dit <u>\</u>	/iew	<u>D</u> ata	<u>T</u> ransf	orm	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	₩i	ndow <u>H</u> elp
FI (100 100 100 100 100 100 100 100 100 10			Reports Descriptive Statistics		; <u>R vo</u>					
			Compare <u>M</u> eans		Þ	<u>M</u> eans				
	000				Т	- <u>G</u> ene	ral Linear	Model	•	One- <u>S</u> ample T Test
	LUU	ie		<u>،</u>		Correl	late		►	Independent-Samples <u>T</u> Test
1	I I	1	61.36		<u>R</u> egre	<u>R</u> egression		×	Paired-Samples T Test	
	,	1		E7 70		- L <u>o</u> glir	near		.⊁.	<u>O</u> ne-Way ANOVA

ขั้นที่ 3. คลิกที่ Independent Sample T Test จะได้เมนูย่อยของคำสั่งดังนี้

📽 Independent-Sample	a T Test	×
	<u>T</u> est Variable(s):	OK
(#) X		<u>P</u> aste
	\mathbf{P}	<u>R</u> eset
		Cancel
		Help
	▶ <u>G</u> rouping Variable	-
	Define Groups	<u>O</u> ptions

ขั้นที่ 4.

118

เลือกตัวแปร code มาไว้ที่ช่อง Grouping Variable เลือกตัวแปร x มาไว้ที่ช่อง Test Variable(s)

Independent-Samples T Test		×
	Test Variable(s):	OK <u>P</u> aste
•		<u>R</u> eset
		Cancel
]	Help
\rightarrow	<u>G</u> rouping Variable: code(? ?)	
	Define Groups	Options

- **ขั้นที่ 5**. เลือกหมายเลขของกลุ่มในตัวแปร code ที่ต้องการวิเคราะห์ข้อมูล
- 1. คลิกที่ code(? ?)
- 2. ต่อไปคลิกที่ Defined Groups

#Independent-Samples	T Test	<u>T</u> est Variable(s):	Cancel
	•	Grouping Variable: code(??) Define Groups	Help Options

จะได้เมนูย่อยของการเลือกหมายเลขกลุ่มเป็นดังนี้

ขั้นที่ 6.	ให้นำเมาส์มาคลิกที่ช่อง Group 1

- และ พิมพ์หมายเลข 1 ในช่อง Group 1
- นำเมาส์มาคลิกที่ช่อง Group 2
- และ พิมพ์หมายเลข 2 ในช่อง Group 2

ขั้นที่ 7. คลิก Continue จะกลับมาที่เมนูเดิมเป็น

Use specified values	Continue
Group <u>1</u> :	Cancel
Group <u>2</u> :	Help
C <u>C</u> ut point:	

etine Groups	x
	Continue
Group <u>1</u> : 1	Cancel
Group <u>2</u> : 2	Help
C Cut point:	

ขั้นที่ 8. คลิกที่ OK จะได้ผลการคำนวณเป็นดังนี้

Toutput1 - SPSS for Windows Viewer							
<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
⊡ — 🔁 Output ⊡ → 🔁 T-Test	T-Test	Grou	p Statistics				
Title	CODE	N	Mean	Std. Deviation	Std. Error Mean		
Group Statistic:	X 1	9	64.0067	5.9877	1.9959		
	2	16	58.9950	5.0008	1.2502		

ผลการคำนวณทั้งหมดคือ

T-Test

Group Statistics

			Std.	Std. Error
CODE	N	Mean	Deviation	Mean
X 1	9	64.0067	5.9877	1.9959
2	16	58.9950	5.0008	1.2502

Independent Samples Test

				x
				Equal
			Equal	variances
			variances	not
			assumed	assumed
Levene's Test for	F		.800	
Equality of Variances	Sig.		.380	
t-test for Equality of	t		2.242	2.128
Means	df		23	14.333
	Sig. (2-tailed)		.035	.051
	Mean Difference		5.0117	5.0117
	Std. Error Difference		2.2353	2.3551
	95% Confidence Interval	Lower	.3876	-2.8630E-02
	of the Difference	Upper	9.6357	10.0520

การนำผลการคำนวณของ SPSS ไปใช้งานต้องเลือกให้เหมาะสมกับข้อกำหนดของประชากร

กรณีที่ 1. ภายใต้เงื่อนไขว่าประชากรมีการแจกแจงปกติและมีความแปรปรวน**เท่ากัน**

ต้องใช้ผลสรุปใน Equal variances assumed

ช่วงความเชื่อมั่น 95% ของค่า μ₁ - μ₂ คือ 0.3876 < μ₁ - μ₂ < 9.6357

กรณีที่ 2. ภายใต้เงื่อนไขว่าประชากรมีการแจกแจงปกติและมีความแปรปรวน**ไม่เท่ากัน**

ต้องใช้ผลสรุปใน Equal variances not assumed

ช่วงความเชื่อมั้น 95% ของค่า µ₁-µ₂ คือ 0.0286 < µ₁-µ₂ < 10.0520

		56.92			61.36]
		58.3			57.76	
		67.48			71.94	
		53.96			61.77	
		62	samplel	=	58.66	
sample2	=	59.61			71.61	
		52.02			71.52	
		61.6			58.67	
		64.83			62.77]
		58.55				
		52.53				
		64.74				
		55.51				
		66.18				
		55.51				
		54.18				

ที่มาของค่าสถิติ และสูตรการคำนวณ สามารถตรวจสอบได้ด้วย MATHCAD ดังนี้

ที่มาและสูตรของค่าสถิติต่างๆ ในตาราง Group Statistics

xbar1 := mean(sample1)xbar1 = 64.0067xbar2 := mean(sample2)xbar2 = 58.995n1 := length(sample1)n1 = 9n2 := length(sample2)n2 = 16s1 :=
$$\sqrt{\frac{n1 \cdot var(sample1)}{(n1 - 1)}}$$
s1 = 5.9877s2 := $\sqrt{\frac{n2 \cdot var(sample2)}{(n2 - 1)}}$ s2 = 5.0008std_Error_Mean1 := $\frac{s1}{\sqrt{n1}}$ std_Error_Mean1 = 1.9959std_Error_Mean2 := $\frac{s2}{\sqrt{n2}}$ std_Error_Mean2 = 1.2502

ที่มาและสูตรของค่าสถิติในตาราง Independent Samples Test กรณีที่ความแปรปรวนประชากรทั้งสองชุดเท่ากัน

$$sp := \sqrt{\frac{(n1-1)\cdot s1^{2} + (n2-1)\cdot s2^{2}}{n1+n2-2}} \qquad sp = 5.3647$$
$$t := \frac{xbar1 - xbar2}{sp \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}} \qquad t = 2.242$$
$$df := n1 + n2 - 2 \qquad df = 23$$

 $\mathbf{h}(\mathbf{t}) := \left[\frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right)\cdot\sqrt{\pi\cdot\mathbf{v}}}\right] \cdot \left[1 + \left(\frac{\mathbf{t}^2}{\mathbf{v}}\right)\right]^{-\frac{\mathbf{v}+1}{2}}$

v := df

Sig_2_tailed = $2 \cdot \int_{t}^{100} h(x) dx$	Sig_2_tailed=0.0349
Mean_Difference= xbar1 - xbar2	Mean_Difference= 5.0117
Std_Error_Difference= sp $\sqrt{\frac{1}{n1} + \frac{1}{n2}}$	Std_Error_Difference= 2.2353
TOL := 0.00001 k := 0	$\alpha := 0.05$
t_alpha_divide2 = root $\left(\frac{\alpha}{2} - \int_{k}^{100} h(x) dx, k\right)$	t_alpha_divide2=2.0686
Lower := (xbar1 - xbar2) - t_alpha_divide2sp	$\sqrt{\frac{1}{n1} + \frac{1}{n2}}$ Lower = 0.3876
Upper := (xbar1 - xbar2) + t_alpha_divide2sp-	$\sqrt{\frac{1}{n1} + \frac{1}{n2}}$ Upper = 9.6357

121

กรณีความแปรปรวนประชากรทั้งสองชุดไม่เท่ากัน

$$t := \frac{x \tan 1 - x \tan 2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

$$t = 2.128$$

$$df := \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\left(\frac{s1^2}{n1} - 1\right) + \left(\frac{s2^2}{n2}\right)^2 \cdot \left(\frac{1}{n2 - 1}\right)}$$

$$df = 14.3325$$

$$v := df$$

$$h(t) := \left[\frac{\Gamma\left(\frac{v + 1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \sqrt{\pi \cdot v}}\right] \cdot \left[1 + \left(\frac{t^2}{v}\right)\right]^{-\frac{v + 1}{2}}$$
Sig_2_tailed = 2.
$$\int_t^{100} h(x) dx$$
Sig_2_tailed = 0.0511
Mean_Difference = xbar1 - xbar2
Mean_Difference = 5.0117
Std_Error_Difference = $\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}$
Std_Error_Difference = 2.3551
TOL := 0.00001 k := 0

$$t_alpha_divide2 = root \left(\frac{\alpha}{2} - \int_k^{100} h(x) dx, k\right) \quad t_alpha_divide2 = 2.1401$$
Lower := $(xbar1 - xbar2) - t_alpha_divide2 \sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}$
Upper := $(xbar1 - xbar2) + t_alpha_divide2 \sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}$
Upper = 10.0518

ด้วอย่าง 6.2.2 ข้อมูลปริมาณน้ำฝน(หน่วยเป็นนิ้ว)ของตำบลที่ 1 ในช่วง 15 ปีที่ผ่านมาเป็นดังนี้

2.40 2.42 1.87 2.50 2.29 1.68 2.57 1.60 1.65 1.41

1.66 1.32 2.43 1.83 1.41

ข้อมูลปริมาณน้ำฝน (หน่วยเป็นนิ้ว) ของตำบลที่ 2 ในช่วง 10 ปีที่ผ่านมาเป็นดังนี้

สมมติว่าข้อมูลมีการแจกแจงปกติและมีค่าความแปรปรวนประชากรแตกต่างกัน จงหาช่วงความ เชื่อมั่น 95 % ของความแตกต่างของค่าเฉลี่ยของปริมาณน้ำฝน

วิธีทำ การวิเคราะห์ข้อมูลด้วย SPSS for Windows

ขั้นที่ 1. สร้างแฟ้มข้อมูลที่ประกอบด้วย 2 ตัวแปรคือ code เป็นตัวแปรจำแนกกลุ่ม x เป็นตัวแปรปริมาณน้ำฝน และ Save เป็นแฟ้มข้อมูลชื่อ example8.sav

💼 exa	📰 example8 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp	
<u> </u>	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1:co	le	0				
	code	×	var	var	var	
1	1	2.40				
2	1	2.42				
3	1	1.87				

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Independent Samples T Test..

🚃 еха	🛗 example8 - SPSS for Windows Data Editor					
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform			<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u> W</u> indow <u>H</u> elp		
F B B B D B b			Re <u>p</u> orts Descriptive Statistics	; <u>= v@</u>		
1:cod	le	0	Compare <u>M</u> eans	▶ <u>M</u> eans		
	codo		<u>G</u> eneral Linear Model	One-Sample T Test		
	coue	^	<u>C</u> orrelate	Independent-Samples <u>T</u> Test		
1	1	2.	<u>R</u> egression	Paired-Samples T Test		
	1		L <u>og</u> linear	▶ <u>O</u> ne-Way ANOVA		

ข**ั้นที่ 3**. คลิกที่ Independent Sample T Test จะได้เมนูย่อยดังนี้

🚓 Independent-Sa	mples T Test	×
	<u>T</u> est Variable(s):	OK
* ^		<u>P</u> aste
		<u>R</u> eset
		Cancel
		Help
	→ Grouping Variable:	
	<u>D</u> efine Groups	Options

ขั้นที่ 4 เลือกตัวแปร code มาไว้ที่ช่อง Grouping Variable และ เลือกตัวแปร x มาไว้ที่ช่อง Test Variable(s)

ขั้นที่ 5. ต่อไปเลือกหมายเลขของกลุ่มในตัวแปร code ที่เราต้องการวิเคราะห์ข้อมูลโดยทำดังนี้

- 1. คลิกที่ code(? ?)
- 2. ต่อไปคลิกที่ Define groups..

standependent-Sample	es T Test	×
	Test valiable(s).	OK
	•	<u>R</u> eset
		Cancel Help
	Grouping Variable:	
	Define Groups	Options

Cancel

Help

Continue

Cancel

Help

จะได้เมนูย่อยของการเลือกหมายเลขกลุ่มเป็นดังนี้

- **ขั้นที่ 6**. นำเมาส์มาคลิกที่ช่อง Group 1 และ พิมพ์หมายเลข 1 ในช่อง Group 1 นำเมาส์มาคลิกที่ช่อง Group 2 และ
- พิมพ์หมายเลข 2 ในช่อง Group 2

ขั้นที่ 7. คลิก Continue จะกลับมาที่เมนูย่อย

เ้บมาที่เมนูย่อย			
📽 Independent-Samples T	Test		×
(•	<u>T</u> est Variable(s):	OK <u>P</u> aste <u>R</u> eset Cancel Help
(•	<u>G</u> rouping Variable: code(1.2) Define Groups)	Options

<u>Use specified value</u>
 Group <u>1</u>:

Group 2:

Use specified values

Group <u>1</u>: 1

Group 2: 2

C <u>C</u>ut point:

C Cut noint

124

ขั้นที่ 8. คลิกที่ OK จะได้ผลการคำนวณเป็นดังนี้

The second secon	ows View at <u>A</u> naly:	zer ze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indo	ow <u>H</u> elp		
⊡ • € Output ⊡ • € T-Test	Т-Т	est	Grou	p Statistics		
Roun Statistic:		CODE	N	Mean	Std. Deviation	Std. Error Mean
Independent Sa	X	1 2	15 10	1.9360 1.0370	.4491 .2588	.11595894 .08184063

ผลการคำนวณทั้งหมดคือ

T-Test

Group	Statistics

				Std.	Std. Error
(CODE	N	Mean	Deviation	Mean
Х ′	1	15	1.9360	.4491	.11595894
2	2	10	1.0370	.2588	.08184063

Independent	Samples	Test

			>	(
				Equal
			Equal	variances
			variances	not
			assumed	assumed
Levene's Test for	F		7.769	
Equality of Variances	Sig.		.010	
t-test for Equality of	t		5.705	6.334
Means	df		23	22.671
	Sig. (2-tailed)		.00000826	.00000196
	Mean Difference		.8990	.8990
	Std. Error Difference		.1576	.1419
	95% Confidence Interval	Lower	.5730	.6052
	of the Difference	Upper	1.2250	1.1928

สรุป ช่วงความเชื่อมั่น 95 % ของความแตกต่างของค่าเฉลี่ยของปริมาณน้ำฝน คือ

$0.6052 < \mu_2 - \mu_1 < 1.1928$

การเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นในการใช้งานของคำสั่ง Analyze / Compare

Means / Independent Samples T Test..

126

ตัวอย่างเช่นต้องการหาช่วงความเชื่อมั่น 99% ของ μ₂ – μ₁

จาก **ขั้นตอน 7**.เมื่อเลือกตัวแปรเสร็จแล้ว

ndependent-Samples T Test: Option

Exclude cases analysis by analysis

Exclude cases <u>a</u>nalysis by analysis

%

oles T Test: Opti

%

Continue

Cancel

Help

Continue

Cancel

Help

Confidence Interval:

C Exclude cases listwise

Confidence Interval: 99

C Exclude cases listwise

Missing Values

Missing Values

ขั้นที่	7.1	ให้คลิกที่	Options	จะได้เมา	ู่ ย่อยเป็น
---------	-----	------------	---------	----------	-------------

ขั้นที่ 7.2 ให้เปลี่ยนเปอร์เซ็นต์จาก 95% เป็น 99%

ขั้นที่ 7.3 คลิก Continue

ขั้นที่ 8. คลิก OKจะได้ผลการคำนวณใหม่ในส่วนของ Independent Samples Test ดังนี้

Independent Samples Test

			>	κ
				Equal
			Equal	variances
			variances	not
			assumed	assumed
Levene's Test for	F		7.769	
Equality of Variances	Sig.		.010	
t-test for Equality of	t		5.705	6.334
Means	df		23	22.671
	Sig. (2-tailed)		.00000826	.00000196
	Mean Difference		.8990	.8990
	Std. Error Difference		.1576	.1419
	99% Confidence Interval	Lower	.4566	.5000
	of the Difference	Upper	1.3414	1.2980

สรุป ช่วงความเชื่อมั้น 99% ของ $\mu_2 - \mu_1$ คือ (0.5000 , 1.2980)

6.3 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า $\mu_1 - \mu_2$ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน

หลักการทางทฤษฎีของความน่าจะเป็นและสถิติในการหาช่วงความเชื่อมั่น (1–α)100% ของค่า μ₁ –μ₂ เมื่อประชากร 2 ชุด ไม่เป็นอิสระต่อกัน

สุ่มตัวอย่างขนาด n จากประชากรชุดที	ที่ 1 และ ประชากรชุดที่ :	2 ได้ข้อมูลเป็น
------------------------------------	---------------------------	-----------------

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
x ₁	y1
X2	y ₂
X3	y ₃
:	:
X _n	y _n

ขั้นตอนการคำนวณ 1. คำนวณค่าผลต่างของตัวอย่าง d_i = x_i – y_i ; i = 1,2,...,n 2. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง d

3. คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d

กรณี n ≥ 30 ช่วงความเชื่อมั่น (1-α)100% ของค่า $\mu_1 - \mu_2$ คือ

$$\overline{d} - z_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + z_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}}$$

กรณี n < 30 และภายใต้ข้อสมมติว่าผลต่างของข้อมูลมีการแจกแจงปกติ ช่วงความเชื่อมั่น (1-lpha)100% ของค่า $\mu_1-\mu_2$ คือ

$$\overline{d} - t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} \quad i \vec{\mathfrak{I}} \, \mathfrak{O} \, d \mathfrak{f} = \mathfrak{n} - 1$$

การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของ $\mu_1-\mu_2$ ด้วย SPSS for Windows

- 1. ข้อมูลที่นำมาทำการวิเคราะห์มีการแจกแจงแบบปกติ
- 2. สุ่มตัวอย่างขนาด n จากประชากรชุดที่ 1 และ ประชากรชุดที่ 2
- 3. คำนวณค่าผลต่างของตัวอย่าง d_i = x_i y_i ; i = 1,2,...,n
- 4. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง $\overline{\mathbf{d}}$

5. คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d

ช่วงความเชื่อมั้น $(1-\alpha)100\%$ ของค่า $\mu_1-\mu_2$ คือ

$$\overline{d} - t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_1 - \mu_2 < \overline{d} + t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} \quad \text{in d} = n - 1$$

การหาช่วงความเชื่อมั่น (1 – α)100% ของ μ₁ – μ₂ กรณีประชากร 2 ชุดไม่เป็นอิสระต่อกัน โดยใช้คำสั่ง Analyze / Compare Means / Paired – Samples T Test..

ตัวอย่าง 6.3.1 จากตัวอย่างสุ่มของนิสิตที่เรียนสถิติ 10 คน เก็บคะแนนการสอบย่อยครั้งที่ 1 และครั้งที่ 2 ของนิสิต 10 คนได้ข้อมูลดังนี้

คนที่	คะแนนครั้งที่ 1.	คะแนนครั้งที่ 2.
1	76	81
2	60	52
3	85	87
4	58	70
5	91	86
6	75	77
7	82	90
8	64	63
9	79	85
10	88	83

จงหาช่วงความเชื่อมั่น 98% ของค่าผลต่างที่แท้จริงในการสอบย่อย

วิธีทำ กำหนด μ₁ เป็นค่าเฉลี่ยของประชากรชุดที่ 1 และ μ₂ เป็นค่าเฉลี่ยของประชากรชุดที่ 2 การคำนวณด้วย SPSS for Windows

ขั้นที่ 1. สร้างแฟ้มข้อมูลโดยกำหนด ให้มีตัวแปร 2 ตัวคือ

ตัวแปร test1 เป็นคะแนนสอบย่อยครั้งที่ 1 ตัวแปร test2 เป็นคะแนนสอบย่อยครั้งที่ 2 เสร็จแล้วบันทึกลงแฟ้มชื่อ example9.sav

	🛗 example9 - SPSS for Windows Data Editor								
	<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp			
_	*== = - - - - - + + + + + + + + + +								
L		test1	test2	var	var	var			
	1	76.00	81.00						
	2	60.00	52.00						
ſ	3	85.00	87.00						
ſ	4	58.00	70.00						
ſ	5	91.00	86.00						
ſ	6	75.00	77.00						
	7	82.00	90.00						
ſ	8	64.00	63.00						
	9	79.00	85.00						
ſ	10	88.00	83.00						

ขั้นที่ 2. เลือกคำสั่ง

Analyze / Compare Means / Paired-Samples T Test..

🛅 еха	🗰 example9 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	<u>File Edit View Data Iransform Analyze G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp							
	i 🎒 🖳 🗠		Re <u>p</u> orts D <u>e</u> scriptive Statistics	; <mark>i s</mark> ø				
			Compare <u>M</u> eans	▶ <u>M</u> eans				
	toet1	toet2	<u>G</u> eneral Linear Model	 One-Sample T Test 				
	lesti	tesiz	<u>C</u> orrelate	Independent-Samples <u>I</u> Test				
1	76.00	81.	<u>R</u> egression	Paired-Samples T Test				
	00.03	53	L <u>og</u> linear	<u>O</u> ne-Way ANOVA				

ขั้นที่ 3. คลิกที่ Paired-Samples T Test จะได้ เมนูย่อยของคำสั่ง Paired–Samples T Test ดังนี้

 Itest1 Itest2 	_	Paired <u>V</u> ariables:	OK
[·			Past
	•		Bes
			Cano
			Hel
Current Selections			
Variable 1:			
Variable 2:			Options

itest1 test2 test2 test3 test3 test3 test3 test3 test3	_	Paired <u>V</u> ariables: test1 test2	ОК
			_ <u>P</u> ast
			<u></u>
			Cano
			Hel
Current Selections	_		
Variable 1:			
Variable 2:			<u>Options</u>

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณดังนี้

TOutput2 - SPSS for Windows	Viewer						
<u>File E</u> dit <u>V</u> iew Insert Format Analyze Graphs ∐tilities <u>W</u> indow <u>H</u> elp							
							
⊡ ⊡ E T-Test	T-Te	st	Paired S	Samples St	atistics		_
Notes			Mean	N	Std. Deviation	Std. Error Mean	
Paired Samples	Pair 1	TEST1	75.8000	1	0 11.6409	3.6812	
Paired Samples	Ľ	16912	//.4000	1 1	0 12.1765	3.8505	
	Paired Samples Correlations						
				N	Correlation	Sig.	
	Pair 1	TEST1 &	TEST2	10	.857	.002	

Options...

ผลการคำนวณทั้งหมดคือ

T-Test

Paired Samples Statistics

				Std.	Std. Error
		Mean	Ν	Deviation	Mean
Pair	TEST1	75.8000	10	11.6409	3.6812
1	TEST2	77.4000	10	12.1765	3.8505

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair 1 TEST1 & TEST2	10	.857	.002

			Pair 1
			TEST1 - TEST2
Paired Differences	Mean		-1.6000
	Std. Deviation		6.3805
	Std. Error Mean		2.0177
	95% Confidence Interval	Lower	-6.1644
	of the Difference	Upper	2.9644
t			793
df			9
Sig. (2-tailed)			.448

สรุป ช่วงความเชื่อมั่น 95% ของ $\mu_1 - \mu_2$ คือ $-6.1644 < \mu_1 - \mu_2 < 2.9644$

การเปลี่ยนเปอร์เซ็นต์ของช่วงความเชื่อมั่นในการใช้งานของคำสั่ง Analyze / Compare

Means / Paired – Samples T Test..

จาก **ขั้นตอน 4**. ที่เลือกตัวแปรเสร็จแล้ว

ขั้นที่ 4.1 ให้คลิกที่ Options จะได้เมนูย่อยเป็น

Paired-Samples T Test: Options	×
Confidence Interval: 55 %	Continue
Missing Values	Cancel Help

ขั้นที่ 4.2 ให้เปลี่ยนเปอร์เซ็นต์จาก 95% เป็น 98%

Paired-Samples T Test: Options	×
Confidence Interval: 98 %	Continue
Missing Values © Exclude cases <u>a</u> nalysis by analysis	Cancel
C Exclude cases listwise	Help

ขั้นที่ 4.3 แล้ว Continueจอภาพจะกลับมาที่เมนู

 ✤ test1 ✤ test2 	-	Paired <u>V</u> ariables: test1test2	OK
	►		<u>Paste</u> <u>R</u> ese
Current Selections			
Variable 1:			
Variable 2:			Options.

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณในส่วนของตาราง Paired Samples Test ดังนี้

Paired Samples Test

			Pair 1
			TEST1 - TEST2
Paired Differences	Mean		-1.6000
	Std. Deviation		6.3805
	Std. Error Mean		2.0177
	98% Confidence Interval	Lower	-7.2928
	of the Difference	Upper	4.0928
t			793
df			G
Sig. (2-tailed)			.448

สรุป ช่วงความเชื่อมั้น 98% ของ $\mu_1 - \mu_2$ คือ $-7.2928 < \mu_1 - \mu_2 < 4.0928$

การวิเคราะห์ข้อมูลด้วยคำสั่ง Analyze / Compare Means / Means.. 6.4

จากตัวอย่าง 6.2.1 ทำการทคลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด $\mathbf{n}_1=9$ จากประชากรชุดที่ 1 มีข้อมูลเป็นดังนี้ 61.36 , 57.76 , 71.94 , 61.77 , 58.66 , 71.61 , 71.52 , 58.67 , 62.77 ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้ 56.92 , 58.30 , 67.48 , 53.96 , 62.00 , 59.61 , 52.02 , 61.60 , 64.83 , 58.55 , 52.53 , 64.74 , 55.51 , 66.18 , 55.51 , 54.18

โดยการใช้ คำสั่ง Analyze / Compare Means / Means..

132

วิธีทำ	<mark>ііі е</mark> жа File – Е	m ple7 - 9 dit View	PSS for Windo	ows Data Edito m Analuze Gr	anhs I Itilities \	Vindow Help
ขั้นที่ 1 . สร้างแฟ้มข้อมูล					<u>単画</u> <u>田</u> む	<u>ies</u> <u>S</u>
โดยกำหนดให้มีตัวแปร 2 ตัวคือ		code	×	var	var	var
ตัวแปลด้วยของสูงเต้าดูช่าง (anda)	1	1	61.36			
ณาตกา.ศ. แต่หมาเมือง (code)	2	1	57.76			
และ ตัวแปรข้คมล (x)	3	1	71.94			
	4	1	61.77			
แล้วบันทึกไว้ที่แฟ้มชื่อ example7.sav	5	1	58.66			
	6	1	71.61			
	7	1	71.52			
	8	1	58.67			
	9	1	62.77			

10

2

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / Means...

🚞 ex	ample7 - S	SPSS for Winde	ows Data Editor		
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp	
Image: Statistic statistics Image: Statistic statistics					
1:co	de	1	Compare <u>M</u> eans	• <u>M</u> eans	
	code	×	<u>G</u> eneral Linear Model Correlate	 One-Sample T Test Independent-Samples T Test 	
1	1	61.36	 <u>R</u> egression	Paired Samples T Test	
2	1	E7 70	Loglinear	<u>O</u> ne-Way ANOVA	

56.92

ขั้นที่ 3. คลิกที่ Means จะได้เมนูย่อยของคำสั่ง Analyze / Compare Means / Means..

≓A Means	Dependent List:	OK Paste
	Previous Layer 1 of 1 Next	Cancel Help
	•	Options

ขั้นที่ 4. เลือกตัวแปร x มาไว้ที่ช่อง Dependent List เลือกตัวแปร code มาไว้ที่ช่อง Independent List

 Image: Still Means
 Image: Dependent List:
 OK

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

 Image: Dependent List:
 Image: Dependent List:
 Image: Dependent List:

ผลการคำนวณที่ได้คือ

Means

v

Case Processing Summary

	Cases						
	Included Excluded Total					tal	
	Ν	Percent	Ν	N Percent		Percent	
X * CODE	25	100.0%	0	.0%	25	100.0%	

Report

^			
			Std.
CODE	Mean	N	Deviation
1	64.0067	9	5.9877
2	58.9950	16	5.0008
Total	60.7992	25	5.7973

การเพิ่มเติมความสามารถในการคำนวณค่าสถิติต่างๆ ของคำสั่ง Analyze / Compare

134

Means / Means	eR Means		×
		Dependent List:	ОК
จากขันตอนที่เลือกตัวแปรเสร็จแล้ว	. l	▶ (*)×	<u>P</u> aste
			<u>R</u> eset
		Previous Layer 1 of 1	Next Cancel
		Independent List:	
	· [▶ (♣) code	0-5
	•		
ขั้นที่ 4.1 ให้คลิก Options บนจอภาพจะขึ้น	แมนย่อยดังนี้	Means: Options	x
·	ข	<u>S</u> tatistics:	Cell Statistics:
		Grouped Median Std. Error of Mean	Number of Cases Standard Deviation
		Sum Minimum	
		Range First	
		Last Variance	
		Kurtosis Std. Error of Kurtosis	
		Std. Error of Skewne Harmonic Mean	
ขั้นที่ 4 2		Statistics for First Layer	,
<u>ມ ເບັດ</u> ອີ້ ເພີ່ມ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ	S	□ <u>A</u> nova table and eta □ <u>□</u> est for linearity	
ตองการคานวณคาสถต เดเพม เหทาการเลอ	กเดยการ	Continue	Cancel Help
1. คลิกที่ค่าสถิติที่ช่อง Analyze เช่นค่า Vari	ance		
		atiatiaa	
	ห เตถ็พมุด/ Cell 20	austics	
ในที่นี่จะขอเลือกค่าสถิติเพิ่มจากของเดิมคือ	Variance, Minim	um ແລະ Maxir	mum
		Means: Options	Coll Chatiatian
		Median	Mean
		Std. Error of Mean	Number of Lases Standard Deviation
		Range First	Minimum
		Last Kurtosis	
		Std. Error of Kurtosis Skewness	
		Harmonic Mean	
		Percent of Total Sum Percent of Total N	
		Statistics for First Layer	-
. ب و		□ <u>I</u> est for linearity	
ขันที่ 4.3 คลิก Continue เพื่อกลับไป เมนู N	leans	Continue	Cancel Help
ขั้นที่ 4.4 คลิก OK ซึ่งจะได้ผลการคำนวณท [ู] ้	้ เงหมดที่ได้คือ		

Means

Case Processing Summary

	Cases						
	Inclu	cluded Excluded Total				tal	
	Ν	Percent	Ν	N Percent		Percent	
X * CODE	25	100.0%	0	.0%	25	100.0%	

Report

	-					
			Std.			
CODE	Mean	Ν	Deviation	Variance	Minimum	Maximum
1	64.0067	9	5.9877	35.853	57.76	71.94
2	58.9950	16	5.0008	25.008	52.02	67.48
Total	60.7992	25	5.7973	33.609	52.02	71.94

6.4 การหาช่วงความเชื่อมั่น (1-α)100% ของค่าเฉลี่ยด้วยคำสั่ง

Analyze / Compare Means / One-Way ANOVA..

จากตัวอย่าง 6.2.1 ทำการทดลองสุ่มตัวอย่างข้อมูล 2 ชุด ตัวอย่างขนาด n₁ = 9 จากประชากร ชุดที่ 1 มีข้อมูลเป็นดังนี้ 61.36 , 57.76 , 71.94 , 61.77 , 58.66 , 71.61 , 71.52 , 58.67 , 62.77 ตัวอย่างขนาด n₂ = 16 จากประชากรชุดที่ 2 มีข้อมูลเป็นดังนี้ 56.92 , 58.30 , 67.48 , 53.96 , 62.00 , 59.61 , 52.02 , 61.60 , 64.83 , 58.55 , 52.53 , 64.74 , 55.51 , 66.18 , 55.51 , 54.18

เราสามารถหาช่วงความเชื่อมั่น 95% ของค่าเฉลี่ย โดยการใช้ คำสั่ง Analyze / Compare

Means / One-Way $\Delta NOV\Delta$		💼 example7 - SPSS for Windows Data Editor					
Means / One-way ANOVA	<u>F</u> ile <u>E</u>	dit <u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>A</u> nalyze <u>G</u> r	aphs <u>U</u> tilities <u>\</u>	<u> W</u> indow <u>H</u> elp	
วิธีทำ	<u> </u>		•	<u>* 10 10 -</u>	<u>fii ii </u>	<u> </u>	
					,		
ขนท 1. สรางแพมขอมูล		code	x	var	var	var	
โดยถ้าหนดให้มีตัวแปล 2 ตัวอื่อ	1	1	61.36				
PRIFILI N PRI PN 21 RI 1 PN 21 RI	2	1	57.76				
ตัวแปรจำแนกกลุ่มตัวอย่าง (code)	3	1	71.94				
·····	4	1	61.77				
และ ตัวแปรข้อมูล (x)	5	1	58.66				
- א א מ א אם א מ	6	1	71.61				
แล้วบนทกไว้ทแฟิมชอ example7.sav	7	1	71.52				
หรือเปิดแฟ้มที่ รางวุ่ได้	8	1	58.67				
NI DETNIPHIUMI OUAC FI	9	1	62.77				
	10	2	56.92				

ขั้นที่ 2. เลือกคำสั่ง Analyze / Compare Means / One-Way ANOVA

💼 exa	mple7 - S	SPSS for Windo	ows Data Editor			
<u>F</u> ile <u>E</u>	dit <u>V</u> iew	<u>D</u> ata <u>T</u> ransfo	rm <u>Analyze G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp		
🗃 🗐 🖾 🛄 🏪 Reports 🕴 🗮 🗞 🎯						
1:cod	e	1	Compare <u>M</u> eans	Means		
	code	x	<u>G</u> eneral Linear Model <u>C</u> orrelate	 One-Sample T Test Independent-Samples <u>I</u> Test 		
1	1	61.36		Paired-Samples T Test		
2	1	E7 70	— L <u>og</u> linear	<u>O</u> ne-Way ANOVA		

ข**ั้นที่ 3**. คลิกที่ One-Way ANOVA จะได้เมนูย่อยของคำสั่ง One-Way ANOVA ดังนี้

ขั้นที่ 4. เลือกตัวแปร code มาไว้ที่ช่อง Factor และ เลือกตัวแปร x มาไว้ที่ช่อง Dependent List

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณเป็นดังนี้

🎬 Output2 - SPSS for Window	s Viewer					
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> e	lp			
Cotput Coneway Conewa	Οηεωαγ					
	×	Sum of Squares	df	Mean Square	F	Sia.
	Between Groups	144.673	-/ 1	144.673	5.027	.035
	Within Groups	661.949	23	28.780		
	Total	806.621	24			

ตาราง ANOVA ที่ได้จากคำสั่ง Analyze / Compare Means / One-Way ANOVA คือ

ANOVA

Х	_				
	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups	144.673	1	144.673	5.027	.035
Within Groups	661.949	23	28.780		
Total	806.621	24			

การเพิ่มเติมความสามารถในการคำนวณของคำสั่ง One-Way ANOVA..

- 1. การคำนวณค่าสถิติเบื้องต้น และ การหาช่วงความเชื่อมั่น
- 2. การทดสอบว่าค่าความแปรปรวนของประชากรเท่ากับหรือไม่
- **จากขั้นที่ 4**. เมื่อเลือกตัวแปรเสร็จแล้ว

Ine-Way ANOVA		x
	Dependent List:	ок
		<u>P</u> aste
		<u>R</u> eset
		Cancel
	► Factor:	Help
	Contrasts Post <u>H</u> oc Options	

ขั้นที่ 4.1 ให้กดปุ่ม Options จะได้ เมนูย่อยของ One-Way ANOVA : Options ดังนี้

ขั้นที่ 4.2 ถ้าต้องการคำนวณค่าสถิติเบื้องต้นและ การหาช่วงความเชื่อมั่นให้คลิกที่ <u>Descriptive</u> ถ้าต้องการทดสอบว่าค่าความแปรปรวนเท่ากันหรือไม่ ให้คลิกที่ [Homogeneity-of-variance]

ขั้นที่ 4.3 เสร็จแล้วคลิก Continue

้ขั้นที่ 4.4 คลิก OK ที่เมนูของ One-Way ANOVA จะได้ผลการคำนวณใหม่เป็นดังนี้

Oneway

v

Descriptives

	-							
					95% Confidence Interval for Mean			
			Std.		Lower	Upper		
	N	Mean	Deviation	Std. Error	Bound	Bound	Minimum	Maximurn
1	9	64.0067	5.9877	1.9959	59.4041	68.6092	57.76	71.94
2	16	58.9950	5.0008	1.2502	56.3302	61.6598	52.02	67.48
Total	25	60.7992	5.7973	1.1595	58.4062	63.1922	52.02	71.94

Test of Homogeneity of Variances

Х

Levene Statistic	df1	df2	Sig.
.800	1	23	.380

ANOVA

<u>X</u>				-	
	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups	144.673	1	144.673	5.027	.035
Within Groups	661.949	23	28.780		
Total	806.621	24			

ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 1 คือ (59.4041 , 68.6092) ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 2 คือ (56.3302 , 61.6598) ช่วงความเชื่อมั่น 95% ของค่าเฉลี่ยของประชากรชุดที่ 1 และ 2 รวมกันคือ (58.4062 , 63.1922)

หมายเหตุ การสรุปผลเกี่ยวกับตาราง ANOVA ขอให้อ่านในบทของการวิเคราะห์ความแปรปรวน การทดสอบสมมติฐานว่าความแปรปรวนของประชากรเท่ากันหรือไม่โดยใช้ผลการคำนวณจาก ตาราง Test of Homogeneity of Variance ขอให้อ่านในบทของการทดสอบสมมติฐาน
บทที่ 7

การทดสอบสมมติฐาน

การทดสอบสมมติฐานเป็นการทำงานทางสถิติที่สำคัญ เราจะทำการทดสอบสมมติฐานเมื่อ เรามีข้อสงสัยเกี่ยวกับลักษณะต่างๆ ของประชากรเช่น ประชากรมีค่าเฉลี่ย μ = 50 จริงหรือไม่ ค่าเฉลี่ยประชากรของประชากร 2 ชุดเท่ากันหรือไม่ ซึ่งประชากรทั้ง 2 ชุดนั้นอาจเป็นอิสระต่อกัน หรือ ไม่เป็นอิสระต่อกันก็ได้ การฉีดวัคซีนป้องกันอหิวาต์กับการเป็นโรคอหิวาต์เกี่ยวข้องกันหรือ ไม่ การนับถือศาสนาและถิ่นที่อยู่เกี่ยวข้องกันหรือไม่ ฯลฯ

การทดสอบสมมติฐานเป็นการนำข้อมูลตัวอย่างซึ่งอาจได้มาจากแบบสอบถาม การทดลอง เมื่อได้ข้อมูลตัวอย่างมาแล้วจึงทำการคำนวณค่าสถิติจากตัวอย่าง เพื่อนำมาช่วยในการตัดสินใจ โดยใช้เหตุผลทางสถิติว่าจะยอมรับหรือปฏิเสธสมมติฐานที่เรากำหนดไว้ ตัวอย่างการทดสอบ สมมติฐานแบบต่างๆ คือ

การทดสอบสมมติฐานว่า $\mu = \mu_0$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\mu_1 = \mu_2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\mu_1 = \mu_2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\mu_D = 0$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_0^2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_2^2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ จริงหรือไม่ การทดสอบสมมติฐานว่า $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ จริงหรือไม่

การทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงตามที่คาดไว้(ภาวะสารูปสนิทดี)จริงหรือไม่ ในบทที่ 7 นี้เราจึงศึกษาเกี่ยวกับการทดสอบสมมติฐานแบบต่างๆ ทั้งหลักการขั้นตอนการทำงาน ทางทฤษฎี และ การนำ SPSS for Windows เข้ามาช่วยในการคำนวณ 140

การทดสอบสมมติฐานว่า μ = μ₀ จริงหรือไม่ 7.1 หลักการและขั้นตอนการทำงานทางทฤษฎีในหนังสือความน่าจะเป็นและสถิติ **ขั้นที่** 1. กำหนดสมมติฐานหลัก $H_0: \mu = \mu_0$ ี่ กำหนดสมมติฐานอื่น H₁∶μ≠μ₀ **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยและค่าความแปรปรวนของตัวอย่าง s² **ขั้นที่ 4**. เลือกค่าสถิติที่เหมาะสม Z หรือ T ้**ขั้นที่** 5. คำนวณค่าสถิติ z_{คำนวณ} หรือ t_{คำนวณ} ตามที่เลือกในขั้นตอนที่ 4 จากข้อมูลตัวอย่าง **ขั้นที่ 6**. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต 6.1 กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ Z < $-z_{\frac{\alpha}{2}}$ หรือ Z > $z_{\frac{\alpha}{2}}$ 6.2 กรณีใช้ค่า T ค่าวิกฤตคือ $-t_{\frac{\alpha}{2}}$ และ $t_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ T < $-t_{\frac{\alpha}{2}}$ หรือ T > $t_{\frac{\alpha}{2}}$ **ขั้นที่ 7**. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผล 7.1 กรณีใช้ค่า Z ปฏิเสธ H₀ ถ้า $z_{_{-nuon}} < -z_{\underline{\alpha}}$ หรือ $z_{_{-nuon}} > z_{\underline{\alpha}}$ 7.2 กรณีใช้ค่า T ปฏิเสธ H₀ ถ้า $t_{_{_{h_{1}u_{2}u_{1}}}} < -t_{\underline{\alpha}}$ หรือ $t_{_{_{h_{1}u_{2}u_{1}}}} > t_{\underline{\alpha}}$ เกณฑ์การเลือกค่าสถิติที่เหมาะสมของขั้นที่ 4. (ในทางทฤษฏี) 1. กรณีประชากรมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2 เลือก Z = $rac{\overline{x} - \mu_0}{(rac{\sigma}{arLambda})}$ 2. กรณีประชากรมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2 เลือก Z = $\frac{\overline{x} - \mu_0}{(\frac{s}{\sqrt{n}})}$ ตัวอย่างขนาด n ≥ 30 แทนค่า σ ด้วย s 2.1 เลือก T = $\frac{\overline{x} - \mu_0}{(\frac{s}{\sqrt{n}})}$ ตัวอย่างขนาด n < 30 2.2 3. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ^2 เลือก Z = $\frac{\overline{x} - \mu_0}{(\frac{\sigma}{\sqrt{n}})}$ ตัวอย่างขนาด n ≥ 30

4. กรณีไม่ได้กำหนดว่าข้อมูลมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ^2

เลือก Z = $\frac{\overline{x} - \mu_0}{(\frac{s}{\sqrt{s}})}$ ต้องใช้ตัวอย่างขนาด n \geq 30 $\,$ แทนค่า σ ด้วย s

หลักการและขั้นตอนของการทดสอบสมมติฐานด้วย SPSS for Windows

- ้**ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀: μ = μ₀ ี่กำหนดสมมติฐานอื่น H₁: μ ≠ μ₀
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าเฉลี่ยและค่าความแปรปรวนของตัวอย่าง $\overline{\mathbf{x}}, \mathbf{s}^2$
- **ขั้นที่** 4. SPSS for Windows เลือกค่าสถิติ T เท่านั้น

ขั้นที่ 5. คำนวณค่าสถิติ T =
$$\frac{\overline{x} - \mu_0}{(\frac{s}{\sqrt{n}})}$$
 ซึ่งเราเรียกว่า t_{คำนวณ} และ องศาความอิสระ df = n – 1

- ้ขั้นที่ 6. คำนวณค่า Sig (2– tailed) ของค่าสถิติ เ_{คำบาม}
- Sig (2- tailed) = 2 เท่าของพื้นที่ใต้โค้งที ทางหางด้านขวาที่ระยะ | t = 2 P(T > | t_{คำนาณ} |)

ขั้นที่ 7. การสรุปผลสามารถเลือกใช้เหตุผลได้ 2 วิธีคือ

- โดยการเปรียบเทียบค่าสถิติ t_{คำนวณ} จากตัวอย่าง กับ ค่าวิกฤตจากตาราง โดยมีเกณฑ์การสรุปผลว่า ถ้า $t_{_{e_{1}u_{2}n_{1}}} < -t_{\frac{lpha}{2}}$ หรือ $t_{_{e_{1}u_{2}n_{1}}} > t_{\frac{lpha}{2}}$ แล้ว ปฏิเสธ H₀
- หรือ 2. โดยการเปรียบเทียบค่า Sig(2– tailed) กับ ระดับนัยสำคัญ α โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig(2– tailed) < lpha แล้ว ปฏิเสธ H $_{_0}$

ตัวอย่าง 7.1.1 เท่าที่ผ่านมานิสิตใช้เวลาลงทะเบียนโดยเฉลี่ย 50 นาที ขณะนี้มหาวิทยาลัย ้กำลังทดลองให้นิสิตลงทะเบียนเรียนโดยใช้ระบบคอมพิวเตอร์ เพื่อทดสอบว่าเวลาเฉลี่ยที่ใช้ใน การลงทะเบียนโดยใช้ระบบคอมพิวเตอร์มีค่าเท่ากับ 50 นาทีหรือไม่ จึงทำการสุ่มตัวอย่างการลง ทะเบียนของนิสิต 12 คนได้ข้อมูลดังนี้ 41 , 42 , 47 , 41 , 54 , 26 , 26 , 65 , 34 , 49 , 29 , 50 กำหนดระดับนัยสำคัญ 0.05

May 2010

ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05 **ขั้นที่ 3**. เข้าสู่ SPSS for Windows Data Editor สร้างแฟ้มข้อมูลที่มีตัวแปร X เป็นเวลาที่ใช้ในการ ลงทะเบียน และ Save ข้อมูลลงแฟ้มชื่อ example10.sav

ขั้นที่ 4. เลือกค่าสถิติ T ข**ั้นที่ 4.1**วิเคราะห์ข้อมูลด้วยคำสั่ง

Analyze / Compare Means / One Sample T Test...

บทที่ 7 การทดสอบสมมติฐาน

Teres and a	mpla10 - SPSS	for Windows D	ata Editor
<u>File</u> E	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>
~	18 🔍 🗠) 💷 🏪 📴	M <u>F</u>
1:x		41	
	×	var	var
1	41.00		
2	42.00		
3	47.00		
4	41.00		
5	54.00		
6	26.00		
7	26.00		
8	65.00		
9	34.00		
10	49.00		
11	29.00		
12	50.00		

🧰 exa	🛗 example10 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp			
<u> 2</u> 5	18 🔍 🗠		Reports Descriptive Statistics	; <mark>≣ ≫@</mark>			
1:x		41	Compare <u>M</u> eans	▶ <u>M</u> eans			
		Mar	<u>G</u> eneral Linear Model	One-Sample T Test			
	~	Vai	<u>C</u> orrelate	Independent-Samples <u>I</u> Test			
1	41.00		<u>R</u> egression	<u>Paired-Samples T Test</u>			
	40.00		L <u>og</u> linear	 <u>O</u>ne-Way ANOVA 			

ขั้นที่ 4.2 คลิก One Sample T Test.. จะได้ผลบนจอภาพเป็น

•	<u>T</u> est Variable(s):	_ OK
		<u>P</u> aste
		<u>R</u> eset
		Cancel
		Help
	Test <u>V</u> alue: 0	Options

ขั้นที่ 4.3 เลือกตัวแปร x มาไว้ที่ Test Variable(s)

และ เลือกค่า Test Value เป็น 50 ตามค่าที่เราต้องการทดสอบ

👷 One-Sample T Test		x
	Test Variable(s):	- OK
		<u>P</u> aste
	•	<u>R</u> eset
		Cancel
		Help
	Test <u>V</u> alue: 50	Options

ขั้นที่ 4.3 คลิก OK จะได้ผลการคำนวณเป็น

แลการคำนวณทั้งหมดคือ

T-Test

One-Sample Statistics

			Std.	Std. Error
	Ν	Mean	Deviation	Mean
Х	12	42.0000	11.9011	3.4356

One-Sample Test

		Test Value = 50								
			Sig	Mean	95% Col Interva Differ	nfidence I of the rence				
	t	df	(2-tailed)	Difference	Lower	Upper				
Х	-2.329	11	.040	-8.0000	-15.5616	4384				

ขั้นที่ 5. คำนวณค่าสถิติ T =
$$rac{\overline{x}-\mu_0}{(rac{S}{\sqrt{n}})}$$
 และ องศาความอิสระ df = 12 – 1 = 11

ผลการคำนวณของ SPSS ได้ว่า ค่าสถิติ t_{คำบวณ} = – 2.329 องศาความอิสระ = 11

ขั้นที่ 6. คำนวณค่า Sig(2 - tailed) ของค่าสถิติ T

ผลการคำนวณของ SPSS ได้ว่า Sig (2 – tailed) = 0.040

หมายเหตุ ตรวจสอบการคำนวณด้วย MATHCAD จะเห็นได้ว่าค่า

Sig (2 – tailed) = 0.040 มาจาก 2 เท่าของ Pvalue(– 2.329)

May 2010

 $\begin{bmatrix} & v+1 \\ v+1 \end{bmatrix} = \frac{v+1}{v+1}$

ผลการคำนวณจากโปรแกรม MATHCAD

T distribution

144

$$\mathbf{v} \coloneqq 11 \qquad \text{TOL} \coloneqq 0.0000001 \qquad \qquad \mathbf{h}(\mathbf{t}) \coloneqq \left[\frac{\Gamma\left(\frac{\mathbf{v}+\mathbf{1}}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right)\cdot\sqrt{\pi}\cdot\mathbf{v}} \right] \cdot \left[1 + \left(\frac{\mathbf{t}^2}{\mathbf{v}}\right) \right]^{-2}$$

$$Pvalue(\mathbf{T}) \coloneqq 0.5 - \begin{bmatrix} \mathbf{o} & \mathbf{T} \\ \mathbf{0} & \mathbf{h}(\mathbf{t}) \, \mathbf{dt} & Pvalue(2.329) = 0.0199697031 \end{bmatrix}$$

ขั้นที่ 7. สรุปผล

- **แบบที่ 1**. โดยการเปรียบเทียบค่าสถิติ T_{คำนวณ} = 2.329 กับ ค่าวิกฤตจากตาราง จากตารางสถิติจะได้ค่า t_{0.025,df=11} = 2.201 เพราะว่า H₁:μ ≠ 50 เพราะฉะนั้นบริเวณวิกฤตคือ T < – 2.201 หรือ T > 2.201 สรุป ปฏิเสธ H₀
- **แบบที่ 2**. โดยการเปรียบเทียบค่า Sig (2 tailed) กับ ระดับนัยสำคัญ α เพราะว่า Sig (2 - tailed) = 0.02 < 0.05 = α เพราะฉะนั้น สรุปปฏิเสธ H₀

สรุปผลการทดสอบสมมติฐานจากข้อมูลที่เก็บมาได้ต้องปฏิเสธสมมติฐานที่กล่าวว่าเวลาเฉลี่ยที่ ใช้ในการลงทะเบียนโดยใช้ระบบคอมพิวเตอร์มีค่าเท่ากับ 50 นาที ที่ระดับนัยสำคัญ 0.05

7.2 การทดสอบสมมติฐาน H_o : μ₁ = μ₂ กรณีที่ประชากร 2 ชุดเป็นอิสระต่อกัน หลักการและขั้นตอนการทำงานทางทฤษฎีเกี่ยวกับการทดสอบสมมติฐาน

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : μ₁ = μ₂ กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂

ข**ั้นที่ 2**. กำหนดระดับนัยสำคัญ α

ขั้นที่ 3. สุ่มตัวอย่างขนาด n₁ จากประชากรชุดที่ 1 หาค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}_1$

สุ่มตัวอย่างขนาด n_2 จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}_2$

ขั้นที่ 4. เลือกค่าสถิติที่เหมาะสม Z หรือ T

ขั้นที่ 5. คำนวณค่าสถิติ z_{คำนวณ} หรือ t_{คำนวณ} ตามที่เลือกในขั้นที่ 4 จากข้อมูลตัวอย่าง

- **ขั้นที่ 6**. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต
 - 6.1 กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\alpha}$ และ z_{α} บริเวณวิกฤตคือ Z < $-z_{\alpha}$ หรือ Z > z_{α}

6.2 กรณีใช้ค่า T ค่าวิกฤตคือ - t_a และ t_a บริเวณวิกฤตคือ T < - t_a หรือ T > t_a
 ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่างกับค่าวิกฤต โดยมีเกณฑ์การสรุปผล
 ว่า

7.1กรณีใช้ค่า Zปฏิเสธ H0 ถ้า
$$z_{h_1u_2u} < -z_{\alpha}$$
หรือ $z_{h_1u_2u} > z_{\alpha}$ 7.2กรณีใช้ค่า Tปฏิเสธ H0 ถ้า $t_{h_1u_2u} < -t_{\alpha}$ หรือ $t_{h_1u_2u} > t_{\alpha}$

เกณฑ์การเลือกค่าสถิติที่เหมาะสมของขั้นที่ 4.

1. กรณี n₁ ≥ 30 และ n₂ ≥ 30

1.1
 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน
$$\sigma_1^2$$
 และ σ_2^2

 เลือกใช้ค่าสถิติ Z = $\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

1.2. กรณีประชากร 2 ชุดมีการแจกแจงปกติและไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และประมาณ σ_1^2 ด้วย s_1^2 หาค่าความแปรปรวนของตัวอย่าง s_2^2 และประมาณ σ_2^2 ด้วย s_2^2 เลือกใช้ค่าสถิติ Z = $\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

- 2.1 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 เลือกใช้ค่าสถิติ Z = $\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
- 2.2 กรณีประชากร 2 ชุดมีการแจกแจงปกติ และ ไม่รู้ค่าความแปรปรวน σ_1^2 และ σ_2^2 หาค่าความแปรปรวนของตัวอย่าง s_1^2 และ s_2^2

2.2.1 ภายใต้ข้อกำหนด
$$\sigma_1^2 = \sigma_2^2$$

เลือกใช้ค่าสถิติ T = $\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
เมื่อ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$

145

2.2.2 ภายใต้ข้อกำหนด σ_1^2 eq σ_2^2

เลือกใช้ค่าสถิติ T =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 เมื่อ df =
$$\frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

หลักการและขั้นตอนการทดสอบสมมติฐานด้วย SPSS for Windows

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : μ₁ = μ₂ กำหนดสมมติฐานอื่น H₁ : μ₁ ≠ μ₂
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. สุ่มตัวอย่างขนาด n₁ จากประชากรชุดที่ 1 , สุ่มตัวอย่างขนาด n₂ จากประชากรชุดที่ 2 หาค่าเฉลี่ยของตัวอย่าง $\overline{\mathbf{x}}_1$ และ $\overline{\mathbf{x}}_2$ หาค่าความแปรปรวนของตัวอย่าง \mathbf{s}_1^2 และ \mathbf{s}_2^2
- ขั้นที่ 4. เลือกค่าสถิติ T เท่านั้น

มายใต้ข้อกำหนด $\sigma_1^2 = \sigma_2^2$ เลือกใช้ค่าสถิติ T = $\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

เมื่อ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df = $n_1 + n_2 - 2$ ภายใต้ข้อกำหนด $\sigma_1^2 \neq \sigma_2^2$

เลือกใช้ค่าสถิติ T =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} เมื่อ df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2 \frac{1}{(n_1 - 1)} + (\frac{s_2^2}{n_2})^2 \frac{1}{(n_2 - 1)}}$$

ขั้นที่ 5. คำนวณค่าสถิติ T ซึ่งเราเรียกว่า t_{คำนวณ} และ องศาความอิสระ df

ขั้นที่ 6. คำนวณค่า Sig (2 – tailed) ของค่าสถิติ t_{คำนวณ} Sig (2 – tailed) = 2 เท่าของพื้นที่ใต้โค้ง ทางหางด้านขวาที่ระยะ | t_{คำนวณ} |

ขั้นที่ 7. การสรุปผลสามารถเลือกใช้เหตุผลได้ 2 วิธีคือ

1. โดยการเปรียบเทียบค่าสถิติ T จากตัวอย่าง กับ ค่าวิกฤตจากตาราง โดยมีเกณฑ์การสรุปผลว่า ถ้า $t_{_{คำนวณ}} < -t_{\frac{\alpha}{2}}$ หรือ $t_{_{คำนวณ}} > t_{\frac{\alpha}{2}}$ แล้ว ปฏิเสธ H₀

2. โดยการเปรียบเทียบค่า Sig(2 – tailed) กับ ระดับนัยสำคัญ α หรือ โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig(2 – tailed) < lpha แล้ว ปฏิเสธ H $_{_0}$

ตัวอย่าง 7.2.1 โรงงานผลิตแป้งกระป๋องมีเครื่องจักร 2 เครื่อง

μ₁ เป็นค่าเฉลี่ยประชากรของน้ำหนักของแป้งที่บรรจุในกระป๋องที่ผลิตจากเครื่องจักรที่ 1 ให้

μ₂ เป็นค่าเฉลี่ยประชากรของน้ำหนักของแป้งที่บรรจุในกระป๋องที่ผลิตจากเครื่องจักรที่ 2 เพื่อทำการทดสอบว่าค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องเท่ากันหรือไม่ จึงทำการสุ่มตัวอย่างแป้ง กระป๋องจากเครื่องจักรเครื่องที่ 1 และ 2 มาอย่างละ 100 กระป๋อง ข้อมูลเก็บไว้ที่แฟ้มข้อมูลชื่อ example11.sav ภายใต้ข้อกำหนด σ_1^2 = σ_2^2 จงทำการทดสอบสมมติฐานว่าค่าเฉลี่ยของน้ำ หนักแป้งในกระป๋องเท่ากันหรือไม่ ที่ระดับนัยสำคัญ 0.01

ขั้นที่ 1. กำหนดสมมติฐานหลัก วิธีทำ กำหนดสมมติฐานอื่น H₁ : $\mu_1 \neq \mu_2$

$$H_0: \mu_1 = \mu_2$$

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.01$

ขั้นที่ 3. นำข้อมูลเข้าสู่

SPSS for Windows Data Editor machine เป็นตัวแปรจำแนกกลุ่มของโรงงาน weight เป็นตัวแปรเก็บค่าน้ำหนักแป้ง

ขั้นที่ 4. เลือกค่าสถิติ T เท่านั้น

🗑 example11 - SPSS for Windows Data Editor								
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
<u> 2</u>	18 🔍 🗠	🛯 🖾 📴	M	▦◍▦	<u></u>			
	machine	weight	var	var	var			
1	1.00	6.0730						

ขั้นที่ 4.1 เลือกคำสั่ง Analyze / Compare Means / Independent Samples T Test...

	📺 eı	kample11 ·	SPSS	for Window	s Data Editor			
	<u>F</u> ile	<u>E</u> dit <u>V</u> iew	/ <u>D</u> ata	Transform	<u>Analyze G</u> raphs <u>L</u>	<u>J</u> tilities	<u>W</u> indow <u>H</u> elp	
	È		a 🔊	<u>ii</u>	Re <u>p</u> orts Descriptive Statis	tics	; <mark>= ``@</mark>	
					Compare <u>M</u> eans		• <u>M</u> eans	.
		mach	nine	weight	<u>G</u> eneral Linear M <u>C</u> orrelate	odel	 Une-Sample I Independent-S. 	amples <u>T</u> Test
പ്പ	· ·	1	1.00	6.07	<u>R</u> egression		<u>Paired-Samples</u>	s T Test
ขนท 4.2		2	1 00	a na	L <u>og</u> linear		Une-Way ANU	VA
คลิก Independent Samples T Test.				Indepen	dent-Samples T T	est I	est Variable(s):	nk
จะได้ผลบนจอภาพเป็น				reight		_ [Paste
						<u> </u>		<u>R</u> eset
								Cancel
								Help
						-) Ê	rouping Variable:	
						[Define Groups	a.c. 1
			_					Uptions

ขั้นที่ 4.3 เลือกตัวแปร weight	st Ind	lependei	nt-Samples T	Test			×
มาไว้ที่ Test Variable(s)					<u>T</u> est Vari () weig	iable(s): ht	ОК
และ เลือกตัวแปร machine							<u>P</u> aste <u>B</u> eset
าวได้ที่ Grouping Variable			I				Cancel
a han Crouping Valiable				ו ו	<u>G</u> rouping	Variable:	Help
					<u>machine</u> Define G	iroups	
				-			Options
				Г)efine (aroups	×
ขนท 4.4 คลาโทขขง Grouping Variable				-	€ Use	specified values	Continue
และ คลิกที Define Groups จอภาพจะมีเมนูย่อยเป	ใน				Gro	oup <u>1</u> :	Cancel
					C <u>C</u> ut j	point:	Help
				-		,	
ขั้นที่ 4.5 การเลือกกลุ่มเพื่อทดสอบ				[Define (Groups	×
ให้พิมพ์ 1 ในข่อง Group 1.					€ ∐se Gro	specified values	Continue
					Gro	oup <u>2</u> : 2	Help
une nam i laten Gloup 2.				_	⊂ <u>C</u> ut	point:	
ขนท 4.6 กิด Continue	<mark>⊭</mark> ∦ In	depende	ent-Samples	T Test	TestVe		×
ตรง machine					<u>⊺</u> est vai () ∰ weig	riabie(s): ght	OK Paste
จะกลายเป็น machine(1 2)				\mathbf{F}			<u>R</u> eset
							Cancel
					i <u>G</u> rouping	g Variable: ar(1,2)	
					Define	Groups)	0-1-1-1
Kala ka d					C.	<u>م</u>	
ขั้นที่ 4.7 คลิก OK จะได้ผลการค้านวณที่ SPSS fo	r Wi	ndov	ws Viev	ver	เป็นด์	จ้งนี	
n≓ Ducput - SFSS for Windows Viewer File Edit ⊻iew Insert Format Analyze Graphs ∐tili	ties <u>W</u> i	ndow <u>H</u>	elp				
	<u>,</u>						
							-
		Gra	up Statistics	s	.d	014 5	
Group Statistic	HINE	N	Mean	Devi:	u. ation	Sta. Error Mean	
independent Se 2.00		100	6.140250	.03993	31624 38161	.003993182 .005009816	

148

ผลการคำนวณอย่างละเอียดคือ

T-Test

Group Statistics

				Std.	Std. Error
	MACHINE	Ν	Mean	Deviation	Mean
WEIGHT	1.00	100	6.109930	.039931824	.003993182
	2.00	100	6.140250	.050098161	.005009816

Independent Samples Test

			WEI	GHT
			Equal variances	Equal variances
			assumed	not assumed
Levene's Test for	F		7,9648	
Equality of Variances	Sig.		,0053	
t-test for Equality of	t		-4,7327	-4,7327
Means	df		198,0000	188,620 ⁻ 1
	Sig. (2-tailed)		,0000042	,0000043
	Mean Difference		-,0303200	-,0303200
	Std. Error Difference		,0064065	,0064065
	95% Confidence Interval	Lower	-,0429538	-,0429577
	of the Difference	Upper	-,0176862	-,0176823

ภายใต้ข้อกำหนด σ_1^2 = σ_2^2

ขึ้นที่ 5. T =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 เมื่อ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ และ df =

 $n_1 + n_2 - 2$

จากการคำนวณของ SPSS ได้ว่า T_{คำนวณ} = - 4.733 , df = 198

ขั้นที่ 6. คำนวณค่า Sig(2 – tailed) ของค่าสถิติ T

จากการคำนวณของ SPSS จะได้ค่า Sig (2 – tailed) = 0.0000042

ขั้นที่ 7. สรุปผล

 โดยการเปรียบเทียบค่าสถิติ t_{คำนวณ} จากตัวอย่าง กับ ค่าวิกฤตจากตารางสถิติ จากตารางสถิติจะได้ค่า t_{0.005,df=198} = 2.6008873
 เพราะว่ากำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂

```
เพราะฉะนั้นบริเวณวิกฤตคือ T < – 2.6008873 หรือ T > 2.6008873 สรุปปฏิเสธ H<sub>0</sub>
หรือ 2. โดยการเปรียบเทียบค่า Sig (2 – tailed) กับ ระดับนัยสำคัญ α
เพราะว่ากำหนดสมมติฐานอื่น H<sub>1</sub> : μ<sub>1</sub> ≠ μ<sub>2</sub>
เพราะฉะนั้นต้องเปรียบเทียบค่า α = 0.01 กับค่าของ Sig (2 – tailed)
เพราะว่า Sig (2 – tailed) = 0.0000042 < 0.01 = α สรุปปฏิเสธ
```

 H_0

150

ผลสรุปค่าเฉลี่ยของน้ำหนักแป้งในกระป๋องทั้ง 2 ประชากรมีค่าไม่เท่ากันที่ระดับนัยสำคัญ 0.01

เสริมความรู้ของการคำนวณค่าทางสถิติด้วย MATHCAD

การหาค่า t_{0.005,df=198} และ การหาค่า Sig(2 – tailed)

TOL := 0.00000001

$$\mathbf{v} := 198 \qquad \mathbf{h}(\mathbf{t}) := \left[\frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right)\cdot\sqrt{\pi \cdot \mathbf{v}}}\right] \cdot \left[1 + \left(\frac{\mathbf{t}^2}{\mathbf{v}}\right)\right]^{-\frac{\mathbf{v}+1}{2}}$$

$$\mathbf{k} := 2.60088 \qquad \mathbf{T}(\mathbf{A}) := \operatorname{root}\left[\left[\mathbf{A} - \left(0.5 - \int_{0}^{0} \mathbf{k} \mathbf{h}(\mathbf{t}) d\mathbf{t}\right)\right], \mathbf{k}\right] \qquad \mathbf{T}(0.005) = 2.6008872779$$

$$|\mathbf{c}| \mathbf{T}|$$

Pvalue(T) := $0.5 - \int_{0}^{||\mathbf{r}||} h(t) dt$ Pvalue(-4.733) = 0.0000021657WMM $t_{0.005,df=198} = 2.6008872779$

Sig.(2 – tailed) = 2(0.0000021) = 0.0000042 ตามค่าในตาราง SPSS

Equal variances not assumed

$$\begin{split} & \text{Std_Error_Difference} := \sqrt{\frac{\text{s}1^2}{\text{n}1} + \frac{\text{s}2^2}{\text{n}2}} & \text{Std_Error_Difference} = 0.006407 \\ & \text{t} := \frac{(\text{xbar1} - \text{xbar2}) - (0)}{\sqrt{\frac{\text{s}1^2}{\text{n}1} + \frac{\text{s}2^2}{\text{n}2}}} & \text{df} := \frac{\left(\frac{\text{s}1^2}{\text{n}1} + \frac{\text{s}2^2}{\text{n}2}\right)^2}{\left(\frac{\text{s}1^2}{\text{n}1} + \frac{\text{s}2^2}{\text{n}2}\right)^2 \cdot \left(\frac{1}{\text{n}2 - 1}\right)} \\ & \text{t} := -4.732663 & \text{df} = 188.620126 \\ & \text{nnswnPh} \ \text{t}_{0.005,\text{df} = 188.62} \ \text{use nnswnPh} \ \text{Sig.}(2 - \text{tailed}) \\ & \text{TOL} := 0.00000001 & \text{v} := 188.62 & \text{h}(\text{t}) := \left[\frac{\Gamma\left(\frac{\text{v}+1}{2}\right)}{\Gamma\left(\frac{\text{v}}{2}\right)\sqrt{\pi \cdot \text{v}}}\right] \cdot \left[1 + \left(\frac{\text{t}^2}{\text{v}}\right)\right]^{-\frac{\text{v}+1}{2}} \\ & \text{k} := 2.60088 & \text{T(A)} := \text{root} \left[\left[A - \left(0.5 - \int_0^{\text{sk}} \text{h}(\text{t})\text{dt}\right)\right], \text{k}\right] & \text{T}(0.005) = 2.6021453309 \\ & \text{Pvalue}(\text{T}) := 0.5 - \int_0^{\text{s}} \text{h}(\text{t})\text{dt} & \text{Pvalue}(-4.733) = 0.0000021657 \\ & \text{twsnzazůu t}_{0.005,\text{df} = 188.620} = 2.6021453309 \\ & \text{twsnzazůu Sig.}(2 - \text{tailed}) = 2(0.000021657) = 0.0000043314 \$$
mupřeňlument SPSS

7.3 การทดสอบสมมติฐาน H₀ : μ₁ = μ₂ กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน หลักการทางทฤษฎีของความน่าจะเป็นและสถิติ กรณีที่ประชากร 2 ชุดไม่เป็นอิสระต่อกัน

ในการทดสอบสมมติฐาน H $_{_0}:\,\mu_1=\,\mu_2\,$ หรือ การทดสอบสมมติฐาน H $_{_0}:\,\mu_D=d_0$ มีขั้นตอนการทำงานดังนี้

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \mu_D = d_0$ กำหนดสมมติฐานอื่น $H_1: \mu_D \neq d_0$
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
x ₁	y 1
x ₂	y ₂
X3	y ₃
:	:
X _n	y _n

ขั้นที่ 3. สุ่มตัวอย่างขนาด n จากประชากรชุดที่ 1 และ ประชากรชุดที่ 2 ได้ข้อมูลเป็น

คำนวณ 1. คำนวณค่าผลต่างของตัวอย่าง d_i = $x_i - y_i$ i = 1,2,...,n

- 2. คำนวณค่าเฉลี่ยของผลต่างของตัวอย่าง $\overline{\mathbf{d}}$
- 3. คำนวณค่าส่วนเบี่ยงเบนมาตรฐานของผลต่างของตัวอย่าง s_d
- **ขั้นที่ 4**. เลือกค่าสถิติที่เหมาะสม Z หรือ T

กรณี n ≥ 30 เลือก Z =
$$\frac{\overline{d} - d_0}{\frac{s_d}{\sqrt{n}}}$$

กรณี n < 30 และ ภายใต้ข้อสมมติว่าผลต่างของข้อมูลมีการแจกแจงปกติ

เลือก T =
$$\frac{\overline{d} - d_0}{\frac{s_d}{\sqrt{n}}}$$
 เมื่อ df = n - 1

- **ขั้นที่** 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต

6.1กรณีใช้ค่า Z ค่าวิกฤตคือ
$$-z_{\underline{\alpha}}$$
 และ $z_{\underline{\alpha}}$ บริเวณวิกฤตคือ $Z < -z_{\underline{\alpha}}$ หรือ $Z > z_{\underline{\alpha}}$ 6.2กรณีใช้ค่า T ค่าวิกฤตคือ $-t_{\underline{\alpha}}$ และ $t_{\underline{\alpha}}$ บริเวณวิกฤตคือ $T < -t_{\underline{\alpha}}$ หรือ $T > t_{\underline{\alpha}}$

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่างกับค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า

7.1กรณีใช้ค่า Z ปฏิเสธ H₀ ถ้า
$$z_{_{_{คำนวณ}}} < -z_{_{\frac{\alpha}{2}}}$$
 หรือ $z_{_{_{_{คำนวณ}}}} > z_{_{\frac{\alpha}{2}}}$ 7.2กรณีใช้ค่า T ปฏิเสธ H₀ ถ้า $t_{_{_{คำนวณ}}} < -t_{_{\frac{\alpha}{2}}}$ หรือ $t_{_{_{คำนวณ}}} > t_{_{\frac{\alpha}{2}}}$

หลักการและขั้นตอนการทำงานของการวิเคราะห์ข้อมูลด้วย SPSS for Windows

- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. สุ่มตัวอย่างขนาด n คำนวณค่า $\overline{\mathrm{D}}$ และ s_{d}
- **ขั้นที่ 4**. เลือกค่าสถิติ T
- **ขั้นที่ 5**. คำนวณค่าสถิติ T และ องศาความอิสระ df

T =
$$\frac{\overline{D} - d_0}{\frac{s_d}{\sqrt{n}}}$$
 และ df = n – 1 ค่าที่คำนวณได้นี้เราเรียกว่า t_{คำนวณ}

ขั้นที่ 6. คำนวณค่า Sig (2 – tailed) ของค่าสถิติ t_{คำนวณ} Sig (2 – tailed) = 2 เท่าของพื้นที่ใต้โค้งทางหางด้านขวาที่ระยะ | t_{คำนวณ} |

ขั้นที่ 7. การสรุปผลสามารถเลือกใช้เหตุผลได้ 2 วิธีคือ

- โดยการเปรียบเทียบค่าสถิติ T จากตัวอย่าง กับ ค่าวิกฤตจากตาราง
 โดยมีเกณฑ์การสรุปผลว่า ถ้า t_{คำนวณ} < -t_a หรือ t_{คำนวณ} > t_a แล้ว ปฏิเสธ H₀
- หรือ 2. โดยการเปรียบเทียบค่า Sig(2 tailed) กับ ระดับนัยสำคัญ α โดยมีเกณฑ์การสรุปผลว่า ถ้า Sig(2 – tailed) < α แล้ว ปฏิเสธ H₀

ตัวอย่าง 7.3.1 จากตัวอย่างสารที่มีเหล็ก 5 ตัวอย่างน้ำมาวิเคราะห์หาปริมาณด้วยวิธีแบ่งออก เป็น 2 ตัวอย่างย่อยและใช้วิธีการวิเคราะห์หาปริมาณเหล็กปรากฏผลดังนี้

ตัวอย่างที่	1	2	3	4	5
วิธีวิเคราะห์ด้วยรังสีเอ็กซ์	2.0	2.0	2.3	2.1	2.4
วิธีวิเคราะห์ด้วยเคมี	2.2	1.9	2.5	2.3	2.4

154

ให้ μ1 เป็นค่าเฉลี่ยประชากรของปริมาณเหล็กที่วิเคราะห์ด้วยรังสีเอ็กซ์

μ₂ เป็นค่าเฉลี่ยประชากรของปริมาณเหล็กที่วิเคราะห์ด้วยเคมี สมมติว่าประชากรมีการแจกแจงปกติ จงทดสอบว่าการทดสอบทั้งสองวิธีให้ผลทัดเทียมกันที่ ระดับนัยสำคัญ 0.05

วิธีทำ การวิเคราะห์ด้วย SPSS for Windows

ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_0: \mu_D = 0$ กำหนดสมมติฐานอื่น $H_1: \mu_D \neq 0$

ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05

ขั้นที่ 3. สุ่มตัวอย่างขนาด n $\stackrel{-}{\mathrm{D}}$ และ s_{d}

ขั้นที่ 4. นำข้อมูลเข้ามาทำการวิเคราะห์ เพื่อหาค่าสถิติ T

ขั้นที่ 4.1 สร้างแฟ้มมูลใน SPSS for Windows Data Editor โดยกำหนดตัวแปร xray เป็นตัวแปร ปริมาณเหล็กที่วิธีวิเคราะห์ด้วยรังสีเอ็กซ์ chem เป็นตัวแปร ปริมาณเหล็กที่ วิธีวิเคราะห์ด้วยเคมี และ Save แฟ้มข้อมูลชื่อ example12.sav

🛗 exa	📅 example12 - SPSS for Windows Data Editor					
<u>File Edit V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp						
600 11 11 11 11 11 11 11 						
	хгау	chem	var	var	var	
1	2.00	2.20				
2	2.00	1.90				
3	2.30	2.50				
4	2.10	2.30				
5	2.40	2.40				

ขั้นที่ 4.2 เลือกคำสั่ง Analyze / Compare Means / Paired-Samples T Test..

🚞 eı	ample12 - SP	PSS fo	r Window	s Data Editor			
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>D</u>	<u>)</u> ata _	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow <u>H</u> elp	
B	88 🔍	ĸ	<u>iii.</u>	Re <u>p</u> orts Descriptive Sta	atistics	; <mark>=</mark> <u>></u> @	
				Compare <u>M</u> ear	ns	Means	
	хгау		chem	<u>G</u> eneral Linear <u>C</u> orrelate	Model	 One-Sample T Test Independent-Samples <u>T</u> Test 	
	1 2.0	00	2.			Paired-Samples T Test	
	1 21	nn l	1	Loglinear		<u>Une-Way ANUVA</u>	

ขั้นที่ 4.3 คลิกที่ Paired-Samples T Test..

็จอภาพจะขึ้นเมนูของคำสั่ง Analyze / Compare Means / Paired–Samples T Test..

เลือกตัวแปร Variable 1 เป็น xray โดยการคลิกที่ตัวแปร xray เลือกตัวแปร Variable 2 เป็น chem โดยการคลิกที่ตัวแปร chem

ขั้นที่ 4.4 คลิกที่ 💽] เพื่อย้ายคู่ของตัวแปร
xray – chem มาไว้ที่ข	้่อง Paired–Variables

₩ xray ₩ chem	_	Paired <u>V</u> ariables: xray chem	OK Paste
	•		<u>R</u> eset
			Cancel
			Help
Current Selections			
Variable 1:			
Variable 2:			Ontions

ขั้นที่ 4.5 คลิก OK จะได้ผลการคำนวณเป็นดังนี้

🚏 Output1 - SPSS for Window	s Viewer					
<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp						
2 4 4 4 4 4 4 4 4						
<u>+++-=</u>	, D					
⊡ <mark>E</mark> Output ⊡ →E T-Test É	T-Tes	st	Paired	Samples S	Statistics	
Notes					Std.	Std. Error
Paired Samples			Mean	N	Deviation	Mean
Paired Samples	Pair	XRAY	2.1600	5	.1817	.0812403840
Paired Samples	1	CHEM	2.2600	5	.2302	.1029563014
	Paired Samples Correlations					
I				N	Correlatio	n Sig.
	Pair 1	XRAY &	CHEM	6	.78	.113

ผลการคำนวณทั้งหมดคือ

T-Test

Paired Samples Statistics

				Std.	Std. Error
		Mean	N	Deviation	Mean
Pair	XRAY	2.1600	5	.1817	.0812403840
1	CHEM	2.2600	5	.2302	.1029563014

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	XRAY & CHEM	5	.789	.113

Paired Samples Test

			Pair 1
			XRAY - CHEM
Paired Differences	Mean		10000000
	Std. Deviation		.14142136
	Std. Error Mean		.06324555
	95% Confidence Interval	Lower	27559781
	of the Difference	Upper	.07559781
t			-1.58113883
df			4.
Sig. (2-tailed)			.18900366

ขั้นที่ 4. เลือกค่าสถิติ T

ขั้นที่ 5. คำนวณค่าสถิติ t_{คำนวณ} และ องศาความอิสระ df

t_{คำนวณ} = 1.5811383 และ df = 4

ขั้นที่ 6. คำนวณค่า Sig (2 – tailed) ของค่าสถิติ T

Sig (2 - tailed) = 0.18900366

- ขั้นที่ 7. สรุปผล
 - จากการเปิดตาราง t_{0.025,df=4} = 2.776
 บริเวณวิกฤตคือ T < -2.776 หรือ T > 2.776
 เพราะว่า t_{คำนวณ} = 1.581 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น สรุป ยอมรับ H₀

เพราะว่า Sig (2 – tailed) = 0.189 > 0.05 =
$$lpha$$
 เพราะฉะนั้น สรุป ยอมรับ H $_{_0}$

ປີວີດີປະ. chem := $\begin{vmatrix} 1.9 \\ 2.5 \\ 2.3 \\ 2.4 \end{vmatrix}$ หมายเหตุ การคำนวณด้วย MATHCAD 2.0 2.0 xray := 2.3 n := 5 2.1 2.4 mean(xray) = 2.16mean(chem) = 2.26sdxray := $\sqrt{\frac{n \cdot var(xray)}{n-1}}$ sdchem := $\sqrt{\frac{n \cdot var(chem)}{n-1}}$ sdxray = 0.181659sdchem = 0.230217Correlation := corr(xray, chem) Correlation = 0.789076การคำนวณค่าผลต่าง d 0.2 $d = \begin{vmatrix} -0.1 \\ 0.2 \end{vmatrix}$ dbar := mean(d) dbar = 0.1 d := chem - xray0.2 0 $\mathrm{sd} := \sqrt{\frac{n \cdot \mathrm{var}(d)}{n-1}}$ sd = 0.141421การคำนวณค่าสถิติ T $t := \frac{dbar - 0}{\left(\frac{sd}{\sqrt{n}}\right)}$ t = 1.581139การคำนวณค่า Sig(2 – tailed) $h(t) := \left[\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \sqrt{\pi \cdot v}}\right] \cdot \left[1 + \left(\frac{t^2}{v}\right)\right]^{-\frac{v+1}{2}} \qquad \text{Pvalue}(T) := \int_{|T|}^{1000} h(t) dt$ v := n - 1Sig_2tailed = 0.189034 Pvalue(1.581) = 0.094517 Sig_2tailed := 2. Pvalue(1.581)

158

7.4 การทดสอบสมมติฐาน $H_o: \sigma^2 = \sigma_0^2$ หลักการและขั้นตอนการทำงานทางทฤษฎีของความน่าจะเป็นและสถิติ

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \sigma^2 = \sigma_0^2$ กำหนดสมมติฐานอื่น $H_1: \sigma^2 \neq \sigma_0^2$
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n คำนวณค่าความแปรปรวนของตัวอย่าง s²
- **ขั้นที่ 4**. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าสถิติไคสแควร์ $\chi^2_{_{n_1}\mu_2\mu_3} = \frac{(n-1)s^2}{\sigma^2_2}$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต ค่าวิกฤตคือ $\chi^2_{1-\frac{lpha}{2}}$ หรือ $\chi^2_{\frac{lpha}{2}}$ บริเวณวิกฤตคือ $\chi^2 < \chi^2_{1-\frac{lpha}{2}}$ หรือ $\chi^2 > \chi^2_{\frac{lpha}{2}}$

ขั้นที่ 7. โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ปฏิเสธ H₀ ถ้า $\chi^2_{_{_{\!\!\!\!n\!1\!\!\!n\!2\!m\!}}} < \chi^2_{_{\!\!\!1\!-\!\frac{\alpha}{2}}}$ หรือ $\chi^2_{_{\!\!\!n\!1\!\!n\!2\!m\!}} > \chi^2_{_{\!\!\!\!\frac{\alpha}{2}}}$

ตัวอย่าง 7.4.1 ผู้ผลิตอ้างว่าอายุการใช้งานของแบตเตอรีมีการแจกแจงปกติ และมีส่วนเบี่ยง เบนมาตรฐานเป็น 0.9 ปี เพื่อทดสอบคำกล่าวอ้างของผู้ผลิตจึงทำการสุ่มตัวอย่างแบตเตอรีออก มา 10 ลูกได้อายุใช้งานดังนี้ 5.25 3.76 5.36 3.67 6.05 3.89 3.39 6.12 6.49 6.03 จงทดสอบสมมติฐาน σ² = 0.81 ที่ระดับนัยสำคัญ 0.05

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_0: \sigma^2 = 0.81$ กำหนดสมมติฐานอื่น $H_1: \sigma^2 > 0.81$

- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.05
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด 10 คำนวณค่าความแปรปรวนของตัวอย่าง \mathbf{s}^2
- **ขั้นที่** 4. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าสถิติไคสแควร์
$$\chi^2_{_{_{\mathrm{filu}2u}}} = \frac{(n-1)s^2}{\sigma_0^2}$$

ผลการคำนวณด้วย MATHCAD

$$\sigma := \sqrt{0.81}$$
 data := $\begin{bmatrix} 5.25 \\ 3.76 \\ 5.36 \\ 3.89 \\ 3.39 \\ 6.12 \\ 6.05 \\ 3.89 \\ 9.39 \\ 6.12 \\ 6.49 \\ 6.03 \end{bmatrix}$ n := 10 s := $\sqrt{\frac{n \cdot var(data)}{n-1}}$
chisquare := $\frac{(n-1) \cdot s^2}{\sigma^2}$ chisquare = 16.001
พราะฉะนั้น $\chi^2_{41u_3u} = 16.001$
ขึ้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต df = 10 - 1 = 9 และ $\chi^2_{0.025} = 19.023$, $\chi^2_{0.975} = 2.7$
บริเวณวิกฤตคือ $\chi^2 < 2.7$ หรือ $\chi^2 > 19.023$
ขึ้นที่ 7. โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต
เพราะว่า H,ถ้า $\chi^2_{4u_3u}$ ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น ยอมรับ H₀
7.5 การทดสอบสมมติฐาน H₀ : $\sigma_1^2 = \sigma_2^2$
ท้าหนดสมมติฐานขึ้น H₁ : $\sigma_1^2 = \sigma_2^2$
กำหนดสมมติฐานขึ้น H₁ : $\sigma_1^2 \neq \sigma_2^2$
ขึ้นที่ 1. กำหนดระดับนัยสำคัญ α
ขึ้นที่ 3. ทำการสุ่มตัวอย่างขนาด n, และ n₂ คำนวณค่าความแปรปรวนของตัวอย่าง s²₁, s²₂
ขึ้นที่ 4. เลือกค่าสถิติเอฟ F $F = \frac{s_1^2}{s_2^2}$
ขึ้นที่ 5. คำนวณค่าสถิติเอฟ F $F = \frac{s_1^2}{s_2^2}$

ค่าวิกฤตคือ f หรือ f บริเวณวิกฤตคือ F < f หรือ F > f
1-
$$\frac{\alpha}{2}$$
 $\frac{\alpha}{2}$ บริเวณวิกฤตคือ F < f หรือ F > f
2 ขั้นที่ 7. สรุปผล โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต
ปฏิเสอ H₀ ถ้า f_{คำนวณ} < f หรือ f_{คำนวณ} > f
1- $\frac{\alpha}{2}$

้ตัวอย่าง 7.5.1 วัตถุ 5 ชิ้นได้รับการปฏิบัติแบบที่ 1 ได้ผลการทดลองเป็นดังนี้ 1.024 0.972 1.004 0.986 1.015 วัตถุ 6 ชิ้นได้รับการปฏิบัติแบบที่ 2 ได้ผลการทดลองเป็นดังนี้ 1.017 0.991 1.018 1.018 0.983 0.975 จงทดสอบสมมติฐาน H $_{_0}$: $\sigma_1^2 = \sigma_2^2$ แย้งกับ H $_{_1}$: $\sigma_1^2 \neq \sigma_2^2$ กำหนดระดับนัยสำคัญ 0.1 วิธีทำ **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น $H_1: \sigma_1^2 \neq \sigma_2^2$ **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ $\alpha = 0.1$ **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n₁ และ n₂ คำนวณค่าความแปรปรวนของตัวอย่าง s_1^2, s_2^2 การคำนวณด้วย MATHCAD 1.017 [1.024] 0.991 $x1 := \begin{bmatrix} 1.02 \\ 0.972 \\ 1.004 \\ 0.986 \\ 1.015 \end{bmatrix}$ $x2 := \begin{bmatrix} 0.991 \\ 1.018 \\ 1.018 \\ 0.983 \\ 0.975 \end{bmatrix}$ n1 := length(x1) n2 := length(x2) n1 = 5 n2 = 6 $s1 := \sqrt{\frac{var(x1) \cdot n1}{n1 - 1}}$ $s2 := \sqrt{\frac{var(x2) \cdot n2}{n2 - 1}}$ Fcompute := $\frac{s1^2}{s2^2}$ Fcompute = 1.162927 **ขั้นที่ 4**. เลือกค่าสถิติเอฟ ขั้นที่ 5. คำนวณค่าสถิติเอฟ $f_{h_{1}} = \frac{s_1^2}{s_2^2}$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตเอฟที่มีองศาอิสระ v₁ = n₁ - 1 = 4 และ v₂ = n₂ - 1 = 5

ค่าวิกฤตคือ f_{0.05}(4,5) = 5.199 และ f_{0.95}(4,5) = $\frac{1}{f_{0.05}(5,4)}$ = $\frac{1}{6.26}$ = 0.1597444 บริเวณวิกฤตคือ F < 0.1597444 หรือ F > 5.199

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต เพราะว่า 0.1597444< f_{คำนวณ} = 1.162927 < 5.199 เพราะฉะนั้น ยอมรับ H_o

หลักการและขั้นตอนของการวิเคราะห์ด้วย SPSS for Windows

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น $H_1: \sigma_1^2 \neq \sigma_2^2$
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n₁ และ n₂ จากประชากรแต่ละชุด
- **ขั้นที่ 4**. เลือกค่าสถิติ Levene
- **ขั้นที่** 5. คำนวณค่าสถิติ Levene และค่า Sig
- ขั้นที่ 6. ทำการวิเคราะห์ข้อมูลโดย SPSS for Windows
- ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่า Sig กับ ค่านัยสำคัญ lpha ปฏิเสธ H $_{_0}$ ถ้า Sig < lpha

จากตัวอย่าง 7.5.1 ต้องสร้างแฟ้มข้อมูลแบบ 2 ตัวแปรคือ ตัวแปร code จำแนกกลุ่มประชากร และตัวแปร x เก็บข้อมูลที่วัดได้จากการทดลอง

การทดสอบสมมติฐานด้วยระดับนัยสำคัญ 0.1 ว่า

- ข**้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \sigma_1^2 = \sigma_2^2$ กำหนดสมมติฐานอื่น $H_1: \sigma_1^2 \neq \sigma_2^2$
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.1
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n₁ และ n₂
- **ขั้นที่ 4**. เลือกค่าสถิติ Levene
- **ขั้นที่ 5**. คำนวณค่าสถิติ Levene และค่า Sig
- **ขั้นที่ 6**. สร้างแฟ้มข้อมูลโดยมี ตัวแปร code เป็นตัวแปรจำแนกกลุ่ม ตัวแปร x เป็นตัวแปรข้อมูลที่ต้องการวิเคราะห์

$$H_{_0}$$
: $\sigma_1^2 = \sigma_2^2$ แย้งกับ $H_{_1}$: $\sigma_1^2 \neq \sigma_2^2$

📺 exa	mple13 - SPSS	for Windows D
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n
B	18 🔍 🗠) 💷 🏪 📭
	code	×
1	1.00	1.024
2	1.00	.972
3	1.00	1.004
4	1.00	.986
5	1.00	1.015
6	2.00	1.017
7	2.00	.991
8	2.00	1.018
9	2.00	1.018
10	2.00	.983
11	2.00	.975

เสร็จแล้ว Save ข้อมูลไว้ที่แฟ้มข้อมูลชื่อ example13.sav

ขั้นที่ 6.1 เลือกคำสั่ง Analyze / Compare Means / One-Way ANOVA

<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
Reports	• 🗐 😼 🚳 🗌
Descriptive Statistics	· [=
Compare <u>M</u> eans	▶ <u>M</u> eans
<u>G</u> eneral Linear Model	 One-Sample T Test
<u>C</u> orrelate	Independent-Samples <u>T</u> Test
<u>R</u> egression	Paired-Samples T Test
L <u>og</u> linear	<u>One-Way ANOVA</u>

ขั้นที่ 6.2 คลิกที่คำสั่ง One-Way ANOVA จะได้เมนูย่อยเป็น

📽 One-Way ANOVA		×
 code	D <u>e</u> pendent List:	OK
₩. n		Paste Beset
		Cancel
	Factor:	Help
	Contrasts Post <u>H</u> oc Options	

ขั้นที่ 6.3 เลือกตัวแปร x ไปไว้ที่ Dependent List

เลือกตัวแปร code ไปไว้ที่ Factor

162

ขั้นที่ 6.6 คลิกที่ Continue และ OK จะได้ผลการคำนวณเป็น

🎬 Output1 - SPSS for Windo	ws Viewer							
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rma	t <u>A</u> nalyze <u>G</u> raphs	<u>U</u> tilitie	es <u>W</u> i	ndow <u>H</u>	elp			
	v 💷 🔚 📴	0 1	1					
	┑┑ݡ							
⊡ — <mark>E</mark> Output — → E Oneway	Oneway							
Title	Test	of Horr	nogen	eity of V	arianc	es		
Test of Homoge	x							
🚡 ANOVA	Levene Statistic	df1		df2		Sig		
	.007		1	0.2	9	.935	(
					ANOV	A		
	х							
			Su	m of		Mean	_	
	Deturn Or		Squ	lares	dt	Square	F	Sig.
	Between Groups .00000005 1 .0000000 .000117 .991604							
	Within Grou	ps	.003	72813	9	.000414		
	Total		.003	72818	10			

ผลการคำนวณทั้งหมดคือ

Oneway

Test of Homogeneity of Variances

X			
Levene			
Statistic	df1	df2	Sig.
.007	1	9	.935

ANOVA

Х

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.00000005	1	.000000	.000117	.991604
Within Groups	.00372813	9	.000414		
Total	.00372818	10			

จากตารางผลการคำนวณค่า Levene Statistics = 0.007 และได้ค่า Sig = 0.935

เพราะว่า Sig = 0.935 > α = 0.1 เพราะฉะนั้น ยอมรับ H $_{_0}$: $\sigma_1^2 = \sigma_2^2$

7.6 การทดสอบภาวะสารูปสนิทดี

การทดสอบภาวะสารูปสนิทดีเป็นการทดสอบสมมติฐานว่าข้อมูลมีการแจกแจงความน่าจะเป็น ตามที่คาดไว้หรือไม่เช่น ข้อมูลมีการแจกแจงทวินามจริงหรือไม่ ข้อมูลมีการแจกแจงปกติจริงหรือ ไม่ ข้อมูลมีการแจกแจงปัวส์ซองจริงหรือไม่ ข้อมูลมีการแจกแจงตามอัตราส่วนที่คาดไว้จริงหรือไม่ หลักการและขั้นตอนการทำงานทางทฤษฏีของความน่าจะเป็นและสถิติ

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : ข้อมูลมีการแจกแจงความน่าจะเป็นตามที่คาดไว้ กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่มีการแจกแจงความน่าจะเป็นตามที่คาดไว้
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_i
- **ขั้นที่ 4**. เลือกค่าสถิติไคสแควร์
- ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i และค่าสถิติไคสแควร์ $\chi^2_{_{n_1}u_2u} = \sum_{i=1}^r \sum_{i=1}^c \frac{(o_{ij} e_{ij})^2}{e_{ij}}$
- **ขั้นที่ 6**. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{α} บริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$
- df = k จำนวนค่าสถิติที่ใช้
- **ขั้นที่ 7**. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ปฏิเสธ H₀ ถ้า χ²_{ลำบวญ} > χ²_α

ตัวอย่าง 7.6.1 การทดลองโยนเหรียญ 3 อัน 240 ครั้ง ให้ x เป็นจำนวนหัวที่ได้ในการโยน เหรียญแต่ละครั้งผลการทดลองบันทึกไว้ที่แฟ้มข้อมูลชื่อ example14.sav จงทดสอบสมมติฐานว่า เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดระดับนัยสำคัญ 0.05

- วิธีทำ การคำนวณโดย MATHCAD
- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดสมมติฐานอื่น H₁ : เหรียญทั้งสามอันไม่มีความเที่ยงตรง
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.05
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_i
- **ขั้นที่ 4**. เลือกค่าสถิติไคสแควร์
- **ขั้นที่ 5**. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i ภายใต้เงื่อนไขที่กำหนดว่าเหรียญทั้งสามอันมีความเที่ยงตรง

164

2		ν	
~	a	9 9 9 1	aa , N2a
เพราะฉะนน x = 0,	1, 2, 3 มการแจกแจ [.]	งแบบทวนาม ดงนนคา	าความถทคาดวาจะได้คอ

Х	P(X=x)	e _i
0	$\frac{1}{8}$	$\frac{1}{8}(240)=30$
1	$\frac{3}{8}$	$\frac{3}{8}(240)=90$
2	$\frac{3}{8}$	$\frac{3}{8}(240)=90$
3	$\frac{1}{8}$	$\frac{1}{8}(240)=30$
		240

การคำนวณโดยใช้ MATHCAD ทำได้ดังนี้

$$O := \begin{bmatrix} 24 \\ 98 \\ 95 \\ 23 \end{bmatrix} \qquad E := \begin{bmatrix} 30 \\ 90 \\ 90 \\ 30 \end{bmatrix}$$

$$k := 4 \qquad i := 1 \ k$$

chisquare :=
$$\sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

chisquare = 3.822

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.05}$ = 7.815 df = 3 บริเวณวิกฤตคือ χ^2 > 7.815

ขั้นที่ 7. โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ปฏิเสธ H₀ ถ้า χ²_{คำนวน} > 7.815 สรุปผล ยอมรับ H₀

หลักการและขั้นตอนการทำงานด้วย SPSS for Windows

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : ข้อมูลมีการแจกแจงความน่าจะเป็นตามที่คาดไว้ กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่มีการแจกแจงความน่าจะเป็นตามที่คาดไว้
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_i
- **ขั้นที่** 4. เลือกค่าสถิติไคสแควร์

และค่าสถิติไคสแควร์
$$\chi^2_{_{_{n_1}u_2u}} = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$$
 และค่า Sig ของ $\chi^2_{_{_{n_1}u_2u}}$

Chi-square

χ² π_{ή11220}

∕Area = Sig

df = k – จำนวนค่าสถิติที่ใช้

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{α} บริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$

ขั้นที่ 7. สรุปผลทำได้ 2 แบบคือ 1. ปฏิเสธ H
$$_{_0}$$
 ถ้า $\chi^2_{_{
m h1ucau}}$ > χ^2_{lpha}

2

จากตัวอย่าง 7.6.1. การทดลองโยนเหรียญ 3 อัน 240 ครั้ง ให้ x เป็นจำนวนหัวที่ได้ในการโยน เหรียญแต่ละครั้งผลการทดลองบันทึกไว้ที่แฟ้มข้อมูลชื่อ example14.sav จงทดสอบสมมติฐานว่า เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดระดับนัยสำคัญ 0.05 วิธีทำ การวิเคราะห์ข้อมูลด้วย SPSS for Windows

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : เหรียญทั้งสามอันมีความเที่ยงตรง กำหนดสมมติฐานอื่น H₁ : เหรียญทั้งสามอันไม่มีความเที่ยงตรง

- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.05
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o,

🚞 еха	🞬 example14 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp		
<u> </u>	*						
1:x		2					
	×	var	var	var	var		
1	2						
2	3						

ขั้นที่ 4.

เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ e_i

ข**ั้นที่ 5.1** เลือกคำสั่ง Analyze / Nonparametric Test / Chi-Square..

166

167

168

ขั้นที่ 5.5 การกำหนดค่าความถี่ที่คาดไว้ คือ 30 90 90 และ 30 ให้ทำดังนี้

พิมพ์ 30 แล้วคลิก 🛕 🛕	พิมพ์ 90 แล้วคลิก	Add
พิมพ์ 90 แล้วคลิก <u>A</u> dd	พิมพ์ 30 แล้วคลิก	Add
ผลบนจอที่ได้คือ	ය사 Chi-Square Test	x
	Expected Range © Get from data © Use specified range Lower: Upper:	Test Variable List: OK Paste <u>Beset Cancel Help All categories equal <u>Change 90 Change 90 Remove <u>Options Options OK </u></u></u>

เสร็จแล้วคลิก OK จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

NPar Tests Chi-Square Test Frequencies

Х

	Observed N	Expected N	Residual
0	24	30.0	-6.0
1	98	90.0	8.0
2	95	90.0	5.0
3	23	30.0	-7.0
Total	240		

Test Statistics

	Х
Chi-Square ^a	3.822
df	3
Asymp. Sig.	.281

a. 0 cells (.0%) have expected frequencies less than5. The minimum expected cell frequency is 30.0.

ตัวเลขที่ได้จากตาราง Test Statistics คือค่าสถิติไคสแควร์

 $\chi_{\text{fiturou}}^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 3.822 \quad \text{df} = 3$ **v** in **f** 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi_{0.05}^{2} = 7.815 \text{ df} = 3$ บริเวณวิกฤตคือ $\chi^{2} < 7.815$ **v** in **f** 7. เพราะว่า $\chi_{\text{fiturou}}^{2} > 7.815$ สรุปผลยอมรับ H₀ **kure in the set of t**

7.7 การทดสอบสมมติฐานว่าข้อมูลเป็นอิสระต่อกันหรือไม่

ในกรณีที่เราต้องการทดสอบความสัมพันธ์ของตัวแปรตั้งแต่ 2 ตัวเกี่ยวข้องกันหรือไม่ ตัวอย่าง เช่น

การฉีดวัคซีนป้องกันอหิวาต์ กับ การเป็นโรคอหิวาต์ เกี่ยวข้องกันหรือไม่

- การนับถือศาสนา และ ถิ่นที่อยู่ เกี่ยวข้องกันหรือไม่

เราจะทำการทดสอบทางสถิติเพื่อดูว่าข้อมูลเป็นอิสระต่อกันหรือไม่

หลักการและขั้นตอนการทำงานทางทฤษฎีความน่าจะเป็นและสถิติ

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H_o : ข้อมูลเป็นอิสระต่อกัน กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่เป็นอิสระต่อกัน
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_แ
- **ขั้นที่ 4**. เลือกค่าสถิติไคสแควร์

และค่าสถิติไคสแควร์
$$\chi^2_{_{
m fn}_{
m nuou}} = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{lpha} df = (r 1)(c 1) บริเวณวิกฤตคือ $\chi^2 > \chi^2_{lpha}$
- **ขั้นที่ 7**. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่างกับค่าวิกฤต ปฏิเสธ H₀ ถ้า $\chi^2_{_{
 m ຄ extsf{n} u au_a}} > \chi^2_{_{
 m a}}$

หลักการและขั้นตอนการทดสอบสมมติฐานด้วย SPSS for Windows

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H_o : ข้อมูลเป็นอิสระต่อกัน กำหนดสมมติฐานอื่น H₁ : ข้อมูลไม่เป็นอิสระต่อกัน
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_แ
- **ขั้นที่ 4**. เลือกค่าสถิติไคสแควร์
- **ขั้นที่ 5**. คำนวณค่าความถี่ที่คาดว่าจะได้ e_แ

และค่าสถิติไคสแควร์ $\chi^2_{_{_{\mathrm{fill}}\mathrm{Da}}} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$

และค่า Sig (ค่านัยสำคัญของค่าสถิติ
$$\chi^2_{_{
m fill nnn}}$$

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต χ^2_{α} df = (r – 1)(c – 1) บริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$

ขั้นที่ 7. สรุปผลมี 2 วิธีคือ 1. ปฏิเสธ H_o ถ้า
$$\chi^2_{_{
m fnuou}}$$
 > $\chi^2_{_{
m a}}$
2. ปฏิเสธ H_o ถ้า Sig < α

ตัวอย่าง 7.7.1 แฟ้มข้อมูล example15.sav บันทึกข้อมูลเพื่อศึกษาความสัมพันธ์ระหว่างการ นับถือศาสนา และถิ่นที่อยู่

ศาสนา โปรเทศตัน คาธอลิก และ ยิว

ถิ่นที่อยู่ ฝั่งตะวันออก และ ฝั่งตะวันตก

จงทดสอบสมมติฐานว่า การนับถือศาสนาและถิ่นที่อยู่มีความสัมพันธ์กันหรือไม่

กำหนดนัยสำคัญ 0.05

วิธีทำ การคำนวณโดย SPSS

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : การนับถือศาสนาและถิ่นที่อยู่อาศัย ไม่มีความสัมพันธ์กัน กำหนดสมมติฐานอื่น H₁ : การนับถือศาสนาและถิ่นที่อยู่อาศัย มีความสัมพันธ์กัน

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

ขั้นที่ 3. ทำการสุ่มตัวอย่างเพื่อหาค่าสังเกต o_i

เมื่อสุ่มตัวอย่างมาแล้วต้องสร้าง แฟ้มข้อมูลประกอบด้วย 2 ตัวแปร

x เป็นตัวแปรจำแนก ถิ่นที่อยู่ ฝั่งตะวันออก = 1 และ ฝั่งตะวันตก = 2

y เป็นตัวแปรจำแนก ศาสนา โปรเทสตัน = 1 คาธอลิก = 2 และ ยิว = 3

แฟ้มข้อมูลที่สร้างแล้วชื่อ example15.sav

🞬 example15 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp	
<u>e</u> l						
	id	x	У	var	var	
1	1	2	3			
2	2	1	2			

ขั้นที่ 4. เลือกค่าสถิติไคสแควร์

ขั้นที่ 5. คำนวณค่าความถี่ที่คาดว่าจะได้ ${
m e}_{_{\parallel}}$ และค่าสถิติไคสแควร์ $\chi^2_{_{{
m fully}n}}=$

$$\sum_{i=1}^{r}\sum_{j=1}^{c}\frac{\left(o_{ij}-e_{ij}\right)^{2}}{e_{ij}}$$

การคำนวณโดย SPSS for Windows

ข**้นที่ 5.1** เลือก Analyze / Descriptive Statistics / Crosstabs..

🛗 example15 - SPSS for Windows Data Editor						
<u>File E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp			
	L	Reports	• ⊨ ∣ ⊗⊿all _			
		Descriptive Statistics	Erequencies			
		Compare <u>M</u> eans	 <u>D</u>escriptives 			
1.1		<u>G</u> eneral Linear Model	Explore			
IU	~	<u>C</u> orrelate	<u>C</u> rosstabs			

172

ขั้นที่ 5.6 คลิก Continue จะกลับมาที่เมนู

🖃 Crosstabs			×
🛞 id	\mathbf{F}	R <u>o</u> w(s):	OK <u>P</u> aste
		r Colump(s):	<u>R</u> eset
	_	Value Label of variable	Cancel
	•		Help
	Previous	Layer1 of 1 <u>N</u> e	st
☐ Display clustered <u>b</u> ar cha	arts		
☐ Suppress <u>t</u> ables			
	Statistic	s <u>Cells</u> <u>F</u> ormat	

ขั้นที่ 5.7 คลิก Statistics จะได้เมนูย่อย

Crosstabs: Statistics	└ Correlations ┌ Ordinal	Continue
☐ Contingency coefficient ☐ <u>P</u> hi and Cram_r's V ☐ Lambda ☐ <u>U</u> ncertainty coefficient	ビ <u>G</u> amma ビ <u>S</u> omers'd ビKendall's tau- <u>b</u> ビKendall's tau- <u>c</u>	Help
Nominal by Interval		1

ขั้นที่ 5.8 คลิก Chi-square

ขั้นที่ 5.9 คลิก Continue และ Ok ตามลำดับ

จะได้ผลการคำนวณ

Ele Edit View Insert Format Analuze	Graphs Utilities Windo	w Help				
		<u>+ + +</u>		<u>, 1</u>		
	Crosstabs					
AREA * Value Label o	Case Processing Summary					
				Case	'S	
	Valid Missing		ng	Т		
		N	Percent	N	Percent	N
	AREA * Value Label of variable y	1000	100.0%	0	.0%	1000
	AF	REA * Value La	abel of variable	e y Crosstabi	ulation	
I	Value Label of variable y					
I			Protestant	Christ	Jew	Total
I	AREA East Co	unt	182	215	203	6(
I	Fxt	nected Count	201.6	210.6	187.8	108

ผลการคำนวณทั้งหมดคือ Crosstabs

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	Ν	Percent	Ν	Percent	Ν	Percent
AREA * Value Label of variable y	1000	100.0%	0	.0%	1000	100.0%

AREA * Value Label of variable y Crosstabulation

			Value Label of variable y			
			Protestant	Christ	Jew	Total
AREA	East	Count	182	215	203	600
		Expected Count	201.6	210.6	187.8	600.0
	West	Count	154	136	110	400
		Expected Count	134.4	140.4	125.2	400.0
Total		Count	336	351	313	1000
		Expected Count	336.0	351.0	313.0	1000.0
	Value	df	Asymp. Sig. (2-sided)			
---------------------------------	--------------------	----	-----------------------------			
Pearson Chi-Square	8.069 ^a	2	.018			
Likelihood Ratio	8.053	2	.018			
Linear-by-Linear Association	7.774	1	.005			
N of Valid Cases	1000					

Chi-Square Tests

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 125.20.

จากผลการคำนวณจะได้
$$\chi^2_{_{
m findow}} = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 8.069$$
 และ df = 2 และ Sig = 0.018

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต $\chi^2_{0.05}$ = 5.991 df = 2 บริเวณวิกฤตคือ χ^2 < 5.991

ขั้นที่ 7. โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

แบบที่ 1 เพราะว่า
$$\chi^2_{_{
m \acute{n}u}}$$
 > 5.991 เพราะฉะนั้น ปฏิเสธ H₀

แบบที่ 2 เพราะว่า Sig < 0.05 เพราะฉะนั้น ปฏิเสธ H₀

หมายเหตุ ความหมายและที่มาของค่า Asymp Sig (2 – sided) = 0.018 การคำนวณด้วย MATHCAD

Chi-square distribution

v := 2

 $P(a,b) := \int^{b}$

$$f(x) := \left[\frac{1}{\frac{v}{2^2} \cdot \Gamma\left(\frac{v}{2}\right)}\right] \cdot x^{\left(\frac{v}{2}\right) - 1} \cdot e^{-\frac{x}{2}}$$
$$f(x) dx \qquad P(8.069, 1000) = 0.0176945823$$

ความหมายของ Asymp Sig (2 – sided) = 0.018 คือพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้ง ใคสแควร์ที่ระยะ 8.069

การสรุปผลสามารถน้ำค่า Asymp Sig (2 – sided) เปรียบเทียบกับค่า α

ถ้ำ Asymp Sig (2–sided) < α แล้ว ปฏิเสธ H $_{_0}$

บทที่ 7 การทดสอบสมมติฐาน

หมายเหตุ ในกรณีที่ข้อมูลแจกแจงความถี่แล้ว การคำนวณโดยใช้ MATHCAD ทำได้ดังนี้

$$O := \begin{pmatrix} 182 & 215 & 203 \\ 154 & 136 & 110 \end{pmatrix} \qquad r := 2 \qquad c := 3 \qquad N := \sum_{i=1}^{r} \sum_{j=1}^{c} O_{(i,j)}$$
$$i := 1...r \qquad j := 1...c$$
$$R_{i} := \sum_{j=1}^{c} O_{(i,j)} \qquad C_{j} := \sum_{i=1}^{r} O_{(i,j)} \qquad E_{(i,j)} := \frac{R_{i} \cdot C_{j}}{N}$$
$$E = \begin{pmatrix} 201.6 & 210.6 & 187.8 \\ 134.4 & 140.4 & 125.2 \end{pmatrix}$$

chisquare :=
$$\sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left[O_{(i,j)} - E_{(i,j)}\right]^2}{E_{(i,j)}}$$

chisquare = 8.069

บทที่ 8

สหสัมพันธ์และการถดถอยเชิงเส้น

การทำงานทางด้านสถิติเรามักจะพบว่ามีตัวแปร 2 ตัวหรือมากกว่าอาจจะมีความสัมพันธ์กัน เช่น น้ำหนักกับอายุ รายได้กับรายจ่าย ความสัมพันธ์ของตัวแปรอาจจะเป็น ความสัมพันธ์แบบเชิงเดียว (Simple correlation) ซึ่งประกอบด้วยตัวแปรอิสระ 1 ตัว และตัว แปรตาม 1 ตัว รูปแบบของสมการความสัมพันธ์เชิงเส้นเชิงเดียวอาจมีรูปแบบเป็น

 ♠ y = a + bx
 ♥ Iny = a + b Inx
 ♠ y = a + b Inx
 ♣ Iny = a + bx
 ความสัมพันธ์แบบพหุคูณ (Multiple correlation) ซึ่งประกอบด้วยตัวแปรอิสระมากกว่า 1 ตัว และตัวแปรตาม 1 ตัว รูปแบบของสมการความสัมพันธ์พหุคูณอาจมีรูปแบบเป็น

8.1 การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียว(Simple Linear Regression) และสหสัมพันธ์ (Correlation)

กำหนดให้ X เป็นตัวแปรอิสระ และ Y เป็นตัวแปรตามความสัมพันธ์ที่แท้จริงของ X และ Y คือ

 $\mu_{Y|x} = \alpha + \beta x$

สัมประสิทธิ์การถดถอย (regression coefficients) หมายถึง α เรียกว่า ในทางสถิติเราจะใช้ ข้อมูลตัวอย่างประมาณความสัมพันธ์ μ_{Y|x} = α + βx ด้วย ŷ = a + bx

สหสัมพันธ์ (correlation) เป็นตัวบอกระดับและทิศทางของความสัมพันธ์ระหว่างตัวแปรใช้สํญ ลักษณ์แทนด้วย ρ โดยใช้ข้อมูลตัวอย่างเราจะประมาณค่า ρ ด้วย r

หมายเหตุ 1. – 1 $\leq \rho \leq 1$

- 2. |ρ| มีค่ามาก แสดงว่า X และ Y มีความสัมพันธ์กันมาก
- 3. ρ = 0 แสดงว่า X และ Y ไม่มีความสัมพันธ์
- 4. $\rho > 0$ แสดงว่า ถ้า X มีค่าเพิ่มขึ้น แล้ว Y มีค่าเพิ่มขึ้น

หรือ ถ้า X มีค่าลดลง แล้ว Y มีค่า ลดลง

5. $\rho < 0$ แสดงว่า ถ้า X มีค่าเพิ่มขึ้น แล้ว Y มีค่าลดลง

หรือ ถ้า X มีค่าลดลง แล้ว Y มีค่าเพิ่มขึ้น

6. b และ r จะมีเครื่องหมายเหมือนกัน แต่ b สามารถบอกอัตราการเพิ่มหรือลด

ของตัวแปรตาม Y เทียบกับตัวแปรอิสระ X ได้

การหาสมการเส้นถดถอยเชิงเส้นเชิงเดียวและสหสัมพันธ์ หลักการทางทฤษฎีของความน่าจะเป็นและสถิติ จากข้อมูลที่เก็บมาได้

ตัวอย่างจากประชากรชุดที่ 1.	ตัวอย่างจากประชากรชุดที่ 2.
X1	y ₁
X2	y ₂
X3	y ₃
:	:
X _n	y _n

ราต้องการหาค่า a และ b ที่ทำให้ ŷ = a + bx และ สัมประสิทธิ์สหสัมพันธ์ r

ขั้นตอนการคำนวณ

ขั้นที่ 1	. 6	คำนวณค่ [.]	$\cap \sum_{i=1}^n x$	$_{i}$, $\sum_{i=1}^{n} y_{i}$	v_i , $\sum_{i=1}^n$	$x_i y_i$, $\sum_{i=1}^{r}$	$\sum_{i=1}^{1} x_i^2$, $\sum_{i=1}^{1} x_i^2$	$\sum_{i=1}^{n} y_i^2$		
ขั้นที่ 2	2. 6	คำนวณค่	ղ b	$n \cdot \sum_{i=1}^{n} \frac{1}{n}$	$\frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sum_{i=1}^{n} (x_i)}$	$-\sum_{i=1}^{n} x_{i}$ $\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}$	$\frac{n}{i} \cdot \sum_{i=1}^{n} y_{i}$, i 	a = j	$\overline{v} - b\overline{x}$
			r	:=	n∙	$\begin{bmatrix} n \\ \sum_{i=1}^{n} (x_i \cdot$	$\left[y_{i}\right] - \sum_{i=1}^{r}$	$\frac{1}{1} \frac{x}{1} \cdot \frac{x}{2}$	$\sum_{i=1}^{n} y_{i}$	
ตัวอย่า	งเช่	น	1	$\sqrt{n \cdot \sum_{i=1}^{n}}$	$\frac{n}{\sum_{i=1}^{n} (x_i)^2}$	$\frac{n}{2} - \left(\sum_{i=1}^{n}\right)$	$\left \begin{array}{c} x \\ x \\ y \\$	$\sum_{i=1}^{n} ($	$(y_i)^2 - (i)$	$\frac{1}{\sum_{i=1}^{n} y_{i}}^{2}$
	Х	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00

х	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00
Υ	4.80	5.70	7.00	8.30	10.90	12.40	13.10	13.60	15.30

เราสามารถหาสมการ $\hat{y} = a + bx$ และค่า r ตามขั้นตอนการคำนวณดังนี้ การคำนวณด้วย MATHCAD แบบที่ 1 คำนวณค่าตามสูตร

$$\begin{aligned} & \text{ORIGIN:=1} \\ & \text{I.5} \\ & \text{I.8} \\ & 2.4 \\ & 3.0 \\ & \text{J.5} \\ & 3.9 \\ & 4.4 \\ & 4.8 \\ & 5.0 \end{bmatrix} & \text{y} := \begin{bmatrix} 4.8 \\ 5.7 \\ 7.0 \\ 8.3 \\ 10.9 \\ 12.4 \\ 13.1 \\ 13.6 \\ 15.3 \end{bmatrix} & \text{n} := \text{length}(x) & \text{b} := \frac{n \cdot \left[\sum_{i=1}^{n} (x_i \cdot y_i)\right] - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \\ & \text{b} = 2.93028 & \text{a} := \text{mean}(y) - \text{b} \cdot \text{mean}(x) & \text{a} = 0.256947 \\ & \text{m} \cdot \left[\sum_{i=1}^{n} (x_i \cdot y_i)\right] - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i \\ & \text{r} := \frac{n \cdot \left[\sum_{i=1}^{n} (x_i \cdot y_i)\right] - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i \\ & \sqrt{n \cdot \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \sqrt{n \cdot \sum_{i=1}^{n} (y_i)^2 - \left(\sum_{i=1}^{n} y_i\right)^2} \\ & \text{r} = 0.991089 \end{aligned}$$

แบบที่ 2 ใช้ฟังก์ชัน slope(x,y) และ intercept(x,y) ของ MATHCAD

b := slope(x, y) b = 2.93028

a := intercept(x, y) a = 0.256947

r := corr(x, y) r = 0.991089

แผนภาพการกระจายของข้อมูลเป็นดังนี้

แผนภาพการกระจายของข้อมูล และสมการเส้นถดถอย $\ \hat{y} = a + bx$

การคำนวณด้วย SPSS for Windows

ขั้นที่ 1 สร้างแฟ้มข้อมูลประกอบด้วย 2 ตัวแปร ใน SPSS for Windows Data Editor เสร็จแล้ว Save ไว้ที่ชื่อ example16.sav

🛅 еха	🛗 example16 - SPSS for Windows Data Editor								
<u>File</u>	<u>File Edit View D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
~	66 1 1								
	×	У	var	var	var				
1	1.50	4.80							
2	1.80	5.70							
3	2.40	7.00							
4	3.00	8.30							
5	3.50	10.90							
6	3.90	12.40							
7	4.40	13.10							
8	4.80	13.60							
9	5.00	15.30							

ข**ั้นที่ 2**. เลือกคำสั่ง Analyze / Regression / Linear..

ขั้นที่ 3. คลิกที่ Linear จะได้เมนูของคำสั่งดังนี้

ขั้นที่ 5. คลิก Ok จะได้ผลการคำนวณเป็นดังนี้

ผลการคำนวณทั้งหมดคือ

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Xa		Enter

a. All requested variables entered.

b. Dependent Variable: Y

Model Summary

				Std. Error
			Adjusted	of the
Model	R	R Square	R Square	Estimate
1	.9910887 ^a	.982	.980	.5388

a. Predictors: (Constant), X

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	112.484	1	112.484	387.516	.00000022ª
	Residual	2.032	7	.290		
	Total	114.516	8			

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients^a

		Unstandardized Coefficients		Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.257	.532		.483	.64406363
	Х	2.930	.149	.991	19.685	.00000022

a. Dependent Variable: Y

จากผลการคำนวณของ SPSS จะได้ a = 0.257 , b = 2.930

หมายเหตุ ค่าสหสัมพันธ์ r ต้องมีเครื่องหมายเหมือนกับ b

เพราะฉะนั้นสหสัมพันธ์ r = - 0.991087

ที่มาของค่าสถิติในตาราง Coefficients ค่าสถิติในช่องของ ตัวแปร X จากข้อมูล

	1.5		4.8	
	1.8		5.7	
	2.4		7.0	
	3.0		8.3	
x :=	3.5	y :=	10.9	n := length(x)
	3.9		12.4	
	4.4		13.1	
	4.8		13.6	
	5.0		15.3	

Unstandardized Coefficients B คือค่าสัมประสิทธิ์ของการถดถอยเชิงเส้น b ที่คำนวณจากสูตร

$$\mathbf{b} := \frac{\mathbf{n} \cdot \left[\sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{y}_i) \right] - \sum_{i=1}^{n} \mathbf{x}_i \cdot \sum_{i=1}^{n} \mathbf{y}_i}{\mathbf{n} \cdot \sum_{i=1}^{n} (\mathbf{x}_i)^2 - \left(\sum_{i=1}^{n} \mathbf{x}_i \right)^2} \qquad \mathbf{b} = 2.9303$$

Unstandardized Coefficients Std. Error คือส่วนเบี่ยงเบนมาตรฐานของค่าสถิติ b ที่คำนวณ

จากสูตร
$$\sigma_b = \frac{S}{\sqrt{S_{XX}}}$$

โดยมีขั้นตอนการคำนวณที่สำคัญดังนี้

$$S_{xx} := \sum_{i=1}^{n} (x_{i})^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \qquad S_{xx} = 13.1$$

$$S_{xy} := \sum_{i=1}^{n} x_{i} \cdot y_{i} - \frac{\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}}{n} \qquad S_{xy} = 38.3867$$

$$S_{yy} := \sum_{i=1}^{n} (y_{i})^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} \qquad S_{yy} = 114.5156$$

$$SSE := \sum_{i=1}^{n} (y_i - a - b \cdot x_i)^2$$

$$SSE = 2.0319$$

สรุป $\sigma_b = 0.1489$

Standardized Coefficients Beta ในกรณีของความสัมพันธ์เชิงเส้นตรงค่าของ Standardized Coefficients Beta (X) มีค่าเท่ากับค่าสัมประสิทธิ์สหสัมพันธ์

ค่า t ได้มาจากสูตร
$$t = \frac{b}{(\frac{S}{\sqrt{S_{XX}}})}$$
 $t = 19.68543$

ค่า Sig คือ 2 เท่าของพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้ง t เมื่อ df = n -2 = 7

T distribution
$$\mathbf{v} := 7 \ \mathbf{h}(\mathbf{t}) := \left[\frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right) \cdot \sqrt{\pi \cdot \mathbf{v}}} \right] \cdot \left[1 + \left(\frac{\mathbf{t}^2}{\mathbf{v}}\right) \right]^{-\frac{\mathbf{v}+1}{2}} \int_{19.68543}^{100000} \mathbf{h}(\mathbf{t}) \ d\mathbf{t} = 0.000000286$$

95% Confidence interval for B หมายถึงช่วงความเชื่อมั่น 95% ของค่าพารามิเตอร์ eta มี

สูตรเป็น
$$b-t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}} < \beta < b+t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}}$$

Lower Bound = $b-t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}}$ Upper Bound = $b+t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}}$

talphadivide2 = 2.365

LowerBound := b - talphadivide2
$$\cdot \left(\frac{S}{\sqrt{S_{xx}}}\right)$$
 LowerBound = 2.5782
UpperBound := b + talphadivide2 $\cdot \left(\frac{S}{\sqrt{S_{xx}}}\right)$ UpperBound = 3.2823

ค่าสถิติในช่องของ Constant

Unstadardized Coefficients B คือค่าระยะตัดแกน Y จากสมการ $\hat{y} = a + bx$

$$a := mean(y) - b \cdot mean(x)$$
 $a = 0.2569$

Unstadardized Coefficients Std. Error คือส่วนเบี่ยงเบนมาตรฐานของค่าสถิติ a ที่คำนวณ

จากสูตร $\sigma_a = s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}$ Std_Error_Constant := S. $\sqrt{\frac{\sum_{i=1}^{n} (x_i)^2}{n \cdot S_{XX}}}$ Std_Error_Constant = 0.5324 ค่า t ได้มาจากสูตร $t = \frac{a}{s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}}$ t = 0.4827

ค่า Sig คือ 2 เท่าของพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้ง t = 0.4827 (จากที่คำนวณได้) เมื่อ df = n – 2 = 7

T distribution
$$\mathbf{v} \coloneqq 7 \quad \mathbf{h}(\mathbf{t}) \coloneqq \left[\frac{\Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right) \cdot \sqrt{\pi \cdot \mathbf{v}}} \right] \cdot \left[1 + \left(\frac{\mathbf{t}^2}{\mathbf{v}}\right) \right]^{-\frac{\mathbf{v}+1}{2}} \int_{0.48266}^{1000} \mathbf{h}(\mathbf{t}) \, d\mathbf{t} = 0.3220326066$$

95% Confidence interval for B หมายถึงช่วงความเชื่อมั่น 95% ของค่าพารามิเตอร์ lpha มี

สูตรเป็น
$$a - t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}} < \alpha < a + t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}$$

Lower Bound $= a - t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}$ Upper Bound $= a + t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}}$

talphadivide2 := 2.365

LowerBound := a - talphadivide2
$$\cdot \left[S \cdot \sqrt{\frac{\sum_{i=1}^{n} (x_i)^2}{n \cdot S_{XX}}} \right]$$
 LowerBound = -1.0021
UpperBound := a + talphadivide2 $\cdot \left[S \cdot \sqrt{\frac{\sum_{i=1}^{n} (x_i)^2}{n \cdot S_{XX}}} \right]$ UpperBound = 1.516

ที่มาของค่าสถิติในตาราง Model Summary

R = ค่าส้มประสิทธิ์สหสัมพันธ์เป็นตัวเลขที่บอกระดับและทิศทางของความสัมพันธ์ระหว่างตัว แปร (**หมายเหตุ** เครื่องหมายของ r และ b ต้องเหมือนกัน)

คำนวณได้จากสูตร
$$\mathbf{r} := \frac{\mathbf{n} \cdot \left[\sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{y}_i)\right] - \sum_{i=1}^{n} \mathbf{x}_i \cdot \sum_{i=1}^{n} \mathbf{y}_i}{\sqrt{\mathbf{n} \cdot \sum_{i=1}^{n} (\mathbf{x}_i)^2 - \left(\sum_{i=1}^{n} \mathbf{x}_i\right)^2} \sqrt{\mathbf{n} \cdot \sum_{i=1}^{n} (\mathbf{y}_i)^2 - \left(\sum_{i=1}^{n} \mathbf{y}_i\right)^2}}$$
หรือใช้ฟังก์ชัน corr(x,y) ของ MATHCAD R = corr(x, y) R = -0.9911

R Square เป็นค่าสัมประสิทธิ์การตัดสินใจ ได้มาจากค่า R² เป็นตัวเลขที่ใช้ในการอธิบายว่า สม การเส้นถดถอย ŷ = a + bx มีความเหมาะสมที่จะนำไปใช้ในการอธิบายความสัมพันธ์ได้ดีหรือ ไม่ กล่าวคือ R² มีค่าเข้าใกล้ 1 แสดงว่าสมการเส้นถดถอย ŷ = a + bx มีความเหมาะสมดีมาก R² มีค่าเข้าใกล้ 0 แสดงว่าสมการเส้นถดถอย ŷ = a + bx ไม่มีความเหมาะสม

R มค่าเข้าไกล์ 0 แสดงว่าสมการเสินถดถอย ŷ = a + bx ไม่ม่ความเหมาะ ตัวอย่างการแปรความหมาย

 $R^2 = 0.1$ สมการเส้นถดถอย $\hat{y} = a + bx$ ใช้อธิบายการเปลี่ยนแปลงของค่า y ได้ 10 % $R^2 = 0.98226$ สมการเส้นถดถอย $\hat{y} = a + bx$ ใช้อธิบายการเปลี่ยนแปลงของค่า y ได้98.226%

Adjusted R Squares เป็นค่าที่ใช้ในการปรับปรุงค่าของ R Squares ในกรณีที่ค่า ของ n มีน้อยๆ

ลูตรของ Adjust R Square =
$$1 - \frac{(n-1)}{(n-2)} \left[\frac{\sum_{i=1}^{n} (y_i - \hat{y}_1)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2} \right]$$

 $\mathbf{\hat{u}u}$ maunis involution MATHCAD
ycap (x) := a + b·x
Adjusted_R_Square := 1 - $\left(\frac{n-1}{n-2}\right)$. $\begin{pmatrix} n - 1 \\ i = 1 \end{pmatrix}$
 $\sum_{i=1}^{n} (y_i - ycap_i)^2$
 $\sum_{i=1}^{n} (y_i - mean(y))^2$ 4.6524
5.5315
7.2896
9.0478
10.5129
11.685
13.1502
14.3223
14.9083

ที่มาของค่าสถิติในตาราง ที่มาของค่าสถิติในตาราง ANOVA

จากข้อมูล X และ Y ผลบวกต่างๆ มีสูตรเป็น

SST=Sum of Squares TotalSST :=
$$\sum_{i=1}^{n} (y_i)^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n}$$
SST = 114.5156SSR=Sum of Squares RegressionSSR := b·S $_{xy}$ SSR = 112.4837SSE=Sum of Squares ResidualSSE := SST - SSRSSE = 2.0319df 101 SSR 101 df 101 SSE 101 n - 1df 101 SST 101 n - 2Mean_Square_Regression:= $\frac{SSR}{1}$ Mean_Square_Regression = 112.4837Mean_Square_Regression:= $\frac{SSE}{n-2}$ Mean_Square_Regression = 0.2903F := $\frac{Mean_Square_Regression}{Mean_Square_Residual}$ F = 387.5163

ค่า Sig เป็นค่าที่คำนวณมาจากพื้นที่ใต้โค้งทางหางด้านขวาของเส้นโค้งเอฟ v₁ = 1 และ v₂ = 7 ที่ระยะ F จากค่าในตารางที่คำนวณได้

F distribution
$$v1 := 1$$
 $v2 := 7$

$$h(f) := \frac{\Gamma\left(\frac{v1+v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v^2}{2}} \cdot f^{\left(\frac{v1}{2}\right)-1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1 + \left(\frac{v1}{v2}\right) \cdot f\right]^{\frac{v1+v2}{2}}}$$

$$I - \int_{0}^{\circ 387.516} h(f) df = 0.0000002181$$

³⁰ ค่า F และ Sig ในตาราง ANOVA ใช้ในการทดสอบสมมติฐาน H_o : β = 0 แย้งกับ H₁ : β ≠ 0 ซึ่ง จะได้เรียนในหัวข้อต่อๆ ไป 8.2 การหาช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า β และ α เราสามารถประมาณค่าของ β และ α โดยใช้ช่วงความเชื่อมั่นที่มีสูตรดังนี้ ช่วงความเชื่อมั่น $(1-\alpha)100\%$ ของค่า β คือ

$$b - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}} < \beta < b + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{XX}}} \qquad (df = n - 2)$$

ช่วงความเชื่อมั่น (1-lpha)100% ของค่า lpha คือ

$$a - t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}} < \alpha < a + t_{\frac{\alpha}{2}} s \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{XX}}} \quad (df = n - 2)$$

ตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไปกับ ปริมาณน้ำฝนได้ข้อมูลดังนี้

ปริมาณน้ำฝน	ปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป
(0.01 ນີ້ວ)	(ไมโครกรัมต่อลูกบาศก์เมตร)
4.30	126.00
4.50	121.00
5.90	116.00
5.60	118.00
6.10	114.00
5.20	118.00
3.80	132.00
2.10	141.00
7.50	108.00

จงหาค่า 1. สัมประสิทธิ์การถดถอยเชิงเส้น b

- 2. สัมประสิทธิ์สหสัมพันธ์อย่างง่าย r
- 3. สมการของเส้นถดถอยเชิงเส้น $\hat{\mathbf{y}} = \mathbf{a} + \mathbf{b} \mathbf{x}$
- 4. ช่วงความเชื่อมั่น 95% ของค่า β
- 5. ช่วงความเชื่อมั่น 95% ของค่า lpha

วิธีทำ

ขั้นที่ 1 สร้างแฟ้มข้อมูลประกอบด้วย 2 ตัวแปร ตัวแปร rain แทนปริมาณน้ำฝน

ตัวแปร air แทนปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป เสร็จแล้ว Save ไว้ที่ชื่อ example17.sav

🛅 exa	🗰 example17 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	∐tilities <u>W</u> indow	<u>H</u> elp			
<u> </u>	18 🔍 🖂) 📖 높 🗗	M <u>*</u>		<u></u>			
	rain	air	var	var	var			
1	4.30	126.00						
2	4.50	121.00						
3	5.90	116.00						
4	5.60	118.00						
5	6.10	114.00						
6	5.20	118.00						
7	3.80	132.00						
8	2.10	141.00						
9	7.50	108.00						

ขั้นที่ 2 เลือกคำสั่ง Analyze / Regression / Linear...

🚞 ex	🗱 example17 - SPSS for Windows Data Editor										
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	∐ir	ndow	<u>H</u> elp	
_ ≃ ∣						Reports		•	πI	പ്രത്രി	
			Descriptive Statistics		•	₽.	• <u>•</u>				
		Compare <u>M</u> eans		•							
		!			<u> <u>G</u>ene</u>	ral Linear	Model	•			
		rain		all	<u>C</u> orre	late		•		VAL	Val
1	1	4	1.30	126.	<u>R</u> egr	ession		►	L	inear	
	+				Loglin	near		•	<u>c</u>	urve Estimati	on
1 2	1	4	1 50 I	121						-	

ข**ั้นที่ 3** คลิกที่ Linear จะได้เมนู

ขั้นที่ 4 เลือกตัวแปร air ไว้ที่ช่อง Dependent เลือกตัวแปร rain ไว้ที่ช่อง Independent

🚸 rain	
	Previous Block 1 of 1 Next
	Independent(s):
	, <u>M</u> ethod: Enter _▼
	Selection Variable:
	► R <u>u</u> le
	Case Labels:
<u>W</u> LS >>	Statistics Plots Save Options

ขั้นที่ 5

เพราะว่าเราต้องการ

ช่วงความเชื่อมั่นของ eta และ lpha

เพราะฉะนั้นเราต้องเลือก Option Statistics

เมื่อคลิกที่ Statistics จะได้เมนูย่อยดังนี้

ขั้นที่ 6

คลิกในช่องสี่เหลี่ยมที่หน้า Confidence intervals คลิกในช่องสี่เหลี่ยมที่หน้า Descriptives เมื่อเราต้องการค่าสถิติเบื้องต้น

☐ R squared change Descriptives

F Part and partial correlations

☐ Collinearity diagnostics

▼ <u>E</u>stimates

✓ Confidence intervals

Covariance matrix

จะกลับไปเมนูของคำสั่ง Analyze / Regression / Linear...

ขั้นที่ 8 คลิกที่ OK จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

Regression

Descriptive Statistics

		Std.	
	Mean	Deviation	N
AIR	121.5556	10.0264	9
RAIN	5.0000	1.5516	9

Correlations

		AIR	RAIN
Pearson Correlation	AIR	1.000000	978658
	RAIN	978658	1.000000
Sig. (1-tailed)	AIR		.000002
	RAIN	.000002	
Ν	AIR	9	9
	RAIN	9	9

Variables Entered/Removed

	Variables	Variables	
Model	Entered	Removed	Method
1	RAIN ^a		Enter

a. All requested variables entered.

b. Dependent Variable: AIR

Model Summary

				Std. Error of
			Adjusted	the
Model	R	R Square	R Square	Estimate
1	.97865836 ^a	.95777219	.95173965	2.20261338

a. Predictors: (Constant), RAIN

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	770.262	1	770.262	158.768	.00000458ª
	Residual	33.961	7	4.852		
	Total	804.222	8			

a. Predictors: (Constant), RAIN

b. Dependent Variable: AIR

หมายเหตุ ค่า Sig = 0.00000458 < 0.05 เราสามารถสรุปได้ว่า ρ≠0 ที่ระดับนัยสำคัญ 0.05

		Mode	
		1	
		(Constant)	RAIN
Unstandardized	В	153.175	-6.324
Coefficients	Std. Error	2.615	.502
Standardized Coefficients	Beta		979
t		58.583	-12.600
Sig.		.000000000111	.00000458
95% Confidence Interval	Lower Bound	146.993	-7.511
for B	Upper Bound	159.358	-5.137

Coefficients^a

a. Dependent Variable: AIR

สรุป 1. สัมประสิทธิ์การถดถอยเชิงเส้น b = - 6.324

สัมประสิทธิ์สหสัมพันธ์อย่างง่าย r = - 0.979

- 3. สมการของเส้นถดถอยเชิงเส้น $\hat{y} = a + bx$ คือ $\hat{y} = 153.175$ 6.324 x
- 4. ช่วงความเชื่อมั้น 95% ของค่า β คือ 7.511 < β < 5.137
- 5. ช่วงความเชื่อมั่น 95% ของค่า α คือ 146.993 < α < 159.358
- 8.3 การทดสอบสมมติฐาน $H_{o}: \rho = 0$

หลักการและขั้นตอนของการการทดสอบสมมติฐาน H_ : ho = 0

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : ρ = 0 กำหนดสมมติฐานอื่น H₁ : ρ ≠ 0
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- **ขั้นที่** 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า r
- **ขั้นที่ 4**. เลือกค่าสถิติที่เหมาะสมคือ T

ข**้นที่ 5**. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง $t = r \sqrt{rac{n-2}{1-r^2}}$, df = n - 2

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต

ค่าวิกฤตคือ –
$$t_{\frac{\alpha}{2}}$$
 และ $t_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ – $t_{\frac{\alpha}{2}} < t$ หรือ $t > t_{\frac{\alpha}{2}}$

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

ปฏิเสอ H₀ ถ้า
$$t_{_{
m \acute{e}}$$
านวณ} < $-t_{\frac{lpha}{2}}$ หรือ $t_{_{
m \acute{e}}$ านวณ} > $t_{\frac{lpha}{2}}$

จากตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป กับปริมาณน้ำฝนได้ข้อมูลดังนี้

ปริมาณน้ำฝน	ปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป
(0.01 ນີ້ວ)	(ไมโครกรัมต่อลูกบาศก์เมตร)
4.30	126.00
4.50	121.00
5.90	116.00
5.60	118.00
6.10	114.00
5.20	118.00
3.80	132.00
2.10	141.00
7.50	108.00

จงทดสอบว่าตัวแปรทั้งคู่ไม่มีความสัมพันธ์กัน กำหนดระดับนัยสำคัญ 0.05

การทดสอบสมมติฐาน

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \rho = 0$
 - กำหนดสมมติฐานอื่น H₁:ρ≠0
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3**. ทำการคำนวณค่า r = 0.9786
- **ขั้นที่ 4**. เลือกค่าสถิติ T
- **ขั้นที่** 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง

$$r_{\text{phuan}} = r \sqrt{\frac{n-2}{1-r^2}} = -0.9786 \sqrt{\frac{9-2}{1-0.9786^2}} = -12.58$$
 df = n - 2 = 7

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต

ค่าวิกฤตคือ - t_{0.025} = -2.365 และ t_{0.025} = 2.365 บริเวณวิกฤตคือ -2.365< t หรือ t > 2.365

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต เพราะว่า t_{คำนวณ} = - 12.58 < - 2.365 เพราะฉะนั้น ปฏิเสธ H_o

หลักการและขั้นตอนการทำงานเมื่อใช้ SPSS for Windows

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀: ρ = 0 กำหนดสมมติฐานอื่น H₁: ρ ≠ 0
- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า r
- **ขั้นที่ 4**. เลือกค่าสถิติที่เหมาะสมคือ T

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง
$$t_{_{คำนวณ}} = r \sqrt{\frac{n-2}{1-r^2}}$$

หมายเหตุ ในกรณีที่ $ho_0 = 0$ จะได้ว่า $t = r \sqrt{\frac{n-2}{1-r^2}}$ และ $t = \frac{b}{(\frac{S}{\sqrt{S_{XX}}})}$ เป็นค่าเดียวกัน

ขั้นที่ 6. ใช้ค่า Sig ของค่า t ที่คำนวณได้ในการสรุปผล

ขั้นที่ 7. สรุปผลโดยการเปรียบเทียบค่า Sig กับ ค่า α ถ้า Sig < α แล้ว ปฏิเสธ H₀
จากตัวอย่าง 8.2.1 ในการศึกษาความสัมพันธ์ระหว่างปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไป
กับปริมาณน้ำฝน จงทดสอบว่าตัวแปร ปริมาณอากาศเป็นพิษที่ถูกกำจัดออกไปกับปริมาณ
น้ำฝน ไม่มีความสัมพันธ์กันที่ระดับมีนัยสำคัญ 0.05

- **วิธีทำ ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : ρ = 0 กำหนดสมมติฐานอื่น H₁ : ρ ≠ 0
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างและนำข้อมูลเข้าสู่การคำนวณด้วย SPSS
- **ขั้นที่ 4**. เลือกค่าสถิติที่เหมาะสมคือ T
- ขั้นที่ 5. จากผลการคำนวณของ SPSS ข้างต้น

		Mode]
		1		
		(Constant)	RAIN	
Unstandardized	В	153.175	-6.324	
Coefficients	Std. Error	2.615	.502	
Standardized Coefficients	Beta		979	
t		58.583	-12.600	\leftarrow^1
Sig.		.000000000111	.00000458	$-^2$
95% Confidence Interval	Lower Bound	146.993	-7.511	
for B	Upper Bound	159.358	-5.137	

คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง t = r $\sqrt{rac{n-2}{1-r^2}}$ = -12.600 df = 7และ Sig = 0.00000485

ขั้นที่ 6. Sig =0.00000485

ขั้นที่ 7. สรุปผล เพราะว่า Sig < 0.05 เพราะฉะนั้น ปฏิเสธ H_o

- 8.4 การทดสอบสมมติฐาน H_o : $\beta = \beta_0$ หลักการและขั้นตอนการทำงานทางทถษภี
- ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_{_0}: \beta = \beta_{_0}$ ี่กำหนดสมมติฐานอื่น H₁ : β ≠ β₀
- ข**ั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่า b , s , S_x
- **ขั้นที่ 4**. เลือกค่าสถิติ T

ขั้นที่ 5. คำนวณค่าสถิติที่เลือกจากข้อมูลตัวอย่าง
$$t_{_{คำนวณ}} = rac{b - eta_0}{(rac{S}{\sqrt{S_{xx}}})}$$
, df = n – 2

ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤต

ค่าวิกฤตคือ –
$$t_{\frac{\alpha}{2}}$$
 และ $t_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ – $t_{\frac{\alpha}{2}} < t$ หรือ $t > t_{\frac{\alpha}{2}}$

- **ขั้นที่ 7**. สรุปผลโดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต ปฏิเสธ H₀ ถ้า $t_{_{
 m \' h
 m rusa}} < -t_{\underline{\alpha}}$ หรือ $t_{_{
 m \' h
 m rusa}} > t_{\underline{\alpha}}$
- หลักการและขั้นตอนการทำงานด้วย SPSS for Windows และวิธีสรุปผล
- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก $H_0: \beta = \beta_0$ กำหนดสมมติฐานอื่น H₁ : β ≠ β₀
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α
- ้ขั้นที่ 3. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่าโดยการนำข้อมูลเข้าสู่โปรแกรม SPSS

ขั้นที่ 4. เพราะว่าผลการคำนวณของ SPSS ไม่ให้ค่า t =
$$\frac{b - \beta_0}{(\frac{s}{\sqrt{S_{XX}}})}$$
 ออกมาโดยตรง

เพราะฉะนั้นเราจึงใช้ช่วงความเชื่อมั่นของ β ช่วยในการสรุปสมมติฐาน

ขั้นที่ 5. ให้หาช่วงความเชื่อมั่น (1 – lpha)100% ของค่า eta

ขั้นที่ 6. ไม่มีการเปิดตารางสถิติเพื่อหาค่าวิกฤต

ขึ้นที่ 7. สรุปผลโดยการดูว่า $β_0$ อยู่ในช่วงความเชื่อมั่น (1 – α)100% ของค่า β ที่หาได้หรือไม่ ถ้า $β_0$ อยู่ในช่วงความเชื่อมั่น (1 – α)100% ของค่า β ที่หาได้ แล้ว ยอมรับ H₀

จากตัวอย่างข้อมูล

х	1.50	1.80	2.40	3.00	3.50	3.90	4.40	4.80	5.00
Υ	4.80	5.70	7.00	8.30	10.90	12.40	13.10	13.60	15.30

มีสมการถดถอยเป็น $\hat{y} = a + bx$

็จงทดสอบสมมติฐานว่า β = 2.5 แย้งกับสมมติฐาน β ≠ 2.5 ที่ระดับนัยสำคัญ 0.05

วิธีทำ

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀ : β = 2.5 กำหนดสมมติฐานอื่น H₁ : β ≠ 2.5
- **ขั้นที่ 2.** กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างขนาด n และ คำนวณค่าโดยการนำข้อมูลเข้าสู่โปรแกรม SPSS
- ขั้นที่ 4. เพราะว่าผลการคำนวณของ SPSS ไม่ให้ค่า t = $\frac{b \beta_0}{(\frac{s}{\sqrt{S_{xx}}})}$ ออกมาโดยตรง

เพราะฉะนั้นเราจึงใช้ช่วงความเชื่อมั่นของ β ช่วยในการสรุปสมมติฐาน

ขั้นที่ 5. เพราะว่า H₁ : β ≠ β₀ เพราะฉะนั้น ให้หาช่วงความเชื่อมั่น 95% ของค่า β

การหาช่วงความเชื่อมั่น 95% ของ β

ขั้นที่ 5.1 นำข้อมูลเข้าสู่ example16.sav

ที่สร้างไว้เข้าสู่ SPSS for Windows Data Editor

example16 - SPSS for Windows D File Edit View Data Iransform An- Image: Specific stress Image: Specific stress Image: Specific stress Image: Specific stress							
	×	У					
1	1.50	4.80					
2	1.80	5.70					
3	2.40	7.00					
4	3.00	8.30					
5	3.50	10.90					
6	3.90	12.40					
7	4.40	13.10					
8	4.80	13.60					
9	5.00	15.30					

ข**ั้นที่ 5.2** เลือกคำสั่ง Analyze / Regression / Linear..

	💼 e	xamp	e16 - 9	SPSS	for Window	ws Data I	Editor					
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	<u>₩</u> ir	ndow	<u>H</u> elp	
ŗ	B		<u>s</u> <u></u>	ю		Repo Desc	orts criptive Sta	atistics	*		<u></u>	
						Com	pare <u>M</u> ear	ns	۲			
			x		у	<u> </u>	eral Linear elate	Model	• •		var	va
		1		1.50	4	<u>R</u> egr	ression		Þ	l	inear	
		2		1 80	5	- L <u>og</u> li	near		•	<u>[</u>	jurve Estimation	

ข**ั้นที่ 5.3** คลิกที่ Linear จะได้เมนูของคำสั่งดังนี้

📽 Linear Regression		x
⊕ 2 ⊮у	Dependent:	OK
	Previous Block 1 of 1 Next	<u>P</u> aste <u>R</u> eset
		Cancel
		Help
	Method: Enter 🚬	
	S <u>e</u> lection Variable: Rule.]
	Case Labels:	_
<u>W</u> LS >>	Statistics Plots Save Op	tions

ขั้นที่ 5.4 เลือกตัวแปร x เป็นตัวแปรอิสระ นำไปไว้ที่ช่อง Independent(s) เลือกตัวแปร yเป็นตัวแปรตาม นำไปไว้ที่ช่อง Dependent(s)

🚓 Linear Regression			×
() () ×	•	Dependent:	OK <u>P</u> aste
	Previous	Block 1 of 1 <u>N</u> ext	<u>R</u> eset
		Independent(s):	Cancel Help
		, Method: Enter _▼	
		Sglection Variable: Sglection Variable:	
 Ls >>	Statistics	Plots Save Dptions	[
	<u></u>		

Regression

Variables	Entered/Remov	eď
-----------	---------------	----

	Variables	Variables	
Model	Entered	Removed	Method
1	Xª		Enter

a. All requested variables entered.

b. Dependent Variable: Y

Model Summary

				Std. Error
			Adjusted	of the
Model	R	R Square	R Square	Estimate
1	.991 ^a	.982	.980	.5388

a. Predictors: (Constant), X

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	112.484	1	112.484	387.516	.0000002181 ^a
	Residual	2.032	7	.290		
	Total	114.516	8			

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients^a

	Model		
			1
		(Constant)	Х
Unstandardized	В	.257	2.930
Coefficients	Std. Error	.532	.149
Standardized Coefficients	Beta		.991
t		.483	19.6854331071
Sig.		.644	.0000002181
95% Confidence Interval	Lower Bound	-1.002	2.578
for B	Upper Bound	1.516	3.282

a. Dependent Variable: Y

- ขั้นที่ 6. ไม่มีการเปิดตารางสถิติเพื่อหาค่าวิกฤต
- ขั้นที่ 7. สรุปผล โดยการดูว่า β₀ อยู่ในช่วงความเชื่อมั่นที่หาได้หรือไม่ จากผลการคำนวณช่วงความเชื่อมั่น 95% ของ β คือ (2.578, 3.282) เพราะว่า β₀ ไม่อยู่ในช่วงความเชื่อมั่น 95% ของ β คือ (2.578, 3.282) เพราะฉะนั้นปฏิเสธ H₀

8.5 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์และสมการถดถอยพหุคูณ 8.5.1 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์ของตัวแปรหลาย ๆ คู่

ในกรณีที่เรามีตัวแปรหลายคู่ที่ต้องการหาค่าสัมประสิทธิ์สหสัมพันธ์ เช่นข้อมูล น้ำหนัก (x₁) , ความสูง(x₂) , อายุ(x₃)

X ₁	X2	X3
64.00	57.00	8.00
71.00	59.00	10.00
53.00	49.00	6.00
67.00	62.00	11.00
55.00	51.00	8.00
58.00	50.00	7.00
77.00	55.00	10.00
57.00	48.00	9.00
56.00	52.00	10.00
51.00	42.00	6.00
76.00	61.00	12.00
68.00	57.00	9.00

การหาค่าสัมประสิทธิ์สัมพันธ์ของตัวแปรหลายคู่พร้อมกันด้วย SPSS for Windows

- **ขั้นที่ 1** สร้างข้อมูลประกอบด้วยตัวแปร x1 , x2 , x3
- ໃน SPSS for Windows Data Editor

แล้ว Save แฟ้มข้อมูลชื่อ example18.sav

💼 еха	mple18 - SPSS	for Windows D	ata Editor
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>
<u> 2</u>	18 🔍 🗠) 💷 🗽 🕼	M <u>*</u>
	×1	x2	x3
1	64.00	57.00	8.00
2	71.00	59.00	10.00
3	53.00	49.00	6.00
4	67.00	62.00	11.00
5	55.00	51.00	8.00
6	58.00	50.00	7.00
7	77.00	55.00	10.00
8	57.00	48.00	9.00
9	56.00	52.00	10.00
10	51.00	42.00	6.00
11	76.00	61.00	12.00
12	68.00	57.00	9.00

ขั้นที่ 2. เลือกคำสั่ง Analyze / Correlate / Bivariate...

<u>V</u>ariable: *****51 пк <u>P</u>aste <u>R</u>eset \rightarrow Cancel Help Correlation Coefficients Test of Significance C One-tailed Options.. ✓ Elag significant correlations

🖁 Bivariate Correlatio

ขั้นที่ 3. เลือกตัวแปร x₁ , x₂ และ x₃ มาไว้ที่ช่อง Variables

คลิกที่ Bivariate จะได้เมนูย่อยเป็น

Bivariate Correlations Variables:	Сапсеl
Correlation Coefficients ✓ Pearson └└ Kendall's tau-b └└ Spearman	
Iwo-tailed C One-tailed Iwo-tailed Iwo-tailed	ptions

ขั้นที่ 4. ต่อไปคลิกที่ OK จะได้ผลการคำนวณเป็น

f Output1 - SPSS for Windo	ws Vi	ewer						
<u>Eile E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp								
🛎 🖪 🕘 🖪 🔍	e i i i i i i i i i i i i i i i i i i i							
+++-	, 9	IJŅ.						
🖃 🔁 Output		Corr	elations					
⊡ E Correlations			Co	rrelations				
Notes				X1	X2	X3		
Correlations		X1	Pearson Correlation	1.000000	.81964508**	.76981680**		
			Sig. (2-tailed)		.00110072	.00340655		
			N	12	12	12		
	_	X2	Pearson Correlation	.81964508**	1.000000	.79840746**		
	7		Sig. (2-tailed)	.00110072		.00184860		
			N	12	12	12		
		Х3	Pearson Correlation	.76981680**	.79840746**	1.000000		
			Sig. (2-tailed)	.00340655	.00184860			
			N	12	12	12		
		**.	Correlation is significant	at the 0.01 lev	/el (2-tailed).			

ผลการคำนวณทั้งหมดคือ

Correlations

Correlations

		X1	X2	X3
X1	Pearson Correlation	1.000000	.81964508**	.76981680**
	Sig. (2-tailed)		.00110072	.00340655
	Ν	12	12	12
X2	Pearson Correlation	.81964508**	1.000000	.79840746**
	Sig. (2-tailed)	.00110072		.00184860
	Ν	12	12	12
X3	Pearson Correlation	.76981680**	.79840746**	1.000000
	Sig. (2-tailed)	.00340655	.00184860	
	Ν	12	12	12

** · Correlation is significant at the 0.01 level (2-tailed).

การแปลความหมาย

ค่าสหสัมพันธ์ของ น้ำหนัก (x ₁) , ความสูง(x ₂)	เท่ากับ 0.81964508
ค่าสหสัมพันธ์ของ น้ำหนัก (x ₁) , อายุ(x ₃)	เท่ากับ 0.76981680
ค่าสหสัมพันธ์ของ ความสูง(x ₂) , อายุ(x ₃)	เท่ากับ 0.79840746
เพราะฉะนั้น น้ำหนัก (x ₁) , ความสูง(x ₂) มีความสัมพั	ันธ์กันมากที่สุด

8.5.2 การคำนวณค่าสัมประสิทธิ์สหสัมพันธ์พหุคูณและสมการถดถอยพหุคูณ

จากข้อมูลข้างต้น เราสามารถหาสมการ $X_1 = b_{1.23} + b_{12.3}X_2 + b_{13.2}X_3$

โดยใช้ SPSS for Windows ตามขั้นตอนดังนี้

ขั้นที่ 1 นำข้อมูลเข้าสู่ SPSS

ขั้นที่ 2. เลือกคำสั่ง Analyze / Regression / Linear..

ขั้นที่ 3. คลิกที่ Linear จะได้เมนูย่อยเป็น

<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>L</u>		
🛎 🗐 🔍 🖂 🏣 🍘 📲 🏢					
	×1	x2	x3		
1	64.00	57.00	8.00		
2	71.00	59.00	10.00		
3	53.00	49.00	6.00		
4	67.00	62.00	11.00		
5	55.00	51.00	8.00		
6	58.00	50.00	7.00		
7	77.00	55.00	10.00		
8	57.00	48.00	9.00		
9	56.00	52.00	10.00		
10	51.00	42.00	6.00		
11	76.00	61.00	12.00		
12	68.00	57.00	9.00		

le18 - SPSS for Windows Data Edito

ขั้นที่ 5. คลิก OK จะได้ผลการคำนวณเป็น

Regression

Variables Entered/Removed

	Variables	Variables	
Model	Entered	Removed	Method
1	X3, X2ª		Enter

a. All requested variables entered.

b. Dependent Variable: X1

Model Summary

				Std. Error
			Adjusted	of the
Model	R	R Square	R Square	Estimate
1	.842 ^a	.709	.644	5.3632

a. Predictors: (Constant), X3, X2

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	629.373	2	314.687	10.940	.0038950179
	Residual	258.877	9	28.764		
	Total	888.250	11			

a. Predictors: (Constant), X3, X2

b. Dependent Variable: X1

Coefficients ^a

		Unstandardized		Stan dardi zed Coeff icient		
Model		В	Std. Error	Beta	l t	Sig.
1	(Constant)	3.651	16.168		.226	,8263767550
	X2	.855	.452	.565	1.892	,0910251014
	X3	1.506	1.414	.318	1.065	,3145704502

a. Dependent Variable: X1

ความหมายของผลการคำนวณที่ได้คือ $X_1 = b_{1.23} + b_{12.3}X_2 + b_{13.2}X_3$

จากตาราง Coefficient จะได้ b_{1.23} = 3.651 , b_{12.3} = 0.855 , b_{13.2} = 1.506

เพราะฉะนั้นสมการถดถอยคือ X₁ = 3.651 + 0.855 X₂ + 1.506 X₃

8.6 การเลือกรูปแบบความสัมพันธ์แบบเชิงเดียวที่เหมาะสมกับข้อมูล

ความสัมพันธ์แบบเชิงเดียว ซึ่งประกอบด้วยตัวแปรอิสระ 1 ตัว และตัวแปรตาม 1 ตัว รูปแบบของ สมการความสัมพันธ์เชิงเส้นเชิงเดียวอาจมีรูปแบบเป็น

- 1. y = a + bx
- 2. $\ln y = a + b \ln x$
- 3. y = a + b lnx
- 4. $\ln y = a + bx$

เมื่อเรามีข้อมูลและต้องการรู้ว่ารูปแบบใดเหมาะสมกับข้อมูล สามารถใช้โปรแกรม MATHCAD ช่วยในการเขียนกราฟและคำนวณค่าสหสัมพันธ์ได้ดังนี้ จากตัวอย่างข้อมูล

X	Y
1.52	40.8
1.85	52.7
2.48	74.0
3.06	85.3
3.53	100.9
3.97	121.4
4.44	130.1
4.85	135.6
5.09	150.3

เราสามารถเขียนแผนภาพการกระจาย 4 รูปแบบ และคำนวณค่าสหสัมพันธ์ได้ ดังนี้ การคำนวณด้วย MATHCAD

$$corr(x, y) = 0.9959$$

 $\operatorname{corr}\left(\overrightarrow{\ln(x)}, \overrightarrow{\ln(y)}\right) = 0.997$

รูปแบบความสัมพันธ์	ค่าสัมประสิทธิ์สหสัมพันธ์
y = a + bx	0.9959
lny = a + b lnx	0.9970
y = a + b lnx	0.9861
Iny = a + bx	0.9791

เราควรเลือกรูปแบบที่มีค่าสัมประสิทธิ์สหสัมพันธ์มากที่สุด นั้นคือ Iny = a + b Inx

$$a := intercept\left(\overrightarrow{ln(x)}, \overrightarrow{ln(y)}\right) \qquad b := slope\left(\overrightarrow{ln(x)}, \overrightarrow{ln(y)}\right)$$

a = 3.3057 b = 1.0461

สรุป สมการแสดงความสัมพันธ์ที่เหมาะสมกับข้อมูลคือ

lny = a + b lnx = 3.3057 + 1.0461 lnx

บทที่ 9

การวิเคราะห์ความแปรปรวน

การวิเคราะห์ความแปรปรวน เป็นการทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากรตั้งแต่ 2 ชุด ขึ้นไปเท่ากันหรือไม่ ซึ่งการทดสอบจะสามารถทำได้กับข้อมูลที่เก็บมาจากข้อมูลตัวอย่างที่จำแนก เป็นกลุ่มๆ โดยที่การจำแนกของกลุ่มตัวอย่างนั้นอาจเป็น แบบจำแนกทางเดียว(one – way classification) หรือ แบบที่มีการสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม(randomized complete block designs)

9.1 การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว

จากการเก็บข้อมูลโดยการสุ่มตัวอย่างขนาด n_j ; i = 1 , 2 , 3 , ..., k จากประชากร k ชุดที่ต่าง กัน ซึ่งประชากร k ชุดที่ต่างกันนี้เราจะเรียกว่า **วิธีการปฏิบัติ**(treatment) ลักษณะข้อมูลเป็นดังนี้

	TREATMENT				
	1	2	j	k	
	x ₁₁	x ₁₂	X_{1j}	X _{1k}	
	x ₂₁	X ₂₂	X_{2j}	X _{2k}	
	:	:	:	:	
	x _{n11}	x _{n22}	x _{njj}	x _{nkk}	
ผลรวม	x _{.1}	x.2	x _{.j}	x _{.k} x _.	
ขนาดตัวอย่าง	n ₁	n ₂	n _j	n _k	
$N = n_1 + n_2 + r_1$	$n_{j} + + n_{k}$				
x ผลบวกร _ั	วมทั้งหมด	x	ค่าเฉลี่ยรวม	ทั้งหมด	

บทที่ 9 การวิเคราะห์ความแปรปรวน

SST = $\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{x_{..}^2}{N}$ TOTAL SUM OF SQUARE SSTR = $\frac{\sum_{j=1}^{k} x_{.j}^{2}}{n_{i}} - \frac{x_{..}^{2}}{N}$ TREATMENT SUM OF SQUARE F

$$SSE = SST - SSTR$$

การสร้างตาราง ANOVA

แหล่งการแปรผัน	ผลบวก	องศาเสรี	ค่าเฉลี่ยของผล	f _{คำนวณ}
	กำลังสอง		บวกกำลังสอง	
วิธีการปฏิบัติ	SSTR	k – 1	MSTR= $\frac{SSA}{1-1}$	$f_{equal} = \frac{MSTR}{NGE}$
(Treatment)			К — 1	MSE
ความคลาดเคลื่อน	SSE	N – k	$MSE = \frac{SSE}{(1-1)(1-1)}$	
(Error)			(b-1)(k-1)	
ทั้งหมด	SST	N – 1		
(Total)				

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว มีขั้นตอนการทดสอบสมมติฐานดังนี้

ขั้นตอนการทดสอบสมมติฐาน $\mu_1=\mu_2=\mu_3=......=\mu_k$ ทางทฤษฎี ขั้นที่ 1

้กำหนดสมมติฐานหลัก $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

ี่ กำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂ ≠ μ₃ ≠ ≠ μ₄ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- ขั้นที่ 2 กำหนดนัยสำคัญ α
- **ขั้นที่ 3** ทำการสุ่มตัวอย่าง
- **ขั้นที่ 4** เลือกก่าสถิติ F
- **ขั้นที่ 5** คำนวณค่าสถิติ f_{คำนวณ} จากตัวอย่าง(สร้างตาราง ANOVA)
- **ขั้นที่ 6** เปิดตารางหาค่าวิกฤต ค่าวิกฤตคือ \mathbf{f}_{α} โดยมีองศาความเสรี v₁ = k 1 , v₂ = N k เมื่อ N = จำนวนค่าสังเกตทั้งหมด บริเวณวิกฤตคือ F > f_{α}

ขั้นที่ 7 สรุปผล

ถ้า f_{คำนวณ} > f_a แล้ว ปฏิเสธ H_o

บทที่ 9 การวิเคราะห์ความแปรปรวน

ในกรณีที่ ปฏิเสธ H_o เราสามารถตรวจสอบหาค่าเฉลี่ยของประชากรคู่ที่แตกต่างกันได้โดยใช้วิธี Scheffe's Method โดยมีเกณฑ์การปฏิเสธ H_o : $\mu_1 = \mu_m$ I, m = 1, 2, ..., k

เมื่อ
$$|\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_m| > \sqrt{\mathrm{MSE}(\frac{1}{n_1} + \frac{1}{n_m})} \sqrt{(k-1)f_{\alpha,(v_1,v_2)}}$$

ชนิดที่ 1	ชนิดที่ 2	ชนิดที่ 3	ชนิดที่ 4	ชนิดที่ 5
551.00	595.00	639.00	417.00	563.00
457.00	580.00	615.00	449.00	631.00
450.00	508.00	511.00	517.00	522.00
731.00	583.00	573.00	438.00	613.00
499.00	633.00	648.00	415.00	656.00
632.00	517.00	677.00	555.00	679.00

ด้วอย่าง 9.1.1 ข้อมูลการดูดความชื้นของคอนกรีต 5 ชนิดเป็นดังนี้

กำหนด μ₁,μ₂,μ₃,μ₄,μ₅ เป็นค่าเฉลี่ยประชากรของการดูดความชื้นของคอนกรีตชนิดที่ 1,2, 3,4,5 ตามลำดับ จงทดสอบสมมติฐานว่า μ₁,μ₂,μ₃,μ₄,μ₅ เท่ากัน ที่ระดับนัยสำคัญ 0.05 **วิธีทำ**

ขั้นที่ 1

กำหนดสมมติฐานหลัก $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

้ กำหนดสมมติฐานอื่น $H_1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4 \neq \mu_5$ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- **ขั้นที่ 2** กำหนดนัยสำคัญ $\alpha = 0.05$
- **ขั้นที่ 3** ทำการสุ่มตัวอย่าง
- **ขั้นที่ 4** เลือกค่าสถิติ F
- **ขั้นที่** 5 คำนวณค่าสถิติ F จากตัวอย่าง (สร้างตาราง ANOVA)

คำนวณค่า N=30

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{x_{..}^2}{N} = 209377$$
$$SSTR = \sum_{j=1}^{k} \frac{x_{j.}^2}{n_j} - \frac{x_{..}^2}{N} = 85356$$
$$SSE = SST - SSTR = 124021$$

แหล่งการแปรผัน	ผลบวกกำลังสอง	องศาเสรี	ค่าเฉลี่ยของผล บวกกำลังสอง	f _{คำนวณ}
วิธีการปฏิบัติ	SSTR = 85365	.k−1 = 4	21339	4.30
(Treatment)				
ความคลาดเคลื่อน	SSE = 124021	.k(n − 1) = 25	4961	
(Error)				
ทั้งหมด	SST = 209377	nk – 1 = 29		
(Total)				

ตาราง ANOVA

```
ขั้นที่ 6 เปิดตารางหาค่าวิกฤต ค่าวิกฤตคือ f<sub>0.05</sub> = 2.76 องศาความเสรี v<sub>1</sub> = 4 , v<sub>2</sub> = 25
บริเวณวิกฤตคือบริเวณที่ F > 2.76
```

ขั้นที่ 7 สรุปผล เพราะว่า f_{คำนวน} = 4.30 > 2.76 เพราะฉะนั้น ปฏิเสธ H_o

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวด้วย SPSS for Windows ขั้นที่ 1

กำหนดสมมติฐานหลัก $H_{_0}$: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

้กำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂ ≠ μ₃ ≠ ≠ μk (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- ข**ั้นที่ 2** กำหนดนัยสำคัญ α
- **ขั้นที่ 3** ทำการสุ่มตัวอย่าง
- **ขั้นที่ 4** เลือกค่าสถิติ F
- **ขั้นที่** 5 คำนวณค่าสถิติ F จากตัวอย่าง (สร้างตาราง ANOVA)

5.1 คำนวณค่า f_{คำนวณ} ไปใช้ในการสรุปผล ตามวิธีทางทฤษฏีข้างต้น

5.2 คำนวณค่า Sig ของคำสถิติ F ที่คำนวณได้ไปใช้ในการสรุปผล


```
F ทางหางด้านขวาตั้งแต่ f<sub>คำนวณ</sub> ถึง ∞
```

ขั้นที่ 6 6.1 ใช้ค่าเปิดตารางหาค่าวิกฤต

ค่าวิกฤตคือ f_{α} องศาความเสรี $v_1 = k - 1$, $v_2 = N - k$

- N = จำนวนค่าสังเกตทั้งหมด บริเวณวิกฤตคือ F > ${
 m f}_{lpha}$
- 6.2 ใช้ค่า Sig ในการสรุปผล

Sig = Area
ขั้นที่ 7 สรุปผล แบบที่ 1 ถ้า $f_{_{คำนวณ}} > f_{\alpha}$ แล้ว ปฏิเสธ $H_{_0}$ แบบที่ 2 ถ้า Sig < α แล้ว ปฏิเสธ $H_{_0}$

จากข้อมูลตัวอย่าง 9.1.1

การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวด้วย SPSS for Windows ขั้นที่ 1

กำหนดสมมติฐานหลัก H $_{_0}$: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_5$

ึกำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂ ≠ μ₃ ≠ ≠ μ₅ (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

ขั้นที่ 2 กำหนดนัยสำคัญ α = 0.05

ขั้นที่ 3 ทำการสุ่มตัวอย่างและสร้างแฟ้มข้อมูล

ขั้นที่ 3.1 สร้างแฟ้มข้อมูล โดยกำหนดให้

ตัวแปร type เป็นตัวแปรจำแนกกลุ่ม

และ weight เป็นตัวแปรน้ำหนัก

การดูดความชื้นของคอนครีต

บันทึกเป็นแฟ้มข้อมูลชื่อ example19.sav

<u>F</u> ile <u>E</u> d	lit <u>V</u> iew <u>D</u> ata <u>T</u> r	ansform <u>A</u> nalyze <u>(</u>	<u>G</u> raphs <u>U</u> tilities <u>W</u>	indow <u>H</u> elp		
* - - - - - - - -						
	type	weigth	var	var		
1	1.00	551.00				
2	1.00	457.00				
3	1.00	450.00				
4	1.00	731.00				
5	1.00	499.00				
6	1.00	632.00				
7	2.00	595.00				
8	2.00	580.00				

ขั้นที่ 3.2 ใช้คำสั่ง Analyze / Compare Means / One-Way ANOVA...

ขั้นที่ 3.3 คลิกที่ One-Way ANOVA จะได้เมนูย่อยเป็น

♦ type ♦ weigth	Dgpendent List:	OK Paste
	Factor:	<u>Heset</u> Cancel Help
	Contrasts Post <u>Hoc</u> Options.	

ขั้นที่ 3.4 เลือกตัวแปร type ไปไว้ที่ช่อง Factor

เลือกตัวแปร weigth ไปไว้ที่ช่อง Dependent List

👷 One-Way ANOVA		×
	Dependent List:	OK Paste <u>R</u> eset
	Factor:	Help
	<u>Contrasts</u> Post <u>Hoc</u> <u>Options</u>	

ขั้นที่ 3.5 กด OK จะได้ผลการคำนวณดังนี้

Toutput1 - SPSS for Windows Viewer							
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rm	at <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilitie	es <u>W</u> indow	<u>H</u> elp				
<u></u>	Feel 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 						
<u>+++-</u>							
Cutput Coneway Coneway Title Coneway Notes Coneway Co			ANOVA	L			
		Sum of Squares	df	Mean Square	F	Sig.	
	Between Groups	85356.467	4	21339.117	4.302	.009	
	Within Groups	124020.3	25	4960.813			
	Total	209376.8	29				

ตาราง ANOVA ที่คำนวณได้คือ

Oneway

ANOVA

WEIGTH

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	85356.467	4	21339.117	4.302	.009
Within Groups	124020.3	25	4960.813		
Total	209376.8	29			

ขั้นที่ 4 สรุปผลโดยใช้ค่า Sig หรือ เปรียบเทียบค่า f_{คำนวณ} กับค่าวิกฤต

ขั้นที่ 5 จากตาราง ANOVA f_{คำนวณ} = 4.302 และ Sig = 0.009

ขั้นที่ 6 เปิดตารางหาค่าวิกฤต ค่าวิกฤตคือ $f_{0.05}$ = 2.76 องศาความเสรี v_1 = 4 , v_2 = 25 บริเวณวิกฤตคือบริเวณที่ F > 2.76

ขั้นที่ 7 สรุปผล แบบที่ 1 เพราะว่า f_{คำนวณ} = 4.302 > 2.76 เพราะฉะนั้น ปฏิเสธ H₀ หรือ แบบที่ 2 เพราะว่า Sig = 0.009 < 0.05 เพราะฉะนั้น ปฏิเสธ H₀ **หมายเหตุ** 1. ในทางปฏิบัติการสรุปผลโดยดูค่า Sig มีความสะดวกกว่า

2. ที่มาของค่า Sig คือ โดยการคำนวณด้วย MATHCAD

F distribution

$$v1 := 4 \qquad v2 := 25 \qquad h(f) := \frac{\Gamma\left(\frac{v1+v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right)-1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1+\left(\frac{v1}{v2}\right) \cdot f\right]^{\frac{v1+v2}{2}}}$$

$$Pvalue(F) := 1 - \int_{0}^{0} h(f) df \qquad Pvalue(4.302) = 0.008747$$

การทดสอบว่าค่าเฉลี่ยคู่ใดแตกต่างกันมีวิธีทำดังนี้ จาก **ขั้นที่** 3.5

st One-Way ANOVA	Dependent List:	OK Paste <u>R</u> eset Cancel
	Factor:	Help
	Contrasts Post <u>H</u> oc Options	

ขั้นที่ 3.6 คลิกที่ Post Hoc จะได้เมนูย่อยดังนี้

F LSD F LSD F Bonferroni F Sjdak F Scheffe F B-E-G-W F F R-E-G-W Q	Γ <u>S</u> ·N·K Γ <u>I</u> ukey Γ Tu <u>k</u> ey's-b Γ <u>D</u> uncan Γ <u>H</u> ochberg's G Γ <u>G</u> abriel	✓ Waller-Duncan Type I/Z type II Error Ratio: ✓ Dunnatt Control Category: T2 Test ✓ 2-sided C < Control C > Control
Equal Variances M Tamhane's T2 Significance level:	Not Assumed Dunnett's T <u>3</u> .05	□ Games Howell □ Dunnett's C

Г	Sjdak	Г	Ти <u>к</u> ey's-b г
⊽	S <u>c</u> heffe	Г	<u>D</u> uncan
Г	<u>R</u> -E-G-W F	Г	<u>H</u> ochberg's GT2

ขั้นที่ 3.8 คลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณเพิ่มเติมจากเดิมดังนี้

Multiple Comparisons

Scheffe						
		Mean			95% Confidence	
		Difference			Lower	Upper
(I) TYPE	(J) TYPE	(I-J)	Std. Error	Sig.	Bound	Bound
1.00	2.00	-16.0000	40.6645	.997	-151.0824	119.0824
	3.00	-57.1667	40.6645	.740	-192.2491	77.9158
	4.00	88.1667	40.6645	.346	-46.9158	223.2491
	5.00	-57.3333	40.6645	.738	-192.4158	77.7491
2.00	1.00	16.0000	40.6645	.997	-119.0824	151.0824
	3.00	-41.1667	40.6645	.903	-176.2491	93.9158
	4.00	104.1667	40.6645	.195	-30.9158	239.2491
	5.00	-41.3333	40.6645	.902	-176.4158	93.7491
3.00	1.00	57.1667	40.6645	.740	-77.9158	192.2491
	2.00	41.1667	40.6645	.903	-93.9158	176.2491
	4.00	145.3333*	40.6645	.030	10.2509	280.4158
	5.00	1667	40.6645	1.000	-135.2491	134.9158
4.00	1.00	-88.1667	40.6645	.346	-223.2491	46.9158
	2.00	-104.1667	40.6645	.195	-239.2491	30.9158
	3.00	-145.3333*	40.6645	.030	-280.4158	-10.2509
	5.00	-145.5000*	40.6645	.030	-280.5824	-10.4176
5.00	1.00	57.3333	40.6645	.738	-77.7491	192.4158
	2.00	41.3333	40.6645	.902	-93.7491	176.4158
	3.00	.1667	40.6645	1.000	-134.9158	135.2491
	4.00	145.5000*	40.6645	.030	10.4176	280.5824

Dependent Variable: WEIGTH

* The mean difference is significant at the .05 level.

ผลการวิเคราะห์

ค่าเฉลี่ยประชากรคู่ที่ 3 และ 4 แตกต่างกัน ที่ระดับนัยสำคัญ 0.05 ค่าเฉลี่ยประชากรคู่ที่ 4 และ 5 แตกต่างกัน ที่ระดับนัยสำคัญ 0.05

9.2 การวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง

การวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง เป็นการทำการวิเคราะห์สำหรับการทดลอง แบบ Randomized Block Design ซึ่งแบ่งทดลองที่มีลักษณะแบบเดียวกันออกเป็น**กลุ่ม** (Block) ในแต่ละกลุ่มมีจำนวนหน่วยของการทดลองเท่ากันเรียกว่า วิธีปฏิบัติ(Treatment) เพื่อให้ข้อมูลมี การสุ่มอย่างสมบูรณ์ในแต่ละกลุ่ม ตัวอย่างลักษณะข้อมูล

		1	2	i	k	รวม	ค่าเฉลี่ย
กลุ่ม (Block)	1	X ₁₁	X ₂₁	x _{1j}	X _{1k}	T _{1.}	$\overline{x}_{1.}$
	2	X ₂₁	X ₂₂	\mathbf{x}_{2j}	X _{2k}	T _{2.}	$\overline{\mathbf{x}}_{2.}$
				:			
	i	X _{1j}	\mathbf{x}_{2j}	x_{ij}	X _{ik}	T _{i.}	$\overline{x}_{i.}$
				:			
	n	x _{n1}	X _{n2}	x _{nj}	X _{nk}	T _{m.}	$\overline{\mathbf{x}}_{n.}$
รวม		T _{.1}	T _{.2}	$T_{,j}$	Т _{.к}	Т	
ค่าเฉลี่ย		<u>x</u> .1	$\overline{x}_{.2}$	x.j	$\overline{x}_{.k}$		
x _{ij} = ค่าสังเกตจ	าก tre	atment ที่	j ແລະ Blo	ck ที่ i	i = 1	, 2 , , n	; j = 1 , 2 , , k
μ _{.j} = ค่าเฉลี่ยา	่]ระขาเ	ารของ Tre	atment ที่	j			
μ _{i.} = ค่าเฉลี่ยา	่]ระชา≀	ารของ Blo	ock ที่ i				
T _{.j} = ผลรวมขอ√	งค่าสังเ	ิกตจาก T	reatment	ที่ j			
T _{i.} = ผลรวมขอ√	งค่าสังเ	ิกตจาก B	lock ที่ i				
T = ผลรวมขอ	งค่าสัง	เกตทั้งหม	ิด				
SST = $\sum_{i=1}^{n} \sum_{j=1}^{k} x_{ij}^2 - \frac{T_{}^2}{nk}$							
$SSTR = \frac{\sum_{j=1}^{k} T_{j}^{2}}{n}$ $SSE = SST - S$	$\frac{T_{}^2}{nk}$	SSBL	SS	$SBL = \frac{\sum_{i=1}^{n} T_{i.}^{2}}{k}$	$\frac{1}{1} - \frac{T^2}{nk}$	-	

วิธีการปฏิบัติ (Treatment)

แหล่งการแปรผัน	ผลบวก	องศาเสรี	ค่าเฉลี่ยของผล	f _{คำนวณ}
	กำลังสอง		บวกกำลังสอง	
วิธีการปฏิบัติ	SSTR	k – 1	$MSTR = \frac{SSTR}{1}$	$f_{treatment} = \frac{MSTR}{NSTR}$
(Treatment)			k – 1	MSE
กลุ่ม (Block)	SSBL	n – 1	$MSBL = \frac{SSBL}{n-1}$	$f_{block} = \frac{MSBL}{MSE}$
ความคลาดเคลื่อน	SSE	(n – 1)(k – 1)	MSF=SSE	
(Error)			(n-1)(k-1)	
ทั้งหมด (Total)	SST	nk – 1		

ตาราง ANOVA

การทดสอบ Multiple comparison

เมื่อผลการทดสอบ ปฏิเสธ H_o เราสามารถทดสอบได้ว่า ประชากรคู่ใดมีค่าเฉลี่ยแตกต่างกัน โดยใช้วิธีของ Fisher's LSD โดยมีเกณฑ์การปฏิเสธสมมติฐาน H_o : μ_{.1} = μ_{.m}

ถ้า
$$|\overline{x}_{.l} - \overline{x}_{.m}| > t_{\frac{lpha}{2}} \sqrt{MSE(\frac{2}{n})}$$
 แล้ว ปฏิเสธ H₀

องศาอิสระของ t_αเท่ากับ (n – 1)(k – 1)

ขั้นตอนการทดสอบสมมติฐานด้วยการวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง ขั้นที่ 1 กำหนดสมมติฐานเกี่ยวกับวิธีปฏิบัติการ (Treatment)

 $H_0: \mu_{1.} = \mu_{2.} = \mu_{3.} = \dots = \mu_{k.}$

H₁ : μ_{1.} ≠ μ_{2.} ≠ μ_{3.} ≠ ≠ μ_{k.} (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม (Block)

 $H_0: \mu_{.1} = \mu_{.2} = \mu_{.3} = \dots = \mu_{b.}$

H₁ : μ_{.1} ≠ μ_{.2} ≠ μ_{.3} ≠ ≠ μ_{.b} (ค่าเฉลี่ยอย่างน้อย 2 ชุดต่างกัน)

- **ขั้นที่** 2 กำหนดนัยสำคัญ α
- **ขั้นที่ 3** ทำการสุ่มตัวอย่าง
- **ขั้นที่ 4** เลือกค่าสถิติ F

ขั้นที่ 6 เปิดตารางหาค่าวิกฤต

- 6.1 ค่าวิกฤตของการสรุปผลเกี่ยวกับ Treatment คือ f_{α} โดยมีค่าองศาความเสรี $v_1 = k - 1$, $v_2 = (n - 1)(k - 1)$ บริเวณวิกฤตคือ F > f_{α}
- 6.2 ค่าวิกฤตของการสรุปผลเกี่ยวกับ Block คือ f_{α} โดยมีค่าองศาความเสรี v₁ = n – 1 , v₂ = (n – 1)(k – 1) บริเวณวิกฤตคือ F > f_{α}

ขั้นที่ 7 สรุปผล

7.1 การสรุปผลเกี่ยวกับ Treatment ถ้า f_{treatment} > f_{\alpha} ของ Treatment แล้ว ปฏิเสธ H_{_0}

7.2 การสรุปผลเกี่ยวกับ Block ถ้า f_{block}> f_α ของ Block แล้ว ปฏิเสธ H₀

ตัวอย่าง 9.2.1 ในการเปรียบเทียบประสิทธิภาพของเครื่องจักร 4 ชนิด และความสามารถของ คนที่คุมเครื่องจักร 5 คน ข้อมูลของการทำงานหน่วยเป็น วินาที จากการสุ่มตัวอย่างคือ

	เครื่องจักร 1	เครื่องจักร 2	เครื่องจักร 3	เครื่องจักร 4
เจ้าหน้าที่คนที่ 1	44	38	47	36
เจ้าหน้าที่คนที่ 2	46	40	52	43
เจ้าหน้าที่คนที่ 3	34	36	44	32
เจ้าหน้าที่คนที่ 4	43	38	46	33
เจ้าหน้าที่คนที่ 5	38	42	49	39

จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่า เครื่องจักร 4 เครื่องมีอัตราเร็วเท่ากัน จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่า เจ้าหน้าที่ 5 คน ปฏิบัติการด้วยอัตราเร็วเท่ากัน **วิธีทำ ขั้นที่ 1** สมมติฐานเกี่ยวกับวิธีปฏิบัติการ(เครื่องจักร)

 $H_{_0}:\; \mu_{.1}=\mu_{.2}=\mu_{.3}=\mu_{.4}=\mu_{.5}$

H₁ : μ_{.1} ≠ μ_{.2} ≠ μ_{.3} ≠ μ_{.4} ≠ μ_{.5} (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่างกัน) สมมติฐานเกี่ยวกับความแตกต่างระหว่างกลุ่ม(เจ้าหน้าที่)

 $H_0: \ \mu_{1.} = \mu_{2.} = \mu_{3.} = \mu_{4.}$

H₁ : μ₁. ≠μ₂. ≠μ₃. ≠μ₄. (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่างกัน)

ขั้นที่ 2 กำหนดนัยสำคัญ $\alpha = 0.05$

ขั้นที่ 3 นำข้อมูลเข้าสู่ SPSS for Windows Data Editor

ขั้นที่ 3.1 การสร้างแฟ้มข้อมูลต้องกำหนดตัวแปร man ตัวแปรจำแนกคน

machine ตัวแปรจำแนกเครื่องจักร time ตัวแปรเก็บข้อมูลที่ต้องการวิเคราะห์

เสร็จแล้ว Save ลงแฟ้มข้อมูลชื่อ example20.sav

ขั้นที่ 3.2 เลือกใช้คำสั่ง Analyze / General Linear Model / GLM General Factorial..

🚃 еха	mple20 - SPSS	Data Edito	ī.		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>I</u> ransform	Statistics Graphs	<u>U</u> tilities	Window Help
<u> </u>	18 🔍 🗠) <u>_</u>	S <u>u</u> mmarize Custom Tables		; <u>s</u>
1:ma	n	1	Compare <u>M</u> ear	ns	•
	man	machine	<u>G</u> eneral Linear	Model	 GLM - General Factorial
	man	macinii	<u>C</u> orrelate		GLM - Multivariate
1	1.00	1.	<u>R</u> egression		GLM - Repeated Measures
2	1.00	2.	L <u>og</u> linear Classify		Variance Components

้ขั้นที่ 3.3 เลือกคำสั่ง Simple Factorial จะได้เมนูย่อยดังนี้

ขั้นที่ 3.4 เลือกตัวแปร time ไปที่ช่อง Dependent Variable

เลือกตัวแปร machine ไปที่ช่อง Fixed Factor(s)

เลือกตัวแปร man ไปที่ช่อง Fixed Factor(s)

ขั้นที่ 3.5 คลิกที่ Model จะได้เมนูย่อย

Full factorial	C <u>C</u> ustom	Continue
Eactors & Covariates:	Model:	Cancel
machine(F) man(F)		Help
Interact	ion 💌	

Include intercept in model

ขั้นที่ 3.6 ตรงตำแหน่ง Specify Model

ให้เลือก ● Custom

ขั้นที่ 3.7 เลือกตัวแปร machine(F)

จากช่อง Factor&Covariates

มาไว้ที่ช่อง Model

เลือกตัวแปร man(F)

จากช่อง Factor&Covariates

มาไว้ที่ช่อง Model

ขั้นที่ 3.8 คลิกที่ Built Term(s) คลิกที่ 丁 จะได้

เลือก All 2-way

Specify Model	Custom	Continue
Factors & Covariates:	Model:	Cancel
man(F) machine(F)	man machine	Help
All 2-way All 3-way All 3-way All 4-way All 5-way		
Sum of sguares: Type III	Include intercept in m	nodel

GLM - General Fa Specify Model-C Full factorial Eactors & Covariates Model: machine(F) man(F) machine Build Term(s)-Interaction 💌

Sum of sguares: Type III

219

x

Continue

Cancel

Help

ขั้นที่ 3.9 คลิกที่ Continue จะกลับไปเมนูย่อย
--

👷 Univariate			×
		Dependent Variable:	Model
	Þ	Eixed Factor(s):	Plots Post Hoc
	€	R <u>a</u> ndom Factor(s):	<u>S</u> ave Options
	•	<u>C</u> ovariate(s):	
	€	WLS Weight:	
K	Paste	Reset Cancel Help	

ขั้นที่ 3.9 คลิก OK จะได้ผลการคำนวณดังนี้

ผลการคำนวณทั้งหมดคือ

Univariate Analysis of Variance

Between-Subjects Factors

		N
MACHINE	1.00	5
	2.00	5
	3.00	5
	4.00	5
MAN	1.00	4
	2.00	4
	3.00	4
	4.00	4
	5.00	4

Dependent Variab	ile: TIME				
	Type III Sum of		Mean		
Source	Squares	df	Square	F	Sig.
Corrected Model	500.300 ª	7	71.471	11.637	.0001669961
Intercept	33620.000	1	33620.000	5474.084	.0000000000
MACHINE	338.800	3	112.933	18.388	.0000877779
MAN	161.500	4	40.375	6.574	.0048466575
Error	73.700	12	6.142		
Total	34194.000	20			
Corrected Total	574.000	19			

Tests of Between-Subjects Effects

a. R Squared = .872 (Adjusted R Squared = .797)

การสรุปผลเกี่ยวกับ machine

- 1. เพราะว่า F คำนวณของ machine = 18.39 > 3.49 เพราะฉะนั้น ปฏิเสธ H_o
- 2. เพราะว่า Sig = 0.0000877779 < 0.05 เพราะฉะนั้น ปฏิเสธ H_o

การสรุปผลเกี่ยวกับ man

- 1. เพราะว่า F คำนวณของ man = 6.58 > 3.26 แพราะฉะนั้น ป
- 2. เพราะว่า Sig = 0.0048466575 < 0.05

เพราะฉะนั้น ปฏิเสธ H_o เพราะฉะนั้น ปฏิเสธ H_o

จากผลการคำนวณของ SPSS จะได้ว่า

- SSTR(machine) = 338.8
 MSTR(machine) = 112.933

 SSBL(man) = 161.5
 MSBL(man) = 40.375
- SSE = 73.7 MSE = 6.14

SST = 574

ขั้นที่ 4 เลือกค่าสถิติ F

ขั้นที่ 5 คำนวณค่าสถิติ F จากตัวอย่าง

f_{คำนวณ} ของการสรุปผลเกี่ยวกับ machine

 $f_{\text{hyperature}} = \frac{\text{MSTR(machine)}}{\text{MSE}} = \frac{112.933}{6.14} = 18.39$

f_{คำนวณ} ของการสรุปผลเกี่ยวกับ man

แหล่งการแปรผัน	ผลบวก	องศาเสรี	ค่าเฉลี่ยของผล • ~	f _{คำนวณ}
	กาลงสอง		บวกกาลงสอง	
วิธีการปฏิบัติ(Treatment)	338.800	3	122.933	$f_{treatment} = 18.39$
(machine)				
กลุ่ม(Block)	161.500	4	40.38	$f_{block} = 6.58$
(man)				
ความคลาดเคลื่อน	73.700	12	6.14	
(Error)				
ทั้งหมด	574.000	19		
(Total)				

ตาราง ANOVA

ขั้นที่ 6 เปิดตารางหาค่าวิกฤต

ค่าวิกฤตของการสรุปเกี่ยวกับ machine	$f_{0.05 (v1 = 3, v2 = 12)} = 3.49$
ค่าวิกฤตของการสรุปเกี่ยวกับ man	$f_{0.05 (v1 = 4, v2 = 12)} = 3.26$

ขั้นที่ 7 สรุปผล

การสรุปผลเกี่ยวกับ machine

เพราะว่า F คำนวณของ machine = 18.39 > 3.49 เพราะฉะนั้น ปฏิเสธ H_o

การสรุปผลเกี่ยวกับ man

เพราะว่า F คำนวณของ man = 6.58 > 3.26 เพราะฉะนั้น ปฏิเสธ H_o

การทดสอบ Multiple comparison

เมื่อผลการทดสอบ ปฏิเสธ H_o เราสามารถทดสอบได้ว่า ประชากรคู่ใดมีค่าเฉลี่ยแตกต่างกันโดย ใช้วิธีของ Fisher's LSD

เกณฑ์การปฏิเสธสมมติฐานเกี่ยวกับ Treatment H__: $\mu_{,l}$ = $\mu_{,m}$

ถ้า
$$|\overline{\mathbf{x}}_{.1} - \overline{\mathbf{x}}_{.m}| > t_{\frac{\alpha}{2}} \sqrt{\mathrm{MSE}(\frac{2}{n})}$$
 แล้ว ปฏิเสธ H₀ องศาอิสระของ T เท่ากับ (n – 1)(k – 1)
เกณฑ์การปฏิเสธสมมติฐานเกี่ยวกับ Block H₀ : $\mu_{\mathrm{L}} = \mu_{\mathrm{m}}$.
ถ้า $|\overline{\mathbf{x}}_{\mathrm{L}} - \overline{\mathbf{x}}_{\mathrm{m}}| > t_{\frac{\alpha}{2}} \sqrt{\mathrm{MSE}(\frac{2}{n})}$ แล้ว ปฏิเสธ H₀ องศาอิสระของ T เท่ากับ (n – 1)(k – 1)

จากขั้นตอนที่ 3.10 มีเมนูย่อยเป็น

en Univariate	x
Dependent Va	ariable: <u>M</u> odel
<u>F</u> ixed Factor(s): Contrasts
Random Facto	I Sartisc Save Options
Covariate(s):	
LS Weight	
OK <u>P</u> aste <u>R</u> eset Ca	ancel Help

ก่อนที่จะคลิก OK .ให้เลือก Post Hoc จะได้เมนูย่อยดังนี้

Eactor(s):	Post Ho	oc Tests for: Continue
man machine		Cancel Help
- Equal V ariances As LSD Sonferroni Sidak Scheffe R-E-G-W F R-E-G-W Q	sumed S-N-K F W Lukey Ty Tukey's-b F Du Duncan Cc Hochberg's GT2 T Gabriel	ialler-Duncan ipe I/Type II Error Ratio: 100 unngtt ontrol Category: Last est 2-sided C < Control C > Control
−Equal Variances N Ta <u>m</u> hane's T2	ot Assumed ┌── Dunnett's T <u>3</u> ┌── G ₃	ames-Howell 🦵 D <u>u</u> nnett's C

ขั้นที่ 3.11 เลือกตัวแปร man , machine มาไว้ที่ช่อง Post Hoc Test for และเลือก LSD

Waller-Duncan Type I/Type II Error Ratio	Help
, <u> </u>	. 100
B Dunnett Control Category: GT2 Test C 2-sided C < Control	Last <u>r</u>
	rg's GT2 rg's GT2 t's T3 G gmes-Howell Control Category Test C 2-sided C < Control t's T3 G gmes-Howell C Durner C 2-sided C - Control C 2-sided C - Control C 2-sided C - C - Control C - C - C - C - C - C - C - C - C - C -

ข**ั้นที่ 3.11** คลิก Continue และ OK ตามลำดับจะได้ผลการคำนวณเพิ่มเติมจากเดิมเป็นส่วน

ของการทดสอบ Multiple comparison ดังนี้

Post Hoc Tests MAN

Multiple Comparisons

Dependent Variable: TIME

LSD

		Moon			95% Cor	nfidence val
		Difference			Lower	Unner
(I) MAN	(J) MAN	(I-J)	Std. Error	Sig.	Bound	Bound
1.00	2.00	-4.0000*	1.7524	.04148207	-7.8181	1819
	3.00	4.7500*	1.7524	.01893435	.9319	8.5681
	4.00	1.2500	1.7524	.48929095	-2.5681	5.0681
	5.00	7500	1.7524	.67623944	-4.5681	3.0681
2.00	1.00	4.0000*	1.7524	.04148207	.1819	7.8181
	3.00	8.7500*	1.7524	.00031285	4.9319	12.5681
	4.00	5.2500*	1.7524	.01115079	1.4319	9.0681
	5.00	3.2500	1.7524	.08837595	5681	7.0681
3.00	1.00	-4.7500*	1.7524	.01893435	-8.5681	9319
	2.00	-8.7500*	1.7524	.00031285	-12.5681	-4.9319
	4.00	-3.5000	1.7524	.06898282	-7.3181	.3181
	5.00	-5.5000*	1.7524	.00855429	-9.3181	-1.6819
4.00	1.00	-1.2500	1.7524	.48929095	-5.0681	2.5681
	2.00	-5.2500*	1.7524	.01115079	-9.0681	-1.4319
	3.00	3.5000	1.7524	.06898282	3181	7.3181
	5.00	-2.0000	1.7524	.27600734	-5.8181	1.8181
5.00	1.00	.7500	1.7524	.67623944	-3.0681	4.5681
	2.00	-3.2500	1.7524	.08837595	-7.0681	.5681
	3.00	5.5000*	1.7524	.00855429	1.6819	9.3181
	4.00	2.0000	1.7524	.27600734	-1.8181	5.8181

Based on observed means.

 $^{*}\cdot$ The mean difference is significant at the .05 level.

สรุป ที่ระดับนัยสำคัญ 0.05 คู่ประชากรของ Man ที่มีความสามารถต่างกันคือ คู่ (1,2) , (1 ,3) , (2 , 3) , (2 ,4) , (3 , 5)

MACHINE

Multiple Comparisons

Dependent Variable: TIME

LSD

		Mean			95% Confidence Interval	
		Difference			Lower	Upper
(I) MACHINE	(J) MACHINE	(I-J)	Std. Error	Sig.	Bound	Bound
1.00	2.00	2.2000	1.5674	.18577737	-1.2150	5.6150
	3.00	-6.6000*	1.5674	.00120836	-10.0150	-3.1850
	4.00	4.4000*	1.5674	.01583024	.9850	7.8150
2.00	1.00	-2.2000	1.5674	.18577737	-5.6150	1.2150
	3.00	-8.8000*	1.5674	.00011350	-12.2150	-5.3850
	4.00	2.2000	1.5674	.18577737	-1.2150	5.6150
3.00	1.00	6.6000*	1.5674	.00120836	3.1850	10.0150
	2.00	8.8000*	1.5674	.00011350	5.3850	12.2150
	4.00	11.0000*	1.5674	.00001398	7.5850	14.4150
4.00	1.00	-4.4000*	1.5674	.01583024	-7.8150	9850
	2.00	-2.2000	1.5674	.18577737	-5.6150	1.2150
	3.00	-11.0000*	1.5674	.00001398	-14.4150	-7.5850

Based on observed means.

*• The mean difference is significant at the .05 level.

สรุป ที่ระดับนัยสำคัญ 0.05 คู่ประชากรของ Machine ที่มีความสามารถต่างกันคือ คู่ (1 , 3) ,

(1 ,4) , (2 , 3) ແລະ (3 ,4)

ในกรณีที่เราต้องการทดสอบว่าความแปรปรวนของประชากรเท่ากันหรือไม่ให้ทำดังนี้

จากขั้นตอนที่ 3.10 มีเมนูย่อยเป็น

👷 Univariate			×
		Dependent Variable: I → time	Model
	•	Fixed Factor(s):	Contrasts Plo <u>t</u> s
		Random Factor(s):	<u>Save</u>
		<u>C</u> ovariate(s):	
	\rightarrow	WLS Weight:	
	Paste	Reset Cancel Help	

คลิกที่ Options จะได้เมนูย่อยเป็น

เลือกตัวแปร man , machine มาที่ช่อง Display Means for คลิกที่ Descriptive statistics คลิกที่ Homogeneity tests

คลิก Continue และ OK ตามลำดับ จะได้ผลการคำนวณเพิ่มเติมดังนี้

<u>Compare main effects</u> Co <u>n</u> fidence interval adjustment: LSD (none)
Logridence interval adjustment: LSD (none)
Homogeneity tests
Spread vs. level plot
<u>Besidual plot</u>
└── <u>L</u> ack of fit
☐ <u>G</u> eneral estimable function
e intervals are 95%

Estimates

Dependent Variable: TIME

			95% Coi Inte	nfidence rval
			Lower	Upper
MAN	Mean	Std. Error	Bound	Bound
1.00	41.250	1.239	38.550	43.950
2.00	45.250	1.239	42.550	47.950
3.00	36.500	1.239	33.800	39.200
4.00	40.000	1.239	37.300	42.700
5.00	42.000	1.239	39.300	44.700

Estimates

Dependent Variable: TIME

			95% Confidence Interval		
			Lower	Upper	
MACHINE	Mean	Std. Error	Bound	Bound	
1.00	41.000	1.108	38.585	43.415	
2.00	38.800	1.108	36.385	41.215	
3.00	47.600	1.108	45.185	50.015	
4.00	36.600	1.108	34.185	39.015	

ผลการคำนวณจะได้ค่าสถิติเบื้องต้น Mean Std Error และช่วงความเชื่อมั่น 95 % ของค่าเฉลี่ย ของแต่ละประชากร

บทที่ 10

การทดสอบสมมติฐานแบบนอนพาราเมตริก

ในกรณีที่เราไม่ทราบการแจกแจงของประชากรและเราต้องการทดสอบสมมติฐานเกี่ยวกับ ลักษณะบางอย่างของประชากร เราจะทำการทดสอบสมมติฐาน **แบบนอนพาราเมตริก** (Nonparametric Test) การทดสอบที่เราจะเรียนกันในบทนี้คือ การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่ การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่ การทดสอบว่าประชากร 2 กลุ่มมีความสัมพันธ์กันหรือไม่ การทดสอบว่าค่าเฉลี่ยของประชากร k กลุ่มตัวอย่างเท่ากันหรือไม่

10.1 การทดสอบว่าตัวอย่างที่เราเลือกมาเป็นไปโดยสุ่มหรือไม่

การทดสอบว่าข้อมูลตัวอย่างที่เราเก็บรวบรวมมาได้เป็นการสุ่มจริงหรือไม่ สามารถทำการ

ทดสอบได้โดยใช้วิธี **ทดสอบรันส์** (Runs Test)

การทดสอบสมมติฐานโดยใช้ Runs Test ของ SPSS for windows

ตัวอย่าง 10.1.1 ข้อมูลจำนวนคนที่อยู่ในแถวเพื่อรอถอนเงินจากเครื่อง ATM ที่เก็บมาในช่วง เวลา 40 วันต่อเนื่องกันเป็นดังนี้

6	7	5	6	8	6	8	6	6	4
3	2	4	4	3	4	7	5	6	8
6	6	3	5	2	5	4	4	3	7
5	5	4	3	7	4	6	5	2	8

จงทดสอบว่าจำนวนคนที่อยู่ในแถวเป็นไปอย่างสุ่ม กำหนดระดับนัยสำคัญ 0.05 **วิธีทำ**

ขั้นที่ 1. กำหนดสมมติฐานหลัก H_o : จำนวนคนที่อยู่ในแถวเป็นไปอย่างสุ่ม กำหนดสมมติฐานอื่น H₁ : จำนวนคนที่อยู่ในแถวไม่เป็นไปอย่างสุ่ม

- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ $\alpha = 0.05$
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ

ขั้นที่ 3.1 สร้างแฟ้มข้อมูลประกอบด้วยตัวแปร จำนวนคน (no) เสร็จแล้ว Save ไว้ที่แฟ้มข้อมูล

ชื่อ example21.sav

🛗 example21 - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp				
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
	no	var	var	var	var				
1	6								
2	7								

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / Runs ..

🛅 e	xample21 -	SPSS	for Window	ws Data Editor
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Analyze Graphs Utilities Window Help
<u> </u>				Reports Descriptive Statistics Compare Means
	no		var	Correlate Var Var
	1	6		Regression •
	2	7		- L <u>og</u> linear ► Classify ►
:	3	5		Data Reduction
	4	6		Nonparametric Tests
	5	8		Time Series <u>B</u> inomial
	6	6		Multiple Response
	7	8		
	8	6		2 Rejated Samples
	a	a		K Related <u>S</u> amples

ขั้นที่ 3.3 คลิกที่คำสั่ง Runs ..จะได้เมนูย่อย

👷 Runs Test			×
(⊕ no	, . i	Test Variable List:	OK
			Paste
			<u>R</u> eset
	Ľ		Cancel
			Help
Cut Point		1	
☑ 🗹 Median 🔽 Mo <u>d</u> e			-
Г M <u>e</u> an Г <u>C</u> ustor	r	_	Options

ขั้นที่ 3.4 เลือกตัวแปร no ไปไว้ที่ช่อง Test Variable

A Runs Test	- <u>T</u> est Variable Li	ist: OK OK <u>P</u> aste <u>P</u> aste <u>R</u> eset Cancel
Cut Point	e om:	

หมายเหตุ ขณะนี้เป็นการทำ Runs Test โดยทำการเปรียบเทียบกับค่า Median เราสามารถ ทำการทดสอบโดยทำการเปรียบเทียบกับค่า Mean Mode หรือค่าอื่นๆ ที่กำหนดเองได้ ขั้นที่ 3.5 กด OK จะได้ผลการคำนวณเป็น

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า z_{คำนวณ} < - z_a หรือ z_{คำนวณ} > z_a/2 เพราะว่า z_{คำนวณ} = - 1.570 < - 1.96 เพราะฉะนั้น ปฏิเสธ H₀

หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H
$$_{\scriptscriptstyle 0}$$
 ถ้า Sig < $lpha$

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

การทดสอบว่าประชากรมีค่าเฉลี่ยตามที่เราคาดไว้หรือไม่

ตัวอย่าง 10.1.2 ข้อมูลของจำนวนซัลเฟอร์ออกไซด์ที่ออกมาจากโรงงานอุตสาหกรรมในแต่ละ วัน ที่เก็บมาได้ในช่วง 60 วัน เป็นดังนี้

17.00	15.00	20.00	29.00	19.00	18.00	22.00	25.00	27.00	9.00
24.00	20.00	17.00	6.00	24.00	14.00	15.00	23.00	24.00	26.00
19.00	23.00	28.00	19.00	16.00	22.00	24.00	17.00	20.00	13.00
19.00	10.00	23.00	18.00	31.00	13.00	20.00	17.00	24.00	14.00
28.00	19.00	16.00	22.00	24.00	17.00	20.00	13.00	19.00	10.00
23.00	18.00	17.00	15.00	20.00	29.00	19.00	18.00	22.00	25.00

จงที่ดสอบสมมติฐานว่า ค่าเฉลี่ยของซัลเฟอร์ออกไซด์เท่ากับ 20 ที่ระดับความมีนัยสำคัญ 0.05 **วิธีทำ**

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀: μ = 20 กำหนดสมมติฐานอื่น H₁: μ ≠ 20

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ

ขั้นที่ 3.1 สร้างแฟ้มข้อมูลประกอบด้วยตัวแปร x แทนจำนวนซัลเฟอร์ออกไซด์ เสร็จแล้ว Save ในแฟ้มข้อมูลชื่อ example28.sav

🚞 еха	mple28 - SPSS	for Windows D	ata Editor		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>J</u>	<u>J</u> tilities <u>W</u> indow	<u>H</u> elp
<u> 2</u> 6	18 🔍 🗠) 💷 🔚 🗗	M		<u>s</u>
	×	var	var	var	var
1	17.00				
2	15.00				

ขั้นที่ 3.3 คลิกที่ Runs ..จะได้เมนูย่อย

ขั้นที่ 3.4 เลือกตัวแปร x ไปไว้ที่ช่อง Test Variable

ขั้นที่ 3.5 คลิกที่ช่อง Median

เพื่อยกเลิกการทดสอบเทียบกับค่า Median คลิกที่ช่อง Custom

และพิมพ์ค่า 20 ในช่อง Custom

ขั้นที่ 3.6 คลิก OK จะได้ผลการคำนวณเป็น

🏗 Output1 - SPSS for Windows V	iewer	
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>A</u> n	alyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indov	v <u>H</u> elp
<u> - I () () () () () () () () () (</u>	🗏 🔄 🖉 💷	++++
⊡ — 🤁 Output ⊡ — 🔁 NPar Tests	→ NPar Tests	
→ 🚰 Title	Runs Test	
Rups Test		Х
	Test Valueª	20
	Total Cases	60
	Number of Runs	36
	Z	1.312
	Asymp. Sig. (2-tailed)	.189
	a. User-specified.	

- **ขั้นที่ 4**. เลือกค่าสถิติ Z
- **ขั้นที่ 5**. z_{คำนวณ} = 1.312 และ Asymp Sig (2-tailed) = 0.189
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต
 กรณีใช้ค่า Z ค่าวิกฤตคือ z_a/2 และ z_a/2 บริเวณวิกฤตคือ Z < z_a/2 หรือ Z > z_a/2
 เพราะฉะนั้นค่าวิกฤตคือ 1.96 และ 1.96 บริเวณวิกฤตคือ Z < 1.96 หรือ Z > 1.96
 ขั้นที่ 7. สรุปผล
 แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต
 โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า z_{คำนวณ} < z_a/2 หรือ z_{คำนวณ} > z_a/2
 เพราะว่า z_{คำนวณ} = 1.312 ไม่อยู่ในบริเวณวิกฤต
 เพราะฉะนั้น ยอมรับ H₀
 หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α
 โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า Sig < α
 เพราะว่า Sig = 0.189 > 0.05
 เพราะฉะนั้น ยอมรับ H₀

10.2 การทดสอบว่าประชากรมีการแจกแจงตามที่เราคาดไว้หรือไม่

การทดสอบว่าประชากรที่เราสนใจมีการแจกแจงปกติจริงหรือไม่ ประชากรที่เราสนใจมีการ แจกแจง uniform จริงหรือไม่ ประชากรที่เราสนใจมีการแจกแจงปัวส์ซองจริงหรือไม่ เราสามารถ ทำการทดสอบแบบ Non parametric Test ได้

ตัวอย่าง 10.2.1	การทดสอบว่าน้ำหนักของนักเรียนมีการแจกแจงปกติจริงหรือไม่ จึงทำการ
สุ่มตัวอย่างน้ำหนัก	นักเรียนมา 50 คน ได้ข้อมูลดังนี้

50	69	108	85	132	67	121	80	59	64
148	61	50	103	110	66	95	55	128	101
137	145	103	96	136	127	149	111	76	134
87	117	50	77	108	133	98	124	95	124
109	123	107	65	92	101	125	66	90	110

กำหนดระดับนัยสำคัญ 0.05

วิถีทำ

ขั้นที่ 1. กำหนดสมมติฐานหลัก H_o : ข้อมูลน้ำหนักมีการแจกแจงปกติ กำหนดสมมติฐานอื่น

H₁ : ข้อมูลน้ำหนักไม่มีการแจกแจงปกติ

28.00

1

2

х

59 M

69.00

var

- ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05
- ้ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ 🖁
- **ขั้นที่ 3**.1 สร้างแฟ้มข้อมูล

และ Save ในชื่อ example22.sav

ขั้นที่ 3.2 เลือกคำสั่ง

Analyze / Nonparametric Tests / Sample K-S.

1	exa	mnle22 - SPSS	for Window	es Data Editor	
	<u>File</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp
	2	18 🔍 🗠		Reports Descriptive Statistics Compare <u>M</u> eans	; <mark>= %@</mark>
		×	var	<u>G</u> eneral Linear Model <u>C</u> orrelate	var var
	1	59.00		<u>R</u> egression	•
	2	69.00		· Loglinear Classify	•
	3	110.00		Data Reduction	
	4	85.00		<u>N</u> onparametric Tests	▶ <u>C</u> hi-Square
	5	132.00		Time Series	<u>B</u> inomial
	6	67.00		 <u>S</u>urvivai Muļtiple Response 	<u>H</u> uns <u>1</u> -Sample K-S
	7	121.00		Missing <u>V</u> alue Analysis	2 Independent Samples
	8	80.00			<u>K</u> Independent Samples 2 Related Samples
	9	59 M			K Related <u>S</u> amples

var

<u>Analyze Graphs Utilities Window H</u>elp 🖳 🔚 🕼 州 挿 🏥 🏥 🛤 🐼 🚳

var

var

Negative -.078 Kolmogorov-Smirnov Z .717 Asymp. Sig. (2-tailed) .683 a. Test distribution is Normal. b. Calculated from data.

ขั้นที่ 4. เลือกค่าสถิติ Z (Kolmogorov–Smirnov Z)

- ขั้นที่ 5. z_{คำนวณ} = 0.717 และ Asymp Sig (2-tailed) = 0.683
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต

กรณีใช้ค่า Z ค่าวิกฤตคือ – z_a และ z_a บริเวณวิกฤตคือ Z < – z_a หรือ Z > z_a เพราะฉะนั้นค่าวิกฤตคือ – 1.96 และ 1.96 บริเวณวิกฤตคือ Z < – 1.96 หรือ Z > 1.96 **ขั้นที่ 7**. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H_0 ถ้า $z_{_{-nuon}} < -z_{\frac{lpha}{2}}$ หรือ $z_{_{-nuon}} > z_{\frac{lpha}{2}}$

เพราะว่า z_{คำนวณ} = 0.717 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น ยอมรับ H_o

หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H_ ถ้า Sig < lpha

เพราะว่า Sig = 0.0.683 > 0.05 เพราะฉะนั้น ยอมรับ H_o

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

10.3 การทดสอบว่าประชากร 2 กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่

10.3.1 ประชากร 2 ชุดไม่เป็นอิสระต่อกัน

ในกรณีที่ประชากร 2 ชุดไม่อิสระต่อกัน และ ไม่ทราบการแจกแจงของประชากร เราสามารถ ทำการทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากร 2 ชุดเท่ากันหรือไม่ โดยใช้วิธีทดสอบ Wilcoxon Signed Ranks Test

ตัวอย่าง 10.3.1 การทดสอบว่าโปรแกรมการควบคุมน้ำหนักโดยใช้เวลา 40 วันจะมีผลทำให้ น้ำหนักลดลง ได้ทำการเก็บข้อมูลน้ำหนักของชาย 40 คนได้ข้อมูลดังนี้

	×	У
1	147.00	137.90
2	183.50	176.20
3	232.10	219.00
4	161.60	163.80
5	197.50	193.50
6	206.30	201.40
7	177.00	180.60
8	215.40	203.20
9	147.70	149.00
10	208.10	195.40

	×	У
11	137.90	140.00
12	176.20	170.00
13	219.00	210.00
14	163.80	160.00
15	137.90	140.00
16	176.20	170.00
17	219.00	210.00
18	163.80	165.00
19	193.50	195.00
20	201.40	205.00

	×	У
21	180.60	185.00
22	203.20	195.00
23	137.90	140.00
24	176.20	170.00
25	219.00	200.00
26	163.80	155.00
27	193.50	190.00
28	201.40	200.00
29	180.60	170.00
30	137.90	140.00

	×	У
31	176.20	177.00
32	219.00	211.00
33	163.80	174.00
34	193.50	195.00
35	201.40	200.00
36	180.60	180.00
37	203.20	203.00
38	149.00	150.00
39	195.40	185.00
40	145.00	150.00

x เป็นน้ำหนักก่อนเข้าโปรแกรม y เป็นน้ำหนักหลังเข้าโปรแกรม จงทดสอบสมมติฐานว่าโปรแกรมการควบคุมน้ำหนักไม่ทำให้น้ำหนักเปลี่ยนแปลง กำหนดระดับนัยสำคัญ 0.05

วิธีทำ

ขั้นที่ 1. กำหนดสมมติฐานหลัก H₀ : ค่าเฉลี่ยของน้ำหนักก่อนและหลังเข้าโปรแกรมเท่ากัน กำหนดสมมติฐานอื่น H₁ : ค่าเฉลี่ยของน้ำหนักก่อนและหลังเข้าโปรแกรม**ไม**่เท่ากัน

ขั้นที่ 2. กำหนดระดับนัยสำคัญ $\alpha = 0.05$

- **ขั้นที่ 3**. ทำการสุ่มตัวอย่างและคำนวณ
- **ขั้นที่** 3.1 สร้างแฟ้มข้อมูลและ

Save ข้อมูลในแฟ้มชื่อ example23.sav

🧰 еха	mple23 - SPSS	for Windows D	ata Editor		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>j</u>	∐tilities <u>W</u> indow	<u>H</u> elp
<u> 2</u>	18 🔍 🗠) 💷 🗽 🕼	M <u>*</u>	▦◍ॖॖॾ	<u>s</u>
	×	У	var	var	var
1	147.00	137.90			
2	183.50	176.20			

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / 2 Related Samples...

🛅 ex	ample23 - SPSS	for Windows [)ata Editor	
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r	i <mark>alyze <u>G</u>raphs <u>U</u>tilities</mark>	<u>W</u> indow <u>H</u> elp
2	- 📮 🗟		Reports	े 🖬 🗞 🚳
			Descriptive Statistics	
			Compare <u>m</u> eans Compret Linear Madel	
	×	У	<u>C</u> orrelate	var var
1	147.00	137.	<u>R</u> egression	•
2	183.50	176.	L <u>og</u> linear Classify	
3	232.10	219.	Data Reduction	
4	161.60	163.	<u>N</u> onparametric Tests	▶ <u>C</u> hi-Square
1	197.50	193.	Time Series Survival	<u>B</u> inomial
E	206.30	201.	Multiple Response	▶ <u>1</u> -Sample K-S
7	177.00	180	Missing <u>V</u> alue Analysis	<u>2</u> Independent Samples K Independent Samples
8	215.40	203.20		2 Related Samples
9	147 70	149 በበ		K Related <u>S</u> amples

() () () () () () () () () () () () () (_	<u>T</u> est Pair(s) List:	
	\mathbf{F}		[
			-
- Current Selections		Test Type	
Variable 1:		₩ilcoxon Γ <u>S</u> ign Γ	<u>M</u> cN
Variable 2:			

ขั้นที่ 3.3 คลิกที่คำสั่ง 2 Related Samples .จะได้เมนูย่อย

ขั้นที่ 3.4 คลิกที่ตัวแปร x จะได้ Variable 1 : x

คลิกที่ตัวแปร y จะได้ Variable	2 : y		
≈A Two-Related-Sample	s Tests		×
 ★ 0 ★ 0 	•	Iest Pair(s) List	OK Paste <u>R</u> eset Cancel Help
Current Selections Variable 1: x Variable 2: y		Test Type ₩icoxon Γ <u>Sign</u> Γ <u>t</u>	<u>M</u> cNemar Dptions

ขั้นที่ 3.5 คลิกที่ที่ปุ่มลูกศรเพื่อนำตัวแปรคู่นั้นไปไว้ที่ช่อง Test Pair(s) List

Two-Related-Samples	s Tests		×
·		<u>T</u> est Pair(s) List: X → V	OK Paste Reset Cancel Help
Current Selections Variable 1: Variable 2:		, Test Type	cNemar
			ptions

ขั้นที่ 3.6 กด OK จะได้ผลการคำนวณเป็น

NPar Tests Wilcoxon Signed Ranks Test

	Ranks					
		N	Mean Rank	Sum of Ranks		
Y - X	Negative Ranks	24 ^a	25.21	605.00		
	Positive Ranks	16 ^b	13.44	215.00		
	Ties	0 ^c				
	Total	40				

b. Y > X

c. X = Y

Test Statistics^b

	Y - X
Z	-2.622
Asymp. Sig. (2-tailed)	.009

a. Based on positive ranks.

b. Wilcoxon Signed Ranks Test

ขั้นที่ 4. เลือกค่าสถิติ Z

ขั้นที่ 5. z_{คำนวณ} = - 2.622 และ Asymp Sig (2-tailed) = 0.009

้ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต

กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ Z < $-z_{\frac{\alpha}{2}}$ หรือ Z > $z_{\frac{\alpha}{2}}$ เพราะฉะนั้นค่าวิกฤตคือ – 1.96 และ 1.96 บริเวณวิกฤตคือ Z < – 1.96 หรือ Z > 1.96

ขั้นที่ 7. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า z_{คำนวณ} <
$$-z_{\frac{\alpha}{2}}$$
 หรือ $z_{_{
m enuon}} > z_{\frac{\alpha}{2}}$

หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H $_{_0}$ ถ้า Sig < lpha

เพราะว่า Sig = 0009 < 0.05 เพราะฉะนั้น ปฏิเสธ H_o

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

10.3.2 ประชากร 2 ชุดเป็นอิสระต่อกัน

ตัวอย่าง 10.3.2 ปริมาณของนิโคตินที่มีในบุหรี่ 2 ยี่ห้อคือ

ยี่ห้อ A 2.1 4.0 6.3 5.4 4.8 3.7 6.1 3.3

ยี่ห้อ B 4.1 0.6 3.1 2.5 4.0 6.2 1.6 2.2 1.9 5.4

จงทดสอบที่ระดับนัยสำคัญ 0.05 ว่าปริมาณของนิโคตินที่มีในบุหรี่ 2 ยี่ห้อเท่ากันหรือไม่ **วิธีทำ**

- **ขั้นที่** 1. กำหนดสมมติฐานหลัก H₀: μ₁ = μ₂ กำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.05
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ
- **ขั้นที่ 3.1** สร้างแฟ้มข้อมูล code เป็นตัวแปรจำแนกกลุ่ม x เป็นตัวแปรปริมาณนิโคติน Save แฟ้มข้อมูลชื่อ example27.sav

💼 еха	mple27 - SPSS	for Windows D	ata Editor			
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp						
*						
	code	x	var	var	var	
1	1.00	2.10				
2	1.00	4.00				

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric / 2 Independent Samples..

🛗 еха	🛗 example27 - SPSS for Windows Data Editor							
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r	n <mark>alyze <u>G</u>raphs <u>U</u>tilities</mark>	<u>W</u> indow <u>H</u> elp				
	i 🎒 🖳 🗠		Re <u>p</u> orts D <u>e</u> scriptive Statistics Compare <u>M</u> eans	; <mark>i s</mark> ø				
	code	×	<u>G</u> eneral Linear Model <u>C</u> orrelate	var var				
1	1.00	2.	<u>R</u> egression	•				
2	1.00	4.	L <u>og</u> linear Classif <u>y</u>					
3	1.00	6.	Data Reduction					
4	1.00	5.	<u>N</u> onparametric Tests	<u>Chi-Square</u>				
5	1.00	4.	Time Series	<u>B</u> inomial				
6	1.00	3.	<u>S</u> urwai Multiple Response	<u>1</u> -Sample K-S				
7	1.00	6	Missing <u>V</u> alue Analysis.	<u>2</u> Independent Samples K Independent Samples				
8	1.00	3.30		2 Related Samples				
q	200	/ 10	1	K Related <u>S</u> amples				

ข**ั้นที่ 3.3** คลิกที่ 2 Independent Samples..จะได้เมนูย่อย

ขั้นที่ 3.4 เลือกตัวแปร x มาที่ช่อง Test Variable List

เลือกตัวแปร code มาที่ช่อง Grouping Variable

ขั้นที่ 3.5 คลิกที่ code(?,?) จะได้

	<u>T</u> est Variable List:	OK
[ا	Paste
_	_	<u>R</u> esel
	<u>G</u> rouping Variable:	Cance
L	code(? ?) Define Groups	Help
Test Type		
🔽 Mann-Whitney U	└ Kolmogorov-Smirnov Z	
☐ Moses extreme reactions	└── <u>W</u> ald-Wolfowitz runs	
	Options	

ขั้นที่ 3.6 คลิกที่ Define Groups.. จะได้เมนูย่อย

Two Independent Samples: Define G 🗙					
Group <u>1</u> :		Continue			
Group <u>2</u> :		Cancel			
		Help			

ขั้นที่ 3.7 พิมพ์ 1 ในช่อง Group 1

แล้วกด Tab

พิมพ์ 2 ในช่อง Group 2

Two Independent Samples: Define G 🗙						
Group <u>1</u> :	1	Continue				
Group <u>2</u> :	2	Cancel				
		Help				

ขั้นที่ 3.8 คลิกที่ Continue และ OK ตามลำดับ จะได้ผลการคำนวณเป็น

NPar Tests Mann-Whitney Test

Ranks

	CODE	N	Mean Rank	Sum of Ranks
Х	1.00	8	11.63	93.00
	2.00	10	7.80	78.00
	Total	18		

Test Statistics^b

	Х
Mann-Whitney U	23.000
Wilcoxon W	78.000
Z	-1.512
Asymp. Sig. (2-tailed)	.131
Exact Sig. [2*(1-tailed Sig.)]	.146 ^a

a. Not corrected for ties.

b. Grouping Variable: CODE

ขั้นที่ 4. เลือกค่าสถิติ Z

- **ขั้นที่ 5**. z_{คำนวณ} = − 1.512 และ Asymp Sig (2-tailed) = 0.131
- ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต

กรณีใช้ค่า Z ค่าวิกฤตคือ $-z_{\frac{\alpha}{2}}$ และ $z_{\frac{\alpha}{2}}$ บริเวณวิกฤตคือ Z < $-z_{\frac{\alpha}{2}}$ หรือ Z > $z_{\frac{\alpha}{2}}$ เพราะฉะนั้นค่าวิกฤตคือ – 1.96 และ 1.96 บริเวณวิกฤตคือ Z < – 1.96 หรือ Z > 1.96

ขั้นที่ 7. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า z_{คำนวณ} <
$$-z_{\frac{\alpha}{2}}$$
 หรือ z_{คำนวณ} > $z_{\frac{\alpha}{2}}$

เพราะว่า z_{คำนวณ} = -1.512 ไม่อยู่ในบริเวณวิกฤต เพราะฉะนั้น ยอมรับ H_o

หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า Sig < α เพราะว่า Sig = 0.131 > 0.05 เพราะฉะนั้น ยอมรับ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

10.4 การทดสอบว่าประชากร k กลุ่มมีค่าเฉลี่ยเท่ากันหรือไม่

10.4.1 ประชากร k กลุ่มเป็นอิสระต่อกัน

ในกรณีที่ประชากร k ชุดอิสระต่อกัน และ ไม่ทราบการแจกแจงของประชากร เราสามารถทำ การทดสอบสมมติฐานว่าค่าเฉลี่ยของประชากร 2 ชุดเท่ากันหรือไม่ โดยใช้วิธีทดสอบ Kruskal – Wallis Test

ด้วอย่าง 10.4.1 คะแนนสอบวิชาภาษาเยอรมันของนักเรียน 3 กลุ่มที่มาจากวิธีการสอนที่ต่างกัน

วิธีที่ 1 94 88 91 74 87 97 วิธีที่ 2 85 82 79 84 63 72 80 วิธีที่ 3 89 67 72 76 69

วิธีที่ 3 89 67 72 76 69

จงทดสอบสมมติฐานว่าวิธีการสอนทั้งสามแบบให้ผลเหมือนกัน กำหนดระดับนัยสำคัญ 0.05

วิธีทำ ขั้นที่ 1. กำหนดสมมติฐานหลัก $H_0: \mu_1 = \mu_2 = \mu_3$

กำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂ ≠ μ₃ (ค่าเฉลี่ยอย่างน้อย 1 คู่แตกต่าง)

ขั้นที่ 2. กำหนดระดับนัยสำคัญ α = 0.05

ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ

ขั้นที่ 3.1 สร้างแฟ้มข้อมูล code เป็นตัวแปรจำแนกกลุ่ม x เป็นตัวแปรเก็บคะแนน และ Save ลงแฟ้มข้อมูลชื่อ example29.sav

🚞 еха	🛗 example29 - SPSS for Windows Data Editor						
<u>F</u> ile <u>E</u>	<u>File Edit View Data Transform Analyze Graphs Utilities Window Help</u>						
<u></u>	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	code	×	var	var	var		
1	1.00	94.00					
2	1.00	88.00					
3	1.00	91.00					

🚃 еха	mple29 - SPSS	for Windows [)ata Editor		
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r	alyze <u>G</u> raphs <u>U</u> tilities	s <u>W</u> ir	ndow <u>H</u> elp
<u> </u>	I 🗐 🔍 🗠	<u>iii.</u>	Reports Descriptive Statistics	• •	<u>s</u> <u>s</u> <u>s</u>
1:cod	e	1	Compare <u>M</u> eans	•	
	code	×	<u>G</u> eneral Linear Model <u>C</u> orrelate	+	var var
1	1.00	94.	<u>R</u> egression	•	
2	1.00	88.	L <u>og</u> linear Classify	+	
3	1.00	91.	Data Reduction	t	
4	1.00	74.	<u>N</u> onparametric Tests	Þ	<u>C</u> hi-Square
5	1.00	87.	Time Series Survival		<u>B</u> inomial Bups
6	1.00	97.	Multiple Response	•	<u>1</u> -Sample K-S
7	2.00	85	Missing <u>V</u> alue Analysis		<u>2</u> Independent Samples K Independent Samples
8	2.00	82.00			2 Related Samples
q	2 00	79 NN			K Related <u>S</u> amples

ขั้นที่ 3.2 เลือกคำสั่ง Analyze / Nonparametric Tests / K Independent Samples...

ข**ั้นที่ 3.3** คลิกที่คำสั่ง K Independent Samples... .จะได้เมนูย่อย

배 Tests for Several II	ndependent Samples	×
 ◆ code ◆ x 		OK <u>P</u> aste <u>B</u> eset Cancel Help
⊤Test Type ✓ <u>K</u> ruskal-Wallis H	_Define Range	

ขั้นที่ 3.4 เอาตัวแปร x ไปไว้ที่ช่อง Test Variable List

เอาตัวแปร code ไปไว้ที่ช่อง Grouping Variable

暗音 Tests for Several Ir	ndependent Samples	×
		OK <u>Paste</u> <u>R</u> eset Cancel Help
⊤Test Type ✓ <u>K</u> ruskal-Wallis H	└─ <u>M</u> edian	ptions

ขั้นที่ 3.5 คลี	ถิกที่ช่อง Grouping Variable	State for Several I	Independent Samples 	× □K <u>Paste</u> <u>R</u> eset Cancel Help
		⊤Test Type ✓ Kruskal-Wallis H	☐ <u>M</u> edian	Options
ขั้นที่ 3.6	คลิกที่ Define Range จะได้เมนูย่อย		Several Independent Samples: De Range for Grouping Variable	fine Range 🗙
ขั้นที่ 3.7	พิมพ์ 1 ในช่อง Minimum		Mjnimum:	Cancel Help
	พิมพ์ 3 ในช่อง Maximum		Several Independent Samples: De Range for Grouping Variable Mjnimum: 1 Maximum: 3	fine Range X Continue Cancel Help

ขั้นที่ 3.8 กด Continue และ OK ตามลำดับ จะได้ผลการคำนวณเป็น

NPar Tests Kruskal-Wallis Test

Ranks				
			Mean	
	CODE	N	Rank	
X	1.00	6	14.00	
	2.00	7	7.93	
	3.00	5	6.30	
	Total	18		

Test Statistics^{a,b}

	Х
Chi-Square	6.673
df	2
Asymp. Sig.	.036

a. Kruskal Wallis Test

b. Grouping Variable: CODE

บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก ขั้นที่ 4. เลือกค่าสถิติ χ² ขั้นที่ 5. χ²_{ค้านวա} = 6.673 และ Asymp Sig = 0.036 ขั้นที่ 6. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต ค่าวิกฤตคือ χ²_α df = k – 1 บริเวณวิกฤตคือ χ² > χ²_α เพราะฉะนั้นค่าวิกฤตคือ χ²_{0.05} = 5.99 บริเวณวิกฤตคือ χ² > 5.99 ขั้นที่ 7. สรุปผล แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า χ²_{คำนวա} > χ²_α เพราะว่า χ²_{คำนวա} = 6.673 > 5.99 เพราะฉะนั้น ปฏิเสธ H₀ หรือ แบบที่ 2 โดยการเปรียบเทียบ Sig กับค่า α โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า Sig < α เพราะว่า Sig = 0.036 < 0.05 เพราะฉะนั้น ปฏิเสธ H₀

หมายเหตุ การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

10.4.2 ประชากร 2 กลุ่มไม่เป็นอิสระต่อกัน

ตัวอย่าง 10.4.2 เครื่องมือ 3 แบบสำหรับวัดปริมาณของซัลเฟอร์มอน็อกไซด์ในบรรยากาศได้ ข้อมูลเป็นดังนี้

วันที	เครื่องมือแบบ A	เครื่องมือแบบ B	เครื่องมือแบบ C
1.	0.96	0.87	0.76
2.	0.82	0.74	0.85
3.	0.75	0.63	0.74
4.	0.61	0.55	0.46
5.	0.89	0.76	0.78
6.	0.64	0.70	0.81
7.	0.81	0.69	0.72
8.	0.68	0.57	0.56
9.	0.65	0.53	0.56
10.	0.84	0.88	0.74
11.	0.59	0.51	0.62
12.	0.94	0.79	0.68

ปริมาณของซัลเฟอร์มอน็อกไซด์ที่วัดได้ในแต่ละวัน

จงทดสอบที่ระดับนัยสำคัญ 0.05 ว่าผลการวัดของเครื่องมือทั้ง 3 แบบมีผลไม่แตกต่างกัน **วิธีทำ**

- **ขั้นที่ 1**. กำหนดสมมติฐานหลัก H₀: μ₁ = μ₂ = μ₃ กำหนดสมมติฐานอื่น H₁: μ₁ ≠ μ₂ ≠ μ₃
- **ขั้นที่ 2**. กำหนดระดับนัยสำคัญ α = 0.05
- ขั้นที่ 3. ทำการสุ่มตัวอย่างและทำการคำนวณ

ขั้นที่ 3.1 สร้างแฟ้มข้อมูลประกอบด้วยตัวแปร 3 ตัวคือ a , b , c เป็นปริมาณของซัลเฟอร์มอน็ อกไซด์ในบรรยากาศได้ด้วยเครื่องมือแบบ A , B , C ตามลำดับ และ Save ลงแฟ้มข้อมูลชื่อ

example30.sav

🎞 e	📺 example30 - SPSS for Windows Data Editor						
<u>F</u> ile	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp						
Ē	*						
		а	b	C	var	var	
	1	.96	.87	.76			
	2	.82	.74	.85			

ข**ั้นที่** 3.2 เลือกคำสั่ง Analyze / Nonparametric / K Related Samples..

🏢 еха	mple30 - SPSS	for Windows	Data Editor	
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze <u>G</u> raphs <u>U</u> tilities	<u>Window H</u> elp
	i (đ) 🖳 🗠		Reports Descriptive Statistics Compare <u>M</u> eans	; <u>, s</u> ø
	а	b	<u>G</u> eneral Linear Model <u>C</u> orrelate	var var
1	.96	•	<u>R</u> egression	
2	.82		L <u>og</u> linear Classify	
3	.75		Data Reduction	
4	.61		Sc <u>a</u> le <u>N</u> onparametric Tests	<u>Chi-Square</u>
5	.89		Time Series Suminal	<u>B</u> inomial
6	.64		<u>S</u> urwai Multiple Response	▶ <u>1</u> -Sample K-S
7	.81		Missing <u>V</u> alue Analysis	. <u>2</u> Independent Samples K Independent Samples
8	.68	.57	.56	2 Related Samples
9	65	53	56	K Related <u>S</u> amples

ขั้นที่ 3.3 คลิกที่ K Related Samples....จะได้เมนูย่อย

∲a)))))))))))))))))))))))))))))))))))		OK <u>P</u> aste
	•	<u>B</u> eset Cancel Help
-Test Type I▼ <u>F</u> riedman I	Kendall's W I Cochran's Q	<u>Statistics</u>
บทที่ 10 การทดสอบสมมติฐานแบบนอนพาราเมตริก

ขั้นที่ 3.4 เลือกตัวแปร a , b , c มาที่ช่อง Test Variables

at Tests for Several Related Samples Image: several Related Samples	'ariables:OK
	Cancel Help
- Test Type	s Q <u>S</u> tatistics

ขั้นที่ 3.5 คลิกที่ OK จะได้ผลการคำนวณเป็น

NPar Tests Friedman Test

Ranks

	Mean Rank
А	2.58
В	1.58
С	1.83

Test Statistics^a

Ν	12
Chi-Square	6.500
df	2
Asymp. Sig.	.039

a. Friedman Test

- ขั้นที่ 4. เลือกค่าสถิติ χ^2
- ขั้นที่ 5. คำนวณค่าสถิติจากตัวอย่างได้ $\chi^2_{_{
 m furm}}$ = 6.500 และ Asymp Sig = 0.039
- **ขั้นที่ 6**. เปิดตารางสถิติเพื่อหาค่าวิกฤตและบริเวณวิกฤต

ค่าวิกฤตคือ χ^2_{α} df = k – 1 บริเวณวิกฤตคือ $\chi^2 > \chi^2_{\alpha}$

เพราะฉะนั้นค่าวิกฤตคือ $\chi^2_{0.05}$ = 5.99 บริเวณวิกฤตคือ χ^2 > 5.99

Dumrong Tipyotha

ขั้นที่ 7. สรุปผล

แบบที่ 1 โดยการเปรียบเทียบค่าสถิติจากตัวอย่าง กับ ค่าวิกฤต

247

โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า $\chi^2_{_{_{\textit{fiu}3u}}} > \chi^2_{_{_{\textit{a}}}}$ เพราะว่า $\chi^2_{_{_{\!\!fiu3u}}} = 6.5 > 5.99$ เพราะฉะนั้น ปฏิเสธ H₀ **หรือ แบบที่ 2** โดยการเปรียบเทียบ Sig กับค่า α โดยมีเกณฑ์การสรุปผลว่า ปฏิเสธ H₀ ถ้า Sig < α เพราะว่า Sig = 0.039 < 0.05 เพราะฉะนั้น ปฏิเสธ H₀ **หมายเหตุ** การสรุปผลโดยใช้ค่าการเปรียบเทียบ Sig กับค่า α มีความสะดวกดีกว่า

10.5 การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ (Rank Correlation Coefficient)

การหาสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน (Rank Correlation Coefficient)										
ตัวอย่าง 10.5.1 ข้อมู	ରଥାତ୍ୟ '	จำนวน	ชั่วโมง	ดูหนังส	งื้อ และ	ะคะแน	นสอบเ	ี่นักเรีย	ยนทำได	ก้ เป็นดังนี้
นักเรียนคนที่	1	2	3	4	5	6	7	8	9	10
ดูหนังสือ(หน่วย ชม.)	8	5	11	13	10	5	18	15	2	8
คะแนน	56	44	79	72	70	54	95	85	33	65
จงหาสัมประสิทธิ์สหสัมเ	พันธ์ต่ำ	แหน่งที	่ ของสเ	ปียร์แม	าน และ	ะอธิบา	ยความ	มส้มพับ	เธ์ที่ได้	

วิธีทำ

ขั้นที่ 1. สร้างแฟ้มข้อมูลโดยมีตัวแปร x แทนจำนวนชั่วโมงที่ดูหนังสือ และ ตัวแปร y แทน คะแนนที่ได้ เสร็จแล้ว Save ลงแฟ้มข้อมูลชื่อ example30.sav

🚞 exa	🛗 example31 - SPSS for Windows Data Editor										
<u>F</u> ile <u>B</u>	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
<u>e</u> l	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 										
	×	У	var	var	var						
1	8.00	56.00									
2	5.00	44.00									

ขั้นที่ 2 เลือกคำสั่ง Analyze / Correlate / Bivariate..

💼 еха	📷 example31 - SPSS for Windows Data Editor									
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	<u>W</u> indow <u>H</u> elp						
🖆 🔲 🖳 🖳 🎦 Reports 👌 🖡 📎 🚳										
			Compare <u>M</u> eans	•						
	×	v	<u>G</u> eneral Linear Model							
			<u>U</u> orrelate	Bivariate						
1	8.00	56.	<u>R</u> egression	 Partial 						
7	5.00	44	L <u>og</u> linear	<u>D</u> istances						

and Bivariate Correlations	×
♥ ¥ariables:	OK Paste Reset Cancel Help
Correlation Coefficients	
Image: Sector of Signal Sector Image: Sector <td>Options</td>	Options

ขั้นที่ 3 คลิกที่คำสั่ง Bivariate...จะได้เมนูย่อย

ขั้นที่ 4 นำตัวแปร x และ ตัวแปร y มาไว้ที่ช่อง Variables

Bivariate Correlations	×
Variables:	ок
	Paste
	<u>R</u> eset
	Cancel
	Help
Correlation Coefficients ✓ Pearson ┌─ Kendall's tau-b ┌─ Spearman	
Test of Significance	
Elag significant correlations	Options

ขั้นที่ 5 คลิกที่ Pearson เพื่อยกเลิก และ คลิกที่ Spearman เพื่อเลือกคำนวณ สัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน

⊻ariables:	OK <u>P</u> aste
•	<u>R</u> esel Cance
- Correlation Coefficients ┌─Pearso <u>n ┌─K</u> endall's tau-b ┌─ <u>S</u> pearmar	
Test of Significance © Iwo-tailed C One-tailed	
Elag significant correlations	Options

ขั้นที่ 6 กด OK จะได้ผลการคำนวณเป็นดังนี้

ผลการคำนวณทั้งหมดคือ Nonparametric Correlations

Correlations

			Х	Y
Spearman's rho	Х	Correlation Coefficient	1.00000000	.98172557**
		Sig. (2-tailed)		.00000100
		Ν	10	10
	Y	Correlation Coefficient	.98172557**	1.00000000
		Sig. (2-tailed)	.00000100	
		Ν	10	10

**. Correlation is significant at the .01 level (2-tailed).

สรุป ค่าสัมประสิทธิ์สหสัมพันธ์ตำแหน่งที่ของสเปียร์แมน = 0.98172557 เพราะฉะนั้น จำนวนชั่วโมงดูหนังสือ และคะแนนสอบที่นักเรียนทำได้มีความสัมพันธ์กันในทิศ ทางเดียวกัน ดังนั้นหากดูหนังสือมากขึ้นก็จะได้คะแนนมากขึ้นด้วย

ภาคผนวกที่ 1 การคำนวณค่า Significant ของค่าสถิติ

ผลการวิเคราะห์ค่าทางสถิติของ SPSS for Windows จะมีการแสดงค่าของ Significant เช่น Sig(1 – tailed) , Sig(2 – tailed) ซึ่งที่มาของค่า Significant อาจคำนวณมาจากค่าสถิติ T , F , Chi–Square ตัวอย่างเช่น

ค่าสถิติ Chi–Square = 3.822 , df = 3 มีค่า Asymp. Sig. = 0.281 ค่าสถิติ T = 1.581 , df = 4 มีค่า Sig(2 – tailed) = 0.189 ค่าสถิติ F = 4.302 , v₁ = 4 , v₂ = 25 มีค่า Sig = 0.009

1. การหาค่า Significant ของค่าสถิติที่ T

ค่า Significant ของค่าสถิติที T = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทาง หางด้านขวาของโค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มที T ตั้งแต่ T = | k | ถึง T = ∞

หมายเหตุ เราใช้สัญลักษณ์ Sig แทนค่า Significant ของค่าสถิติ T = k

Sig = P(|k| < T <
$$\infty$$
)
= $\int_{T=|k|}^{\infty} h(t)dt$

$$= 0.5 - \int_{T=0}^{T=|\mathbf{k}|} h(t)dt$$

ตัวอย่างการคำนวณเช่น

T distribution v := 4

$$h(t) := \left[\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \sqrt{\pi \cdot v}} \right] \cdot \left[1 + \left(\frac{t^2}{v}\right) \right]^{-\frac{v+1}{2}}$$

Sig := 0.5 -
$$\int_{0}^{0} \frac{1.581}{n} h(t) dt$$

Sig = 0.094517

หมายเหตุ Sig(2 – tailed) = 2 Sig

2. การหาค่า Significant ของค่าสถิติไคสแควร์

ค่า Significant ของค่าสถิติไคสแควร์ χ^2 = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้ โค้งทางหางด้านขวาของโค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มไคสแควร์ χ^2 ตั้งแต่ χ^2 = k ถึง χ^2 = ∞

Chi-square distribution โค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มไคสแควร์

หมายเหตุ เราใช้สัญลักษณ์ Sig แทนค่า Significant ค่าสถิติไคสแควร์ χ^2 = k

Sig = P(k <
$$\chi^2 < \infty$$
)
= $\int_{k}^{\infty} f(x) dx$
= $1 - \int_{0}^{k} f(x) dx$

ตัวอย่างการคำนวณเช่น

Chi-square distribution
$$v := 3$$
 TOL := 0.000001

$$f(x) := \left[\frac{1}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)}\right] \cdot x^{\left(\frac{v}{2}\right) - 1} \cdot e^{-\frac{x}{2}}$$
Sig := $1 - \int_{0}^{3.822} f(x) dx$
Sig = 0.281338

หมายเหตุ Asymp. Sig.ของค่าสถิติใคสแควร์ = Sig ของค่าสถิติใคสแควร์

3. การหาค่า Significant ของค่าสถิติเอฟ F

ค่า Significant ของค่าสถิติเอฟ F = k คำนวณมาจากค่าของความน่าจะเป็นหรือพื้นที่ใต้โค้งทาง หางด้านขวาของโค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มเอฟ F ตั้งแต่ F = k ถึง F = ∞

F distribution

ใค้งการแจกแจงความน่าจะเป็นของตัวแปรสุ่มเอฟ F

หมายเหตุ เราใช้สัญลักษณ์ Sig แทนค่า Significant ของค่าสถิติ T = k

Sig = P(|k| < T <
$$\infty$$
)
= $\int_{T=|k|}^{\infty} h(t)dt$
= $0.5 - \int_{T=0}^{T=|k|} h(t)dt$

ตัวอย่างการคำนวณเช่น

F distribution v1 := 4 v2 := 25 TOL := 0.000001

$$h(f) := \frac{\Gamma\left(\frac{v1+v2}{2}\right) \cdot \left(\frac{v1}{v2}\right)^{\frac{v1}{2}} \cdot f^{\left(\frac{v1}{2}\right)-1}}{\Gamma\left(\frac{v1}{2}\right) \cdot \Gamma\left(\frac{v2}{2}\right) \cdot \left[1+\left(\frac{v1}{v2}\right) \cdot f\right]^{\frac{v1+v2}{2}}}$$
Sig := 1 - $\int_{0}^{\infty} 4.302$ h(f) df
Sig = 0.008747

ภาคผนวกที่ 2

การเชื่อมโยงข้อมูล SPSS for Windows กับ Microsoft Word

ผลการวิเคราะห์ของ SPSS เราสามารถนำผลการคำนวณไปไว้ที่ Microsoft Word ได้ทั้งในรูป แบบข้อความ ตาราง และ ข้อมูล

1. การนำตารางการวิเคราะห์จาก SPSS ไป Word

ตัวอย่างเช่น จาก SPSS for Windows Viewer เราต้องการตาราง Descriptive Statistics ไปไว้ที่

Microsoft Word

ขั้นที่ 1. คลิกที่ Descriptive Statistics

ขั้นที่ 2. คลิกที่ Edit และ Copy Object

12 0	utput1 - SPSS fo	r Windows Vie	wer					
<u>F</u> ile	<u>E</u> dit <u>V</u> iew Inser	t F <u>o</u> rmat <u>A</u> nal	vze <u>G</u> raphs	<u>U</u> tilities <u>W</u> i	indow	<u>H</u> elp		
È	<u>U</u> ndo	Ctrl+Z) <u>e</u> :	<u>. </u>	+ +	+ -	
	Cu <u>t</u>	Ctrl+×						
1	<u>С</u> ору	Ctrl+C						
	Copy objects	Ctrl+K	heser	intive				
	<u>P</u> aste After	Ctrl+\	pesei	ipuvea	•			

ขั้นที่ 3. ไปที่ส่วนการทำงานของ Microsoft Word

ขั้นที่ 4. ขณะที่อยู่ใน Microsoft Word ให้กด Ctrl+V จะได้ตารางของการวิเคราะห์มาอยู่ในงาน ของ Microsoft Word ที่เราทำขณะนั้น

W	W Microsoft Word - Document2									
	\mathbb{F} Eile Edit View Insert Format Iools Table Window Help									
][D 🖆 🖬 🎒 💁 🗘 🖤 📅 🔟 🐰 🗈 🛍 💅 ∽ + ⇔ + 🍓 😻 🗷 🎟 🔜 🏥									
N	Normal → Cordia New → 14 → B <i>I</i> <u>U</u> ≡ = = = = = = = = = = = = = = = = = = =									
L	1 + 1 + 1 + 2	• • • 1 • • • 2	• 1 • 3 • 1 • 4	4 • 1 • 5 • 1 • 6 • 1 •	7 • 1 • 8 •	1 • 9 • 1	• 10	· 11 ·		
-		[escriptive St	atistics						
<u></u>			Х	Valid N (listwise)]					
-		Ν	5	5						
~		Minimum	2.00							
-		Maximum	12.00							
-		Mean	5.8000							
-		Std. Deviation	3.9623							

หมายเหตุ การเลือก Edit Copy จะเป็นการ Copy ในรูปแบบของ Text เท่านั้น

2. การนำข้อมูลจากตารางของ Word ไปเป็นข้อมูลของ SPSS

เราสามารถนำข้อมูลจากตารางของ Word ไปเป็นข้อมูลของ SPSS ได้ตามขั้นตอนดังนี้ ตัวอย่างเช่นเราต้องการหาอายุเฉลี่ย น้ำหนักเฉลี่ย และรายได้เฉลี่ย ของคน 5 คนจากตารางใน

Word	

W M	W Microsoft Word - Document2									
0	🖻 🔛	<i>a</i>	💞 ក៏ថ្ង	Q X I	h 🛍 ≶	🌮 🗸 🖂 🖉 🍓 😵 🗗 🖓 💱				
Nor	rmal	+ Cordi	a New	• 14	- B					
L	0.1100	<u> </u>	. 1 . 2 .	1 - 3 - 1 -	4 • • • 5 •	6 7 8 9 10				
-1		เลชที่ ะ	อายุ□	น้ำหนัก∘	รายได้•					
-		1=	200	65=	15000¤					
:		20	230	56¤	27000-					
		3=	250	470	18000-	-				
		40	36¤	65¤	17500-					
<u>-</u>		50	270	58=	19500-					

ขั้นที่ 1. เลือกข้อมูลจากตารางของ Word แล้วกด Ctrl + C (ทำการ Copy)

WM	licrosoft ¥	/ord - Da	cument	2						
1 BE	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> n	sert F <u>o</u> r	mat <u>T</u> ools	T <u>a</u> ble <u>W</u> ir	ndow <u>H</u> e	lp			
D	🖻 📕	a	💞 ក៏ថ្ង	Q2 🐰 🛛	è 🛍 😒	\$ N +	Cil.v	۲	Ð	° 🔜
No	rmal	← Cordi	a New	• 14	- B	ΙÜ	≣≡			t≡ IE
L	1 : 1 : 1	Reed	· · · 2	1 + 3 + 1	4 · 1 · 5	1 * 6 * 1	L + 7 + 1	18111	9 1 1	10 1 1
		เลขที่=	อายุ□	น้ำหนัก¤	รายได้•					
-		10	20=	65¤	150000	•				
<u> </u>		20	230	56¤	27000¤	•				
-		30	250	470	18000¤	•				
·		40	36¤	65¤	17500¤	•				
-		50	270	580	19500¤	•				
n.		¶				•				

ขั้นที่ 2. ไปที่ SPSS for Windows Data Editor เลือกเมนู File / New / Data และ คลิก Data

📰 Un	III Untitled - SPSS for Windows Data Editor										
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp						
ĕ∎≣ ¤ ∽ ⊾ <u>⊨</u> № M ¶ă ≣ 1 ≣ Š @											
	var	var	var	var	var						
1											
2											
-											

ข**ั้นที่ 3**. กด Ctrl+V เพื่อเอาข้อมูลที่เรา Copy มาจาก Word วางลงใน SPSS

🛗 Unt	Intitled - SPSS for Windows Data Editor									
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>I</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
<u> 2</u>	6 - <u>1</u> -									
1:var	1:var00001									
	var00001	var00002	var00003	var00004	var					
1	1.00	20.00	65.00	15000.00						
2	2.00	23.00	56.00	27000.00						
3	3.00	25.00	47.00	18000.00						
4	4.00	36.00	65.00	17500.00						
5	5.00	27.00	58.00	19500.00						

ขั้นที่ 4. เปลี่ยนชื่อตัวแปรให้เหมาะสมกับข้อมูล

翻Untitled - SPSS for Windows Data Editor File <u>E</u> dit <u>V</u> iew <u>D</u> ata Iransform Analyze <u>G</u> raphs <u>U</u> tilities Window <u>H</u> elp									
200 <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u>									
	id	age	weigth	income	var				
1	1.00	20.00	65.00	15000.00					
2	2.00	23.00	56.00	27000.00					
3	3.00	25.00	47.00	18000.00					
4	4.00	36.00	65.00	17500.00					
5	5.00	27.00	58.00	19500.00					

ขั้นที่ 5. วิเคราะห์ข้อมูลหาค่าเฉลี่ย

The Dutput1 - SPSS for Windows Viewer										
File Edit ⊻iew Insert Format Analyze Graphs ∐tilities Window Help										
2										
Output Descriptives	C)escriptives								
Title				Descriptive	Statistics					
Descriptive Statistics							Std.			
			N	Minimum	Maximum	Mean	Deviation			
I	.	ID	5	1.00	5.00	3.0000	1.5811			
1	1	AGE	5	20.00	36.00	26.2000	6.0581			
		WEIGTH	5	47.00	65.00	58.2000	7.4632			
		INCOME	5	15000.00	27000.00	19400.0000	4546.9770			
		Valid N (listwise)	5							

ขั้นที่ 6. Copy ตารางที่วิเคราะห์ได้มาไว้ที่ Micro Word

3. การนำข้อมูล Data จาก SPSS มาทำงานที่ Word

การนำข้อมูลที่เป็น Data จาก SPSS for Windows Data Editor มาที่ Word ทำได้ดังนี้

-											
🏢 еха	mple16 - SPSS	for Windows D	ata Editor								
<u>File</u>	<u>File Edit View Data Iransform Analyze Graphs Utilities Window Help</u>										
6											
1:x	1:x 15										
	×	У	var	var	var						
1	1.50	4.80									
2	1.80	5.70									
3	2.40	7.00									
4	3.00	8.30									
5	3.50	10.90									
6	3.90	12.40									
7	4.40	13.10									
8	4.80	13.60									
9	5.00	15.30									

เราต้องการข้อมูลจาก SPSS มาที่ Word

ขั้นที่ 1. เลือกบริเวณของข้อมูลที่ต้องการ

<u> </u>	<mark>∰example16 - SPSS for Windows Data Editor</mark> File <u>E</u> dit ⊻iew Data Iransform Analyze <u>G</u> raphs Utilities Window <u>H</u> elp										
*											
1:x											
	×	У	var	var	var						
1	1.50	4.80									
2	1.80	5.70									
3	2.40	7.00									
4	3.00	8.30									
5	3.50	10.90									
6	3.90	12.40									
7	4.40	13.10									
8	4.80	13.60									
9	5.00	15.30									

ขั้นที่ 2. กด Ctrl+C เพื่อ Copy

ขั้นที่ 3. ไปที่โปรแกรม Word แล้วกด Ctrl + V เพื่อเอาข้อมูลที่ Copy ไว้มาทำงานต่อใน Word

W Micros	soft Word - Document2
📳 <u>F</u> ile	<u>E</u> dit <u>V</u> iew Insert Format <u>I</u> ools T <u>a</u> ble <u>W</u> indow <u>H</u> elp
🗅 🚔	🖩 🎒 🕼 🚏 📅 🛍 % 🖻 🋍 🚿 知 + Cr + 🛸 🏶 🖪 🕅
Normal	• Cordia New • 14 • B I U 盲言言語 第二三
L · 1	• • • • • • • • • • • • • • • • • • • •
:	1.80 → 5.70¶
5	2.40 → 7.00¶
9	3.00 → 8.30¶
-	3.50 → 10.90¶
-12	3.90 → 12.40¶
9	4.40 → 13.10¶
-	4.80 → 13.60¶
-	5.00 → 15.30¶

ภาคผนวกที่ 3

การเชื่อมโยงข้อมูล SPSS for Windows กับ Excel

เราสามารถนำข้อมูลที่สร้างไว้ด้วยโปรแกรม Excel มาวิเคราะห์ด้วย SPSS for Windows ได้ ตัวอย่างเช่น เรามีข้อมูลใน Excel ดังนี้

XH	🗙 Microsoft Excel - Book1									
] 🛛	□ 🚔 🔲 🎒 💁 🔍 🌮 📅 🛍 🐰 🗈 🛍 💋 🗠 - ∞ - 🍓 🍕									
Co	rdia New		4 - B	<i>I</i> <u>U</u> ≡	≣≣∎					
	J7	<u> </u>	-							
	А	В	С	D	Е	F				
1	1	25	65	12000						
2	2	23	70	23000						
3	3	23	54	25000						
4	4	19	52	15500						
5	5	26	63	17500						

เราต้องการนำข้อมูลจาก Excel ไปวิเคราะห์ที่ SPSS

ขั้นที่ 1. เลือกบริเวณที่ต้องการ Copy ใน Excel

XH	🗙 Microsoft Excel - Book1									
] 🔁 Eile Edit ⊻iew Insert Format Iools Data Window Help									
0	□ ☞ 🖬 를 🖪 🖏 🌾 📅 🐚 👗 🛍 🛍 💅 ∽ - ⇔ - 🍓 🍕									
Co	rdia New	+ 1e	4 - B	<i>I</i> <u>U</u> ≣	≣≣∎					
	A1	<u> </u>	= 1							
	A	В	C	D	E	F				
1	1	25	65	12000						
2	2	23	70	23000						
3	3	23	54	25000						
4	4	19	52	15500						
5	5	26	63	17500						
		1								

- ขั้นที่ 2. Copy ใน Excel โดยการกด Ctrl + C
- ขั้นที่ 3. ไปที่ SPSS for Windows Data Editor เลือกเมนู File / News / Data

🎬 Untitled - SPSS for Windows Data Editor											
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp		
<u> </u>	lew			Þ	D <u>a</u> ta			atal ⊞I	ച്ചതി		
) pen			Ctrl+O	Synta	x			•••		

🛗 Unt	🛗 Untitled - SPSS for Windows Data Editor												
<u>F</u> ile <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp												
~	\$												
					· · · · ·								
	var	var	var	var	var								
1													
2													

ขั้นที่ 4. กด Ctrl + V เพื่อน้ำข้อมูลที่ Copy มาจาก Excel วางลงในตารางของ SPSS

Eile E	Image: Second										
■圖 些 些 上 腔 ▲ 性能 墨亚馬 该 ④ 1:var00001											
	var00001	var00002	var00003	var00004	var						
1	1.00	25.00	65.00	12000.00							
2	2.00	23.00	70.00	23000.00							
3	3.00	23.00	54.00	25000.00							
4	4.00	19.00	52.00	15500.00							
5	5.00	26.00	63.00	17500.00							

ขั้นที่ 5. เปลี่ยนชื่อตัวแปรตามความเหมาะสม

Eile E	<mark>⊞Untitled - SPSS for Windows Data Editor</mark> File <u>Edit Vi</u> ew <u>D</u> ata Iransform Analyze <u>G</u> raphs ∐tilities <u>W</u> indow <u>H</u> elp										
200 - <u>100 - 100</u>											
	а	b	C	d	var						
1	1.00	25.00	65.00	12000.00							
2	2.00	23.00	70.00	23000.00							
3	3.00	23.00	54.00	25000.00							
4	4.00	19.00	52.00	15500.00							
5	5.00	26.00	63.00	17500.00							

ขั้นที่ 6. วิเคราะห์ข้อมูล

Output1 - SPSS for Windows Viewer												
<u>File Edit Vi</u> ew Insert F <u>o</u> rmat Analyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp												
<u> </u>												
Output Output Output Descriptives Title	Descriptives	6 Di	escriptive St	atistics								
Descriptive Statistics		N	Minimum	Maximum	Mean	Std. Deviation						
	A	5	1.00	5.00	3.0000	1.5811						
	в	5	19.00	26.00	23.2000	2.6833						
	С	5	52.00	70.00	60.8000	7.5961						
	D	5	12000.00	25000.00	18600.00	5354.9043						
	Valid N (listwise)	5										

ขั้นที่ 7. เราสามารถนำตารางการวิเคราะห์ของ SPSS ไปไว้ที่ Excel ได้โดยทำดังนี้ **ขั้นที่ 7**.1 กดดับเบิลคลิกในตารางที่เราต้องการนำไปไว้ที่ Excel

<u>File Edit View Insert Pivot</u> Fo	rmat <u>A</u> nalyze <u>G</u> raphs	<u>U</u> tilities	<u>W</u> indow <u>H</u> elp	Þ			
Output Descriptives	Descriptives						
Title			Descriptive	e Statistics	tistics		
→ 🛅 Descriptive Stat						Std.	
		N	Minimum	Maximum	Mean	Deviation	
	A	5	1.00	5.00	3.0000	1.5811	
	в	5	19.00	26.00	23.2000	2.6833	
	c	5	52.00	70.00	60.8000	7.5961	
	D	5	12000.00	25000.00	18600.0000	5354.904:	
	Valid N (lietwien)	5					

ข**ั้นที่ 7.2** เลือกเมนู Edit / Select / Table

<u>File E</u> dit <u>V</u> iew <u>I</u> nsert <u>P</u> ivot	Form	nat <u>A</u> nalyze <u>G</u> raphs <u>I</u>	<u>U</u> tilities <u>\</u>	<u>M</u> indow <u>H</u> elp			
Output Output Output Output Title		Descriptives					
→ Can Descriptive Stat				Descriptiv	e Statistics		
- 			N	Minimum	Maximum	Mean	Std. Deviation
		A	5	1.00	5.00	3.0000	1.581
		в	5	19.00	26.00	23.2000	2.683
	1	С	5	52.00	70.00	60.8000	7.596
		D	5	12000.00	25000.00	18600.0000	5354.904
	1	Valid N (listwise)	5				

ขั้นที่ 7.3 กด Ctrl + C เพื่อ Copy ตาราง

ขั้นที่ 7.4 ไปที่ Excel และหาตำแหน่งที่เหมาะสมที่จะว่างตารางการวิเคราะห์ข้อมูลที่เรา Copy ไว้แล้ว

X	🗙 Microsoft Excel - Book9										
] 🐏 Eile Edit ⊻iew Insert Format Iools Data Window Help										
D	🖻 🖬 🛛	🎒 🖪 🚏	កីរី 🙆 🖁 🕷	: 🖻 🛍 :	🝠 🗠 🕶 🛛	a 🗸 🍓 🍕					
Co	Cordia New • 14 • B Z <u>U</u> ≡ ≡ ≡ ≡ ⊞ [!										
	A1	<u> </u>	=								
	A	в	с	D	E	F					
1											
2											
3											

×	🗙 Microsoft Excel - Book8											
1	🛐 Eile Edit View Insert Format Iools Data Window Help											
l	D 🚅 🖶 🚑 🖪 ♥ ∰ Ϣ ೫ 🛍 🛍 💅 ∽ · ⊂ - 🍓 ኛ Σ 🐅											
Co	Cordia New - 14 - B I U ≣ ≣ ≣ ≣ ඕ ፼ %,											
	J10	<u> </u>	-		-							
	A	в	С	D	E	F	G					
1	Descriptive	Statistics										
2		N	Minimum	Maximum	Mean	Std. Deviati	ion					
3	A	5	1	5	3	1.581139						
4	в	5	19	26	23.2	2.683282						
5	с	5	52	70	60.8	7.596052						
6	D	5	12000	25000	18600	5354.904						
7	Valid N (list	5										

ขั้นที่ 7.5 กด Ctrl + V เพื่อพิมพ์ตารางที่เรา Copy มาจาก SPSS ลงสู่ Excel

จัดรูปแบบให้เมาะสมใน Excel ก็จะได้รูปแบบตามที่เราต้องการใน Excel ตัวอย่างเช่น

X	🗙 Microsoft Excel - Book8											
] 18 Eile Edit ⊻iew Insert Format Iools Data Window Help											
□ ☞ 🖬 🖨 🖪 ♥ ㎡ ໝ 🐰 🖻 🛍 💅 ▷ ▾ ལ ▾ 🍓 🐲 Σ 🚈												
Cordia New - 14 - B I U ≣ ≣ ≣ % ,												
	l12 <u>-</u> =											
	A	в	с	D	E	F						
1	Descriptive Statistics											
2		N	Minimum	Maximum	Mean	Std. Deviation						
3	А	5	1	5	3	1.58113883						
4	В	5	19	26	23.2	2.683281573						
5	c	5	52	70	60.8	7.596051606						
6	D	5	12000	25000	18600	5354.904294						
7	Valid N (listwise)	5										

หมายเหตุ การ Copy ข้อมูล Data จาก SPSS มาที่ Excel สามารถทำได้โดยการ

- 1. เลือกบริเวณที่ต้องการ Copy ใน SPSS for Windows Data Editor
- 2. กด Ctrl+V
- 3. ไปที่ Excel หาบริเวณที่ต้องการคัดลอกข้อมูลลง
- 4. กด Ctrl+V ก็จะได้ข้อมูลที่ Copy มาจาก SPSS

บรรณานุกรม

Joseph G. Van Matre , Glenn H. Gilbreath , **Statistics for Business and Economics** , Third Edition , Business Publication,Inc., Homewood, Illinois ,1987

Ronald E. Walpole , Raymond H. Myers , Probability and Statistics for Engineers and

Scientists Third Edition , Macmillan Publishing Company , NewYork , 1985.

SPSS Base 7.5 Application Guide , SPSS Inc. USA 1997

SPSS Base 7.5 for Windows User's Guide , SPSS Inc. USA 1997

กรรณิกา ทิตาราม **สถิติเชิงคณิตศาสตร์** ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์

มหาวิทยาลัย กรุงเทพมหานคร 2528

คณาจารย์ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย **ความน่าจะเป็นและ สถิติ** พิทักษ์การพิมพ์ กรุงเทพมหานคร 2528

ดำรงค์ ทิพย์โยธา **คู่มือ MATHCAD** โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 2541

พรพรรณ แย้มกลิ่น , สุพพัดดา ปวนะฤทธิ์ **เอกสารประกอบคำบรรยาย วิชาความน่าจะเป็นและ สถิติ** ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร

2530

ศริชัย พงษ์วิชัย **การวิเคราะห์ข้อมูลทางสถิติด้วยคอมพิวเตอร์** พิมพ์ครั้งที่ 8

สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 2539

<mark>การวิเคราะห์ข้อมูลทางสถิติด้วย</mark> SPSS for Windows version 9.0

เป็นหนังสือที่จะทำให้ผู้อ่านสามารถ

- สร้างแฟ้มข้อมูลและวิเคราะห์สถิติเบื้องต้น
- วิเคราะห์ข้อมูลและนำเสนอข้อมูลในรูปแบบกราฟและตาราง
- หาช่วงความเชื่อมั่น (1 α)100% ของค่าพารามิเตอร์
- ทดสอบสมมติฐาน
- การทดสอบภาวะสารูปสนิทดี
- การทดสอบความเป็นอิสระ
- สหสัมพันธ์
- การถดถอยเชิงเส้น
- การวิเคราะห์ความแปรปรวน
- การทดสอบส[ุ]มมติฐานแบบนอนพาร<mark>กามตร</mark>ิก
- เชื่อมโยงข้อมูลระหว่าง SPSS Word Excel

Dumrong Tipyotha

May 2010